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ANNOTATION 

The difficulty in resolving the issues associated with forecasting regional financial performance 

has spurred the emergence of various applications of soft computing methods to tackle these 

challenges. This has inspired the development of hybrid models that employ diverse soft 

computing techniques. In this work, different machine learning methods such as random forest, 

XGBoost, support vector machines, neural networks, and fuzzy rule-based systems are utilized 

to improve the prediction of regional financial performance. I propose a novel hybrid method 

that integrates feature selection, class balancing, and ensemble classifiers in a cost-sensitive 

prediction scenario. More precisely, the proposed approach aims to develop an accurate decision 

support system that minimizes the misclassification cost in credit rating classification for sub-

sovereign entities across various countries and world regions. Cost-sensitive learning is 

employed to adjust the training instances in accordance with the total cost associated with each 

class, facilitating the prediction of nominal rating classes at a lower misclassification cost. 

Furthermore, it is demonstrated that combining bagging with decision trees as base learners can 

mitigate the risk of overfitting, a common issue in individual machine learning methods. To 

validate the proposed approach, I have conducted experiments using two different types of 

datasets from Moody's credit rating agency. The results show that the proposed hybrid model 

surpasses existing forecasting models in terms of misclassification cost and other classification 

metrics. 

Keywords: regional financial performance, sub-sovereign, credit rating, soft-computing 

method, machine learning, ensemble methods, cost sensitive learning 

 

NÁZEV 

 
Predikce regionální finanční výkonnosti pomocí soft-computingových metod 

 

ANOTACE 

Potíže s řešením problémů spojených s predikcí regionální finanční výkonnosti podnítily vznik 

různých metod soft computingu. To inspirovalo vývoj hybridních modelů, které kombinují 

různé soft computingové techniky. V této práci se ke zlepšení predikce regionální finanční 

výkonnosti využívají různé metody strojového učení, jako jsou náhodné lesy, XGBoost, 



podpůrné vektorové stroje, neuronové sítě a systémy založené na fuzzy pravidlech. Navrhuji 

nový hybridní model, který integruje selekci proměnných, vyvažování tříd a soubory 

klasifikátorů v nákladově citlivém predikčním scénáři. Přesněji řečeno, navrhovaný přístup si 

klade za cíl vyvinout přesný systém podpory rozhodování, který minimalizuje náklady na 

nesprávnou klasifikaci při predikci úvěrového ratingu pro regionální subjekty v různých zemích. 

Nákladově citlivé učení se používá k úpravě vah instancí při učení v souladu s celkovými 

náklady spojenými s každou třídou, což usnadňuje predikci nominálních ratingových tříd při 

nižších nákladech na nesprávnou klasifikaci. Kromě toho je prokázáno, že kombinování 

baggingu s rozhodovacími stromy jako základními klasifikátory může zmírnit riziko přeučení, 

což je běžný problém u jednotlivých modelů strojového učení. Pro ověření navrhovaného 

přístupu byly provedeny experimenty s použitím dvou různých typů datových souborů od 

ratingové agentury Moody's. Výsledky ukazují, že navrhovaný hybridní model předčí stávající 

predikční modely, zejména pokud jde o náklady na nesprávnou klasifikaci a další klasifikační 

metriky. 

Klíčová slova: regionální finanční výkonnost, region, úvěrový rating, metoda soft-computingu, 

strojové učení, soubory klasifikátorů, nákladově citlivé učení 
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Introduction 

Undoubtedly, the term 'regional financial performance' refers to the economic well-being of 

specific sub-sovereign entities, including cities, municipalities, counties, or states/provinces. 

This performance is commonly gauged through various financial indicators that mirror the 

region's economic activities and overall financial health, as highlighted in studies by Buendía-

Carrillo et al. (2020), Lukac et al. (2021), Ni et al. (2023), Faridi et al. (2023), Feng et al. (2023), 

Ghosh et al. (2023) and others. These entities, possessing a degree of decision-making 

autonomy, are pivotal in managing infrastructure, delivering public services, and tax collection 

within their jurisdictions, thereby significantly contributing to national economic growth and 

development (Carmeli, 2003; Wu et al., 2021).  

The increasing shift of decision-making from central to local governments underscores the 

importance of assessing their financial performance. As defined by Cohen et al. (2012), regional 

financial performance is the capacity of a region to fulfill its financial obligations and 

commitments to its citizens both presently and in the future. This performance serves as a 

cornerstone for decision-making, offering critical insights for investment opportunities. 

