Fakulta elektrotechniky a informatiky / Faculty of Electrical Engineering and Informatics
Stálý URI pro tuto komunituhttps://hdl.handle.net/10195/3847
Práce obhájené před rokem 2008 jsou uloženy pouze v kolekci Vysokoškolské kvalifikační práce
Procházet
3 výsledky
Search Results
Článekpeer-reviewedpostprint Omezený přístup CSU-Net: Contour Semantic Segmentation Self-Enhancement for Human Head Detection(IEEE (Institute of Electrical and Electronics Engineers), 2023) Chouai, Mohamed; Doležel, PetrThe computer vision community has made tremendous progress in solving a variety of semantic image understanding tasks, such as classification and segmentation. With the advancement of imaging technology and hardware, image semantic segmentation, through the use of deep learning, is among the most common topics which have been worked on in the last decade. However, image semantic segmentation suffers from several drawbacks such as insufficient detection of object boundaries. In this study, we present a new convolutional neural network architecture called CSU-Net that aims to self-enhance the results of semantic segmentation. The proposed model consists of two strongly concatenated encoder-decoder blocks. With this design, we reduced requirements on computing power and memory size to decrease costs and increase the training/prediction speed. This study also demonstrates the advantage of the proposed system for small training data sets. The proposed approach has been implemented on our private dataset, as well as on a publicly available dataset. A comparative analysis was carried out with four popular segmentation models and three other recently introduced architectures to show the efficiency of the proposed system. CSU-Net outperformed the other competing neural networks that we considered for the comparative study. As an example, it succeeded in improving the traditional U-Net result by approximately 50% in mean Intersection over Union (mIoU) for both tested datasets. Based on our experience, the CSU-Net can improve results of semantic segmentation in many applications.Článekpeer-reviewedpublished Otevřený přístup Sequence of U-Shaped Convolutional Networks for Assessment of Degree of Delamination Around Scribe(Atlantis Press, 2022) Rozsívalová, Veronika; Doležel, Petr; Štursa, Dominik; Rozsíval, PavelThe application of protective layers is the primary method of keeping metallic structures resistant to degradation. The measurement of the layer resistance to delamination is one of the important indicators of the protection quality. Therefore, ISO 4628 standard has been issued to handle and quantify the main coating defects. Here, an innovative assessment of degree of delamination around a scribe according to ISO 4628 standard has been practically realized. It utilizes an computer-driven deep learning-based method. The assessment method is composed of two shallow U-shaped convolutional networks in a row; the first for preliminary and the second for refined detection of delamination area around a scribe. The experiments performed on 586 samples showed that the proposed sequence of U-shaped convolutional networks meets the edge computing standards, provides good generalization capability, and provides precise delamination area detection for a large variability of surfaces.Článekpeer-reviewedpublished version Otevřený přístup New End-to-End Strategy Based on DeepLabv3+Semantic Segmentation for Human Head Detection(MDPI, 2021) Chouai, Mohamed; Doležel, Petr; Štursa, Dominik; Němec, ZdeněkIn the field of computer vision, object detection consists of automatically finding objects in images by giving their positions. The most common fields of application are safety systems (pedestrian detection, identification of behavior) and control systems. Another important application is head/person detection, which is the primary material for road safety, rescue, surveillance, etc. In this study, we developed a new approach based on two parallel Deeplapv3+ to improve the performance of the person detection system. For the implementation of our semantic segmentation model, a working methodology with two types of ground truths extracted from the bounding boxes given by the original ground truths was established. The approach has been implemented in our two private datasets as well as in a public dataset. To show the performance of the proposed system, a comparative analysis was carried out on two deep learning semantic segmentation state-of-art models: SegNet and U-Net. By achieving 99.14% of global accuracy, the result demonstrated that the developed strategy could be an efficient way to build a deep neural network model for semantic segmentation. This strategy can be used, not only for the detection of the human head but also be applied in several semantic segmentation applications.