Abstract:
V pojistné matematice teorie ruinování využívá matematické modely pro popis zranitelnosti pojistitele ke krachu. Teoretické základy teorie ruinování popisuje pojišťovací společnost, která zažívá dvě protichůdné peněžní toky: příchozí peněžní prémie a odchozích pojistné plnění. Přebytek pojistitele je náhodná proměnná, protože jeho hodnota závisí na pojistné a pojistná plnění. Pojišťovna požaduje, aby pravděpodobnost krachu tak malé, jak je to možné, nebo alespoň pod předem stanovenou mez. Lundbergova nerovnost poskytuje horní mez pro pravděpodobnost krachu v nekonečném čase a je jedním z nejznámějších výsledků v teorii ruinování. Jednou z možností pro pojistitele, který chce snížit pravděpodobnost krachu je provést zajištění. Budeme zvažovat dva druhy zajištění: proporcionální a zajištění škodního nadměrku. Mohli bychom uvažovat o zajištění, které je optimální (z pojišťovny hlediska), pokud minimalizuje pravděpodobnost krachu. Cílem této práce je ukázat, jaký vliv mají změny faktoru zatížení pojistného (používané pojistitelem a zajistitelem), na pravděpodobnost krachu pro oba druhy zajištění. Najdeme také optimální typ zajištění za určitých podmínek.