Furthermore, it lays the foundation for decision-making by offering substantial evidence on 

areas of investment interest (Gousario and Dharmastuti, 2015). Therefore, regional government 

stakeholders are keen on having indicators that forecast potential financial difficulties within the 

region. However, with limited exceptions, regions cannot declare bankruptcy, which 

complicates the evaluation of regional financial performance. Although financial distress 

prediction models are extensively utilized to assess corporate financial health (Liang et al., 2020; 

Sun et al., 2021), the development of similar models for non-profit entities has received scant 

attention, despite their significant role in regional and national development (Kloha et al., 2005; 

Wang et al., 2007; Zafra-Gomez et al., 2009; Cohen et al., 2012; Gorina et al., 2018; Antulov-

Fantulin et al., 2021). The challenge in predicting financial distress for regions is exacerbated 

by the scarce instances of regional defaults. Credit rating agencies use a variety of financial 

indicators to assign overall ratings (Gaillard, 2006; Gaillard, 2009), merging a wide range of 

qualitative and quantitative data on various economic, financial, and political risks into 

composite risk ratings. The assessment of regional financial performance globally is influenced 

by numerous socio-economic factors, including government borrowing levels, national debt, 

economic growth prospects, debt interest payments, and the GDP percentage (Mohapatra et al., 
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2018). 

Overall, despite the critical role of regional financial performance in national and regional 

development, the development of predictive models for such entities, which are predominantly 

non-profit, has received limited attention compared to corporate entities. The challenge is further 

compounded by the rarity of regional defaults, although the risk of financial distress for sub-

sovereign entities is monitored by credit rating agencies like Moody’s and Standard and Poor's, 

which utilize various financial indicators to assign ratings (Ioannou et al., 2021). 

Recent studies by Golbayani et al. (2020), Wang and Ku (2021), Sun et al. (2022), Wu et al. 

(2022), and Kumar Roy et al. (2023) on the use of ensemble learning and soft computing 

methods for predicting corporate credit ratings have yielded impressive results when compared 

to traditional statistical methods. Zadeh originally coined the term 'soft computing' in 1994, 

defining it as a consortium of computational techniques rooted in artificial intelligence (AI), 

which includes fuzzy systems, evolutionary computing, neural computing, and probabilistic 

methods (Zadeh, 1994). In contrast, hard computing prioritizes precision, certainty, and rigor, 

leading to deterministic outcomes (Chakraborty et al., 2017). Within the realm of financial 

distress prediction, Kumar and Ravi (2007) have classified soft computing methods into three 

main categories: (1) classification methods enhanced by intelligent feature selection, (2) 

integrated hybrid systems, such as fuzzy neural networks or evolutionary neural networks, and 

(3) ensemble classification methods. Similarly, Sun et al. (2004) organized these methods into: 

(1) classification methods paired with feature selection, (2) the use of one method to refine 

another classification method, and (3) the creation of a new classification method through the 

integration of two or more existing methods. 

Notably, the predictions from multiple classifiers can be combined to produce a more robust 

prediction model. Ensemble methods, in particular, combine the forecasts of several base 

machine learning algorithms, thereby enhancing the accuracy and robustness beyond what 

single algorithms could achieve in predicting corporate financial distress (Zhang et al., 2022). 

Both theoretical and empirical studies have demonstrated that an effective ensemble is 

characterized by each classifier within the ensemble being precise and committing errors on 

distinct segments of the input space (Optiz and Maclin, 1999). This efficacy underpins the 

popularity of ensemble classifiers in credit rating predictions (Zhu et al., 2017; Toseafa, 2018). 
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Boosting and bagging stand out as two fundamental approaches in ensemble learning. Boosting 

methodically employs a learning algorithm to iteratively produce a series of simple, modest-

quality classifiers, with each addition leading to a re-weighting of instances in the training set. 

This re-weighting ensures that subsequent classifiers pay more attention to the more challenging 

examples, and each classifier is endowed with a specific voting strength. Conversely, bagging, 

introduced by Breiman (1966), serves as a technique to diminish variance, making it particularly 

suitable for algorithms that are inherently unstable and prone to high variance. 

