Genetic Algorithm-Based Task Assignment for Fleet of Unmanned Surface Vehicles in Dynamically Changing Environment
ČlánekOmezený přístuppeer-reviewedpostprintSoubory
Datum publikování
2023
Autoři
Dvořák, Miroslav
Doležel, Petr
Štursa, Dominik
Chouai, Mohamed
Vedoucí práce
Oponent
Název časopisu
Název svazku
Vydavatel
Taylor & Francis Inc
Abstrakt
Unmanned vehicles are gaining the attention of professional operators and the general public. The implementation of unmanned vehicles is evident in, among other fields, emergency management, agriculture, traffic monitoring, post-disaster operations, and delivery of goods. Naturally, a group of unmanned vehicles can cooperatively complete operations more proficiently than a single vehicle. However, several issues must be resolved before a stable and reliable group of unmanned vehicles can be generally deployed to solve tasks in civil infrastructures and in industrial facilities. Here, a framework for the guidance of a fleet of unmanned surface vehicles is proposed. The framework utilizes several levels of control, namely Global Planning Level, Local Planning Level, and Low-Level Control. While the individual vehicles are completely autonomous in their operational locomotion and obstacle avoidance (low-level control and local planning), the task assignment for each vehicle (or group of them) is provided by a global planning process, based on the genetic algorithm. The framework provides a concept to solve complex tasks for the fleet of unmanned surface vehicles (USVs). This includes, but is not necessarily limited to, a dynamically changing environment, different types of USVs with special abilities, multiple types of areal restrictions and obstacles, different restrictions for individual USVs, cooperation of multiple USVs to solve their subtasks, energy consumption optimization, etc. The framework can be advantageously applied to tasks such as warehouse logistics, surface maintenance, area exploration, etc. At the end of the study, the application of the framework is presented using a simulated example of cooperative problem solving using six vehicles.
Rozsah stran
p. 1-18
ISSN
0196-9722
Trvalý odkaz na tento záznam
Projekt
SGS_2023_016/Výzkum a vývoj nových algoritmů, postupů a metod v oblasti detekce, lokalizace, identifikace a klasifikace objektů využitím strojového učení a prvků umělé inteligence pro oblast radarové techniky, dopravy a výrobních technologií
Zdrojový dokument
Cybernetics and Systems, volume 0, issue: 0
Vydavatelská verze
https://www.tandfonline.com/doi/permissions/10.1080/01969722.2023.2240645?scroll=top
Přístup k e-verzi
Práce není přístupná
Název akce
ISBN
Studijní obor
Studijní program
Signatura tištěné verze
Umístění tištěné verze
Přístup k tištěné verzi
Klíčová slova
Fleet management control system, fleet of unmanned vehicles, genetic algorithm, global planning, Systém řízení vozového parku, vozový park bezpilotních vozidel, genetický algoritmus, globální plánování