Digitální knihovnaUPCE
 

Fakulta elektrotechniky a informatiky / Faculty of Electrical Engineering and Informatics

Stálý URI pro tuto komunituhttps://hdl.handle.net/10195/3847

Práce obhájené před rokem 2008 jsou uloženy pouze v kolekci Vysokoškolské kvalifikační práce

Procházet

Search Results

Nyní se zobrazuje 1 - 2 z 2
  • Článekpeer-reviewedpublishedOtevřený přístup
    Sequence of U-Shaped Convolutional Networks for Assessment of Degree of Delamination Around Scribe
    (Atlantis Press, 2022) Rozsívalová, Veronika; Doležel, Petr; Štursa, Dominik; Rozsíval, Pavel
    The application of protective layers is the primary method of keeping metallic structures resistant to degradation. The measurement of the layer resistance to delamination is one of the important indicators of the protection quality. Therefore, ISO 4628 standard has been issued to handle and quantify the main coating defects. Here, an innovative assessment of degree of delamination around a scribe according to ISO 4628 standard has been practically realized. It utilizes an computer-driven deep learning-based method. The assessment method is composed of two shallow U-shaped convolutional networks in a row; the first for preliminary and the second for refined detection of delamination area around a scribe. The experiments performed on 586 samples showed that the proposed sequence of U-shaped convolutional networks meets the edge computing standards, provides good generalization capability, and provides precise delamination area detection for a large variability of surfaces.
  • Článekpeer-reviewedpublished versionOtevřený přístup
    Memory Efficient Grasping Point Detection of Nontrivial Objects
    (IEEE (Institute of Electrical and Electronics Engineers), 2021) Doležel, Petr; Štursa, Dominik; Kopecký, Dušan; Jecha, Jiří
    Robotic manipulation with a nontrivial object providing various types of grasping points is of an industrial interest. Here, an efficient method of simultaneous detection of the grasping points is proposed. Specifically, two different 3 degree-of-freedom end effectors are considered for simultaneous grasping. The method utilizes an RGB data-driven perception system based on a specifically designed fully convolutional neural network called attention squeeze parallel U-Net (ASP U-Net). ASP U-Net detects grasping points based on a single RGB image. This image is transformed into a schematic grayscale frame, where the positions and poses of the grasping points are coded into gradient geometric shapes. In order to approve the ASP U-Net architecture, its performance was compared with nine competitive architectures using metrics based on generalized intersection over union and mean absolute error. The results indicate its outstanding accuracy and response time. ASP U-Net is also computationally efficient enough. With a more than acceptable memory size (77 MB), the architecture can be implemented using custom single-board computers. Here, its capabilities were tested and evaluated on the NVIDIA Jetson NANO platform.