The applications of soft computing have introduced two primary advantages. First, they offer 

solutions to nonlinear problems where mathematical models fall short, incorporating human-

like knowledge—including cognition, recognition, understanding, and learning—into 

computing. This has paved the way for the development of intelligent systems, such as 

autonomous self-tuning systems and automated design systems (Omolaye et al., 2017). Another 

significant benefit is the complementary nature of soft computing techniques, which, when 

combined, can address complex issues beyond the scope of traditional mathematical approaches 

(Ammar et al., 2001). Additionally, features like intelligent control, nonlinear programming, 

optimization, and decision support have increased the popularity of soft computing across 

various applications (Ibrahim, 2016). 

Beyond the ensemble classification methods previously discussed, several researchers have 

explored integrated hybrid approaches, such as neuro-fuzzy systems (Khashman, 2009), the 

combination of rough sets and neural networks (Kim and Park, 2016), evolutionary fuzzy 

systems (Hajek, 2018), evolutionary neural networks (Pan, 2012), the integration of rough sets 

and support vector machines (Yeh et al., 2010), fuzzy systems with support vector machines 

(Wang et al., 2005), and the fusion of case-based reasoning with support vector machines (Sun 

et al., 2018). These integrated methods leverage the strengths of various soft computing 

techniques while mitigating their weaknesses. For instance, the combination of neural networks 

and fuzzy systems enhances both the accuracy and interpretability of the resulting models. 

Inspired by the findings discussed, this thesis is dedicated to the development of an innovative 

model for predicting regional financial performance, utilizing a blend of soft computing 

techniques. This approach marks a departure from previous studies that primarily relied on 

single statistical or machine learning methods. By integrating feature selection, data balancing 
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and ensemble learning, this work aims to harness their collective strengths, offering a robust 

solution for forecasting the complex, uncertain, and imbalanced nature of regional financial 

performance.
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1 State-of-the-art in Forecasting Regional Financial 

Performance 

1.1 Importance of Regional Financial Performance 

Regional financial performance reflects the economic and financial health of specific geographic 

areas, such as cities, states, provinces, or countries. It encompasses the analysis and evaluation 

of various economic indicators, financial metrics, and trends within a particular region. 

Understanding regional financial performance is crucial for businesses, investors, policymakers, 

and other stakeholders, offering valuable insights into the economic conditions, opportunities, 

and challenges of the area (Leiser and Mills, 2019; Maher et al., 2020; Buendía-Carrillo et al., 

2020; Lukac et al., 2021). 

Financial distress represents a significant concern within the public finance and economic 

systems of regional and local governments, particularly in the aftermath of the 2008 financial 

crisis. Notable examples include Detroit's 2013 bankruptcy filing, the largest in U.S. local 

government history, and significant financial distress cases in Catalonia, Portugal, and Italy 

(Gregori and Marattin, 2019; Antulov-Fantulin et al., 2021). Research by Antulov-Fantulin et al. 

(2021) employing machine learning and statistical models has demonstrated the feasibility of 

accurately predicting local government financial distress with a high true positive rate and a low 

false positive rate. 

Moreover, the assessment of credit ratings for both sub-sovereign (regional) and sovereign 

(national) entities is vital, affecting not only the governments themselves but also other issuers 

within the region or country, including banks, companies, and public sector entities. Sovereign 

ratings essentially set the borrowing ceiling for these entities (Gennaioli et al., 2018). With the 

increasing globalization of financial markets, the demand for sovereign and sub-sovereign 

ratings has surged, influencing fund management strategies based on international market 

dynamics (Liu and Tan, 2009). Consequently, shifts in these ratings can have significant 

repercussions on the re-evaluation of international markets. 

Bhatia (2002) elucidates that sovereign credit ratings, issued by credit rating agencies, evaluate 

the capability and willingness of governments to meet their commercial debt obligations 

promptly and in full. These ratings also furnish investors with a clearer insight into the risk level 
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associated with investments in a specific country. Sovereign ratings play a pivotal role as they 

influence operations in the domestic market. The sovereign credit rating serves as a key measure 

for gauging the credit risk associated with numerous assets within a country. Hence, maintaining 

objectivity and eschewing subjective judgments in assigning sovereign credit ratings is 

imperative due to their significant influence on corporate and financial ratings. Borensztein et 

al. (2007) emphasize the importance of a sovereign credit rating, noting its substantial effect on 

the local market, encompassing businesses and their stock prices. In a shift from past practices, 

credit rating agencies have adopted a policy of not rating firms higher than the sovereign rating, 

which traditionally set a benchmark for the debt issued by local companies. Nonetheless, 

sovereign ratings primarily assess the credit risk of national governments and do not directly 

reflect the default risk of other issuers. Beck et al. (2017) points out that credit ratings are 

commonly employed to represent the financial health and arrangements of sub-sovereign and 

municipal entities, often relying on the sovereign's credit rating. This dependency on rating 

agencies renders the national financial system susceptible to vulnerabilities. A downgrade of a 

sovereign credit rating to below investment grade can have catastrophic effects, potentially 

triggering forced liquidations and significant price declines, known as cliff effects (Eijffinger 

