Comparison of Floating-point Representations for the Efficient Implementation of Machine Learning Algorithms
Konferenční objektOtevřený přístuppeer-reviewedpostprint (accepted version)Datum publikování
2022
Autoři
Mishra, Saras Mani
Tiwari, Ankita
Shekhawat, Hanumant Singh
Guha, Prithwijit
Trivedi, Gaurav
Pidanič, Jan
Němec, Zdeněk
Vedoucí práce
Oponent
Název časopisu
Název svazku
Vydavatel
IEEE
Abstrakt
Smart systems are enabled by artificial intelligence (AI), which is realized using machine learning (ML) techniques. ML algorithms are implemented in the hardware using fixedpoint, integer, and floating-point representations. The performance of hardware implementation gets impacted due to very small or large values because of their limited word size. To overcome this limitation, various floating-point representations are employed, such as IEEE754, posit, bfloat16 etc. Moreover, for the efficient implementation of ML algorithms, one of the most intuitive solutions is to use a suitable number system. As we know, multiply and add (MAC), divider and square root units are the most common building blocks of various ML algorithms. Therefore, in this paper, we present a comparative study of hardware implementations of these units based on bfloat16 and posit number representations. It is observed that posit based implementations perform 1.50x better in terms of accuracy, but consume 1.51x more hardware resources as compared to bfloat16 based realizations. Thus, as per the trade-off between accuracy and resource utilization, it can be stated that the bfloat16 number representation may be preferred over other existing number representations in the hardware implementations of ML algorithms.
Rozsah stran
p. 191-196
ISSN
Trvalý odkaz na tento záznam
Projekt
LTAIN19100/Vývoj bezkontaktní technologie pro inteligentní ochranu zájmových prostor
Zdrojový dokument
2022 32ND INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA)
Vydavatelská verze
https://ieeexplore.ieee.org/document/9764927/
Přístup k e-verzi
open access (green)
Název akce
32nd International Conference on Radioelectronics (RADIOELECTRONICS) (21.04.2022 - 22.04.2022, Kosice)
ISBN
978-1-72818-686-3
Studijní obor
Studijní program
Signatura tištěné verze
Umístění tištěné verze
Přístup k tištěné verzi
Klíčová slova
floating-point representations, deep learning, posit, training, reprezentace s plovoucí desetinnou čárkou, hluboké učení, pozice, trénink