Digitální knihovnaUPCE
 

Design of DNN-Based Low-Power VLSI Architecture to Classify Atrial Fibrillation for Wearable Devices

ČlánekOmezený přístuppeer-reviewedpostprint
Náhled

Datum publikování

2023

Autoři

Parmar, Rushik
Janveja, Meenali
Pidanič, Jan
Trivedi, Gaurav

Vedoucí práce

Oponent

Název časopisu

Název svazku

Vydavatel

IEEE (Institute of Electrical and Electronics Engineers)

Abstrakt

Atrial fibrillation (AF) is a recurrent and life-threatening disease leading to rapid growth in the mortality rate due to cardiac abnormalities. It is challenging to manually diagnose AF using electrocardiogram (ECG) signals due to complex and varied changes in its characteristics. In this article, for the first time, an end-to-end edge-enabled machine learning based VLSI architecture is proposed to classify ECG excerpts having AF from normal beats. Researchers have found that abnormal atrial activity is confined to the low-frequency range through the decades. Therefore, in the proposed work, this frequency band is directly analyzed for AF detection, which has not previously been discussed. The proposed architecture is implemented using 180-nm bulk CMOS technology consuming 11.098 mu W at 25 kHz and exhibits an accuracy of 92.37% for class-oriented classification and 81.60% for subject-oriented classification. The low-power realization of the proposed design, as compared to the state-of-the-art methods, makes it suitable to be used for wearable devices.

Rozsah stran

p. 320-330

ISSN

1063-8210

Trvalý odkaz na tento záznam

Projekt

LTAIN19100/Vývoj bezkontaktní technologie pro inteligentní ochranu zájmových prostor

Zdrojový dokument

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, volume 31, issue: 3

Vydavatelská verze

https://ieeexplore.ieee.org/document/10021279

Přístup k e-verzi

Práce není přístupná

Název akce

ISBN

Studijní obor

Studijní program

Signatura tištěné verze

Umístění tištěné verze

Přístup k tištěné verzi

Klíčová slova

Electrocardiography, Feature extraction, Discrete wavelet transforms, Very large scale integration, Transforms, Wearable computers, Computer architecture, Application specific integrated circuit (ASIC), atrial fibrillation (AF), deep neural network (DNN)

Endorsement

Review

item.page.supplemented

item.page.referenced