2012; Zhang and Chi, 2018; Olowookere and Adewale, 2020). 

Sovereign and sub-sovereign credit ratings account for a small fraction of the rating industry in 

terms of the number of entities assessed. Yet, their influence on financial markets is profound. 

According to Amstad and Packer (2015), rating a region is comparable to capturing a snapshot 

of its financial, economic, and political landscape at a specific moment. Sovereign and sub-

sovereign credit ratings offer an alpha-numeric depiction of the likelihood that the issuer will 

meet its obligations fully and punctually. It is crucial to recognize that changes in sovereign 

credit ratings can impact the interest rates of assets in other countries due to economic and 

financial linkages, thereby exerting a significant effect both domestically and internationally 

(Alsakka and Gwilym, 2013). 

Research efforts by authors such as Trevino and Thomas (2002) and Aktan et al. (2019) have 

explored the modeling of sovereign credit ratings using ordered logistic regression and simple 

linear regression methods. In the realm of sub-sovereign (regional and municipal) credit ratings, 

Gaillard (2009) employed ordered logistic regression to forecast sub-sovereign credit ratings for 

the subsequent year, identifying default history, the ratio of net direct debt to operating revenue, 
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and GDP per capita as key determinants. Lara-Rubio et al. (2017) pinpointed population, debt 

composition, and per capita income as crucial factors influencing local government credit 

ratings. Navarro-Galera et al. (2017) suggested that political factors might also serve as 

significant predictors of local government credit ratings. Despite these efforts to elucidate the 

determinants of regional financial health, previous studies have faced limitations due to scarce 

data, a focus on single countries, and the reliance on linear statistical models that fall short of 

fully capturing and forecasting the intricate economic and financial dynamics impacting overall 

financial health in the future. 

 

1.2 Corporate Credit Rating Forecasting 

The credit rating process involves a subjective evaluation that incorporates both quantitative and 

qualitative factors, encompassing the attributes of entities, industry dynamics, and market 

conditions. It initiates with a request from the issuer or the entity in question to a rating agency 

for assessing new debt or other financial instruments. This process is structured according to 

established academic conventions, including standard sections and the customary formatting of 

author and institutional affiliations. The issuer furnishes the rating agency with essential 

documentation, such as financial statements, preliminary official statements, and prospectuses 

for the debt issue, alongside other pertinent non-financial information. Subsequent to this, 

dialogues between the entity's management and the rating agency occur, culminating in the 

preparation of a rating report by credit analysts who scrutinize the entity under review. The credit 

analyst then proposes a credit rating to a rating committee, which bears the responsibility of 

determining the final rating to be assigned (Hajek and Olej, 2011). 

In the realm of corporate credit rating modeling, the objective is to devise models capable of 

forecasting the credit ratings of companies by analyzing a multitude of factors, including 

financial data, industry performance, and broader economic indicators. This modeling process 

typically employs statistical methods and econometric analyses to generate precise and 

dependable predictions of credit ratings. Such models are instrumental for investors and lenders 

in gauging the risk entailed in extending credit to or investing in specific companies. Corporate 

credit ratings are of paramount importance in the financial domain, offering crucial insights into 

a company's financial stability and aiding stakeholders in making well-informed decisions. 

These ratings reflect the risk level associated with financial engagements with a company, 
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facilitating investors in evaluating the probability of timely interest and principal repayments. 

Furthermore, lenders leverage these ratings to dictate the terms of loans, including interest rates 

and collateral requirements (Hirk et al., 2022). 

Therefore, credit rating modeling is concerned with the creation of statistical and machine 

learning models to evaluate the creditworthiness of individuals, companies, or other entities. The 

aim is to forecast the potential for default or credit risk based on a variety of financial and non-

financial parameters. Credit rating models are vital tools in the financial industry, aiding lenders, 

and credit agencies in making well-informed credit or loan decisions (Hajek, P., 2011). 

