Publikace: Cyberattack Detection in IoT Networks Using Deep Learning
Bakalářská práceopen accessNačítá se...
Datum
Autoři
Název časopisu
ISSN časopisu
Název svazku
Nakladatel
Univerzita Pardubice
Abstrakt
This thesis presents a deep learning based approach for detecting cyber attacks in the Internet of Things(IoT)systems, mainly in the form of devices. Using the CICIoT2023 dataset, the study implements and compares Convolutional Neural Networks(CNN) and Long Short Term Memory(LSTM) models to identify many kinds of intrusions. This thesis also highlights the effectiveness of deep learning in handling large-scale IoT traffic data and improving the handling of large-scale IoT traffic data and improving detection accuracy, offering valuable insights for securing smart environments, including a brief analysis of traditional Machine Learning techniques like Decision Trees and Logistic Regression.
Popis
Klíčová slova
Internet of Things(IoT), Cybersecurity, Intrusion Detection System(IDS), Deep learning, Convolutional Neural Networks(CNN), Long Short-Term Memory(LSTM), CICIoT2023 Dataset, IoT Security, Neural Networks, Anomaly Detection, Internet věcí, kybernetická bezpečnost, systém detekce průniků, hluboké učení, konvoluční neuronové sítě, dlouhá krátkodobá paměť