Design of DNN-Based Low-Power VLSI Architecture to Classify Atrial Fibrillation for Wearable Devices
ČlánekOmezený přístuppeer-reviewedpostprintDatum publikování
2023
Autoři
Parmar, Rushik
Janveja, Meenali
Pidanič, Jan
Trivedi, Gaurav
Vedoucí práce
Oponent
Název časopisu
Název svazku
Vydavatel
IEEE (Institute of Electrical and Electronics Engineers)
Abstrakt
Atrial fibrillation (AF) is a recurrent and life-threatening disease leading to rapid growth in the mortality rate due to cardiac abnormalities. It is challenging to manually diagnose AF using electrocardiogram (ECG) signals due to complex and varied changes in its characteristics. In this article, for the first time, an end-to-end edge-enabled machine learning based VLSI architecture is proposed to classify ECG excerpts having AF from normal beats. Researchers have found that abnormal atrial activity is confined to the low-frequency range through the decades. Therefore, in the proposed work, this frequency band is directly analyzed for AF detection, which has not previously been discussed. The proposed architecture is implemented using 180-nm bulk CMOS technology consuming 11.098 mu W at 25 kHz and exhibits an accuracy of 92.37% for class-oriented classification and 81.60% for subject-oriented classification. The low-power realization of the proposed design, as compared to the state-of-the-art methods, makes it suitable to be used for wearable devices.
Rozsah stran
p. 320-330
ISSN
1063-8210
Trvalý odkaz na tento záznam
Projekt
LTAIN19100/Vývoj bezkontaktní technologie pro inteligentní ochranu zájmových prostor
Zdrojový dokument
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, volume 31, issue: 3
Vydavatelská verze
https://ieeexplore.ieee.org/document/10021279
Přístup k e-verzi
Práce není přístupná
Název akce
ISBN
Studijní obor
Studijní program
Signatura tištěné verze
Umístění tištěné verze
Přístup k tištěné verzi
Klíčová slova
Electrocardiography, Feature extraction, Discrete wavelet transforms, Very large scale integration, Transforms, Wearable computers, Computer architecture, Application specific integrated circuit (ASIC), atrial fibrillation (AF), deep neural network (DNN)