Several studies on credit rating modeling, such as those by Golbayani et al. (2020, 2021) and 

Camanho et al. (2022), have conducted comprehensive investigations and comparative analyses 

of findings from various literature sources that employed machine learning approaches to 

forecast credit ratings. Four machine learning algorithms—bagged decision trees (bagging), 

random forest, support vector machine (SVM), and multilayer perceptron (MLP)—were 

analyzed, revealing outcomes that have been proven valuable in prior research on the same 

datasets. The experimental findings suggest that decision tree-based models outperformed other 

models when applied to the selected datasets. Additionally, Ubarhande et al. (2021) undertook 

an extensive review of the literature concerning various aspects of credit rating, which refers to 

the assessment of an individual's or entity's creditworthiness. Credit-rating agencies (CRAs) are 

entities that evaluate and assign credit ratings based on borrowers' debt repayment capabilities. 

A credit-rating model is a tool used by CRAs to determine these ratings. Their analysis of 153 

publications aimed to identify gaps in the credit-rating field and propose solutions to address 

these deficiencies. A significant portion of the research, particularly that emerging from the 

financial crisis between 2008 and 2016, found that 48% of the studies focused on developing 

new credit-rating mechanisms without thoroughly evaluating the existing frameworks. 

Furthermore, Zhang and Chi (2018) investigated loan clients with diverse credit ratings to 

determine if lower credit ratings correlated with higher loss rates and if the distribution of 

consumers followed a bell-shaped curve. They employed a multi-objective programming 

approach to develop their credit rating model, with one objective function aimed at minimizing 

the discrepancy between the percentage of obligor numbers and the ideal fraction of clients, 

assuming a typical normal distribution. The second objective function sought to minimize the 



21  

overall discrepancy between the loss rates of adjacent credit ratings. Their research, which 

analyzed data from 6,155 firms sourced from a Chinese bank and Prosper peer to peer (P2P) loan 

data, demonstrated that their proposed method could effectively balance both criteria and avoid 

excessive concentration of obligors in certain grades. 

Moreover, Camanho et al. (2022) explored the effect of competition among CRAs on the balance 

between maintaining a good reputation (which leads to future revenue) and engaging in rating 

inflation (which generates immediate revenue). Their findings suggest that, in a duopoly 

compared to a monopoly, rating agencies are more inclined to inflate ratings artificially. They 

concluded that reducing entry barriers, thereby allowing CRAs with lesser reputations to enter 

the market, could potentially lead to increased rating inflation and a decline in overall welfare. 

Wu et al. (2022) explored the influence of supply chain information on forecasting enterprises' 

credit ratings. Their study, leveraging firm-level supplier-customer connections and corporate 

credit rating data, utilized a machine learning framework based on gradient boosted decision 

trees to assess the impact of supply chain characteristics on credit rating prediction accuracy. 

The research aimed to discern specific supply chain links that significantly enhance 

predictability due to their rich informational content. Similarly, Yu et al. (2022) assessed the 

performance of various machine learning models in predicting credit ratings of environmentally 

conscious companies, analyzing a sample of 355 Eurozone enterprises graded on their climate 

change scores by semidefinite program (SDP) from 2010 to 2019. The findings highlighted that 

classification and regression trees were most accurate in predicting credit ratings.  

Roy et al. (2023) proposed a comprehensive fuzzy credit rating model to address deficiencies in 

existing models. They employed the fuzzy best-worst method (fuzzy-BWM) for weighting 

critical factors affecting creditworthiness and the fuzzy approach for order of preference by 

similarity to ideal solution (fuzzy-TOPSIS)-Sort-C for borrower assessment, integrating 

TOPSIS-Sorting with fuzzy theories to mitigate human ambiguity in decision-making. Doumpos 

and Figueira (2019) also delved into the development of internal credit rating models based on 

expert judgment within a multi-criteria classification framework. Their analysis assessed the 

models' internal characteristics and their alignment with external benchmarks provided by rating 

agencies. 

