Memory Efficient Grasping Point Detection of Nontrivial Objects
ČlánekOtevřený přístuppeer-reviewedpublished versionDatum publikování
2021
Autoři
Doležel, Petr
Štursa, Dominik
Kopecký, Dušan
Jecha, Jiří
Vedoucí práce
Oponent
Název časopisu
Název svazku
Vydavatel
IEEE (Institute of Electrical and Electronics Engineers)
Abstrakt
Robotic manipulation with a nontrivial object providing various types of grasping points is of an industrial interest. Here, an efficient method of simultaneous detection of the grasping points is proposed. Specifically, two different 3 degree-of-freedom end effectors are considered for simultaneous grasping. The method utilizes an RGB data-driven perception system based on a specifically designed fully convolutional neural network called attention squeeze parallel U-Net (ASP U-Net). ASP U-Net detects grasping points based on a single RGB image. This image is transformed into a schematic grayscale frame, where the positions and poses of the grasping points are coded into gradient geometric shapes. In order to approve the ASP U-Net architecture, its performance was compared with nine competitive architectures using metrics based on generalized intersection over union and mean absolute error. The results indicate its outstanding accuracy and response time. ASP U-Net is also computationally efficient enough. With a more than acceptable memory size (77 MB), the architecture can be implemented using custom single-board computers. Here, its capabilities were tested and evaluated on the NVIDIA Jetson NANO platform.
Rozsah stran
p. 82130-82145
ISSN
2169-3536
Trvalý odkaz na tento záznam
Projekt
EF17_049/0008394/Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)
Zdrojový dokument
IEEE ACCESS, volume 2021, issue: 9
Vydavatelská verze
https://ieeexplore.ieee.org/document/9446869
Přístup k e-verzi
open access
Název akce
ISBN
Studijní obor
Studijní program
Signatura tištěné verze
Umístění tištěné verze
Přístup k tištěné verzi
Klíčová slova
grasping, service robots, end effectors, grippers, three-dimensional displays, convolutional neural networks, computer architecture, robotic grasping, grasping point detection, machine vision, deep learning, convolutional neural network, uchopování, servisní roboty, koncové efektory, chapadla, trojrozměrné displeje, konvoluční neuronové sítě, počítačová architektura, robotické uchopování, detekce bodu uchopení, strojové vidění, hluboké učení, konvoluční neuronová síť
Endorsement
Review
item.page.supplemented
item.page.referenced
Creative Commons license
Except where otherwised noted, this item's license is described as open access