A novel approach for Tool-Narayanaswamy-Moynihan model parameter extraction using multi-scale neural model
ČlánekOtevřený přístuppeer-reviewedpublished Náhled není k dispozici
Datum publikování
2025
Vedoucí práce
Oponent
Název časopisu
Název svazku
Vydavatel
Elsevier
Abstrakt
The accurate determination of parameters in the Tool-Narayanaswamy-Moynihan (TNM) model, which describes the viscoelastic behavior of glass-forming materials, is crucial for predicting material responses through various thermal histories. Traditional methods rely heavily on curve-fitting techniques; however, these often fail due to noise in the data. Furthermore, traditional methods are computationally intensive and prone to inaccuracies, particularly when dealing with complex datasets or when the initial parameter guesses are far from optimal; also, they require a skilled personnel.
In this study, we propose the application of a multi-scale convolutional neural network (MCNN) as a machine learning approach to address these challenges. The MCNN model is trained on a comprehensive simulated dataset encompassing a wide range of TNM parameters, allowing it to learn intricate patterns and dependencies within the data that are difficult to capture with conventional methods. Our results show that the MCNN significantly improves the accuracy of the parameter estimations for and across the entire spectrum of tested conditions, achieving performance that is not only comparable to, but often surpasses, traditional curve-fitting methods. Furthermore, the MCNN demonstrates superior robustness when initial parameter estimates are suboptimal or when the dataset exhibits significant noise. Although the prediction accuracy for the activation energy and the pre-exponential factor was somewhat lower, the method still provides valuable estimates that can be refined with supplementary techniques.
This work highlights the potential of machine learning approaches like MCNN to revolutionize the parameter extraction process in complex physical models, reducing the reliance on manual curve-fitting and providing a more automated, scalable solution. We also analyze the primary sources of prediction errors in the MCNN outputs and offer insights into future improvements, including model architecture refinements and the integration of additional physical constraints. Our findings suggest that this approach can be extended to other domains where similar models are employed, paving the way for broader applications of machine learning in materials science.
Rozsah stran
18 p.
ISSN
1879-3312
Trvalý odkaz na tento záznam
Projekt
MŠMT/OP JAK/CZ.02.01.01/00/23_021/0008402/CZ/Mezisektorová a mezioborová spolupráce ve výzkumu a vývoji komunikačních, informačních a detekčních technologií pro řídicí a zabezpečovací systémy/CIDET
Zdrojový dokument
Materials Chemistry and Physics. 2025, vol. 329
Vydavatelská verze
https://www.sciencedirect.com/science/article/pii/S0254058424012355
Přístup k e-verzi
open access
Název akce
ISBN
Studijní obor
Studijní program
Signatura tištěné verze
Umístění tištěné verze
Přístup k tištěné verzi
Klíčová slova
Tool-Narayanaswamy-Moynihan model, multi-scale neural model, enthalpy relaxation dynamics, glass transition, differential scanning calorimetry
Endorsement
Review
item.page.supplemented
item.page.referenced
Creative Commons license
Except where otherwised noted, this item's license is described as open access