Digitální knihovnaUPCE
 

Comparison of Geospatial Trajectory Clustering and Feature Trajectory Clustering for Public Transportation Trip Data

Konferenční objektOmezený přístuppeer-reviewedpostprint
Náhled

Datum publikování

2023

Autoři

Cogollos Adrian, Hector
Baruque Zanon, Bruno
Porras Alfonso, Santiago
Doležel, Petr

Vedoucí práce

Oponent

Název časopisu

Název svazku

Vydavatel

Springer Nature Switzerland AG

Abstrakt

One of the techniques for the analysis of travel patterns on a public transport network is the clustering of the users movements, in order to identify movement patterns. This paper analyses and compares two different methodologies for public transport trajectory clustering: feature clustering and geospatial trajectory clustering. The results of clustering trip features, such as origin, destination, or distance, are compared against the clustering of travelled trajectories by their geospatial characteristics. Algorithms based on density and hierarchical clustering are compared for both methodologies. In geospatial clustering, different metrics to measure distances between trajectories are included in the comparison. Results are evaluated by analysing their quality through the silhouette coefficient and graphical representations of the clusters on the map. The results show that geospatial trajectory clustering offers better quality than feature trajectory clustering. Also, in the case of long and complete trajectories, density clustering using edit distance with real penalty distance outperforms other combinations.

Rozsah stran

p. 589-599

ISSN

0302-9743

Trvalý odkaz na tento záznam

Projekt

Zdrojový dokument

Hybrid Artificial Intelligent Systems : 18th International Conference, HAIS 2023, proceedings

Vydavatelská verze

https://link.springer.com/chapter/10.1007/978-3-031-40725-3_50

Přístup k e-verzi

Práce není přístupná

Název akce

18th International Conference on Hybrid Artificial Intelligence Systems, HAIS 2023 (05.09.2023 - 07.09.2023, Salamanca)

ISBN

978-3-031-40724-6

Studijní obor

Studijní program

Signatura tištěné verze

Umístění tištěné verze

Přístup k tištěné verzi

Klíčová slova

HDBSCAN, Agglomerative Clustering, ERP, DTW, HDBSCAN, Aglomerativní klastrování, ERP, DTW

Endorsement

Review

item.page.supplemented

item.page.referenced