Li et al. (2019) used an event-study approach to examine the immediate impact of credit rating 
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announcements on financial markets, finding that market responses to credit rating releases are 

heterogeneous and can vary between positive and negative reactions. Their research aimed to 

experimentally explore the linear and non-linear effects of credit ratings on financial market 

development in Europe, employing the autoregressive distributed lag model to incorporate 

asymmetries in credit rating changes. Sajjad and Zakaria (2018) studied the role of credit ratings 

in capital structure decisions among non-financial Asian listed firms, using various econometric 

approaches to uncover a non-linear, inverted U-shaped relationship between credit rating scales 

and leverage ratio. Hu et al. (2019) investigated the response of incumbent issuer-paid CRAs in 

China to the establishment of China Bond Rating (CBR), an independent agency. The entry of 

CBR into the market led to a reduction in rating inflation and increased the informativeness of 

rating changes among existing CRAs. 

Teixeira et al. (2018) analyzed the determinants of sovereign credit ratings using panel data from 

86 countries from 1993 to 2013. The study examined regional variations in average credit ratings 

during crisis and non-crisis periods, and the impact of significant global events on these ratings, 

found that sovereign credit ratings are influenced by a variety of macroeconomic and qualitative 

factors, with noticeable differences across geographical regions. 

Reusens and Croux (2017) carried out a comparative analysis to understand the significance of 

various factors affecting sovereign credit ratings over time, utilizing data from 90 countries 

spanning from 2002 to 2015. They employed the composite marginal likelihood approach to 

estimate a multi-year ordered probit model for each of the three leading credit rating agencies. 

The findings revealed that, following the onset of the European debt crisis in 2009, the 

importance of fiscal balance, economic growth, and external debt markedly increased. 

Consequently, eurozone membership's impact shifted from positive to negative. Notably, GDP 

growth became significantly more important for countries with high levels of debt, while 

government debt grew in importance for countries experiencing low GDP growth rates. This 

study provides solid evidence that credit rating agencies adjusted their assessment criteria for 

sovereign credit ratings in response to the European financial crisis. 

Similarly, Takawira and Mwamba (2020) investigated the determinants of sovereign credit 

ratings, analyzing macroeconomic indicators data, including Sovereign Credit Ratings (SCRs), 

from 1999 to 2020. Their analysis aimed to identify the criteria used by CRAs to evaluate a 
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country's ability to repay its debt and to predict future ratings. CRAs assess a wide array of 

factors, encompassing political, infrastructural, financial, and economic aspects, among others, 

of a country. This information is synthesized into a rating system, where a higher rating denotes 

greater creditworthiness, and a lower rating indicates a higher likelihood of default. The study 

focused on the three major credit rating agencies: Fitch, Moody's, and Standard & Poor's, 

highlighting the diverse macroeconomic data and methodologies CRAs use to evaluate and 

assign credit ratings to sovereign entities. 

Lee et al. (2021) explored the changes in credit ratings made by two different types of credit 

rating agencies: an investor-paid CRA, Egan-Jones Ratings Company, and an issuer-paid CRA, 

Moody's Investors Service. The study aimed to assess the influence of conflicts of interest and 

reputation on these rating changes. A novel distribution dynamics method was employed to 

calculate the probability distribution and the probabilities of both downgrades and upgrades in 

credit ratings provided by these agencies, which operate under distinct compensation models. 

The analysis drew upon data from 750 U.S. issuers spanning from 2011 to 2018, a period 

following the Dodd-Frank Act's implementation. The findings suggest that investor-paid ratings 

are more likely to be downgraded than issuer-paid ratings, particularly in lower rating categories. 

This indicates that investor-funded agencies may adopt a stricter stance toward issuers at higher 

risk of default to protect their reputation. Similarly, Choi et al. (2020) investigated the potential 

of qualitative data from companies' annual reports in predicting corporate credit ratings. The 

study applied three document vectorization techniques—Bag-Of-Words (BOW), Word to 

Vector (Word2Vec), and Document to Vector (Doc2Vec)—to transform unstructured textual 

data into numerical vectors, making it suitable for analysis by Machine Learning (ML) 

algorithms. Specifically, the research utilized the Management's Discussion and Analysis 

(MD&A) section from 10-K financial reports, alongside financial metrics and business credit 

rating data. The results from a series of multi-class classification tests revealed that predictive 

models incorporating both financial metrics and vectors derived from MD&A content 

outperformed benchmark models relying solely on traditional financial variables. 

Aktan et al. (2019) investigated the effects of actual changes in credit ratings on capital structure 

decisions. The study utilized three models to examine the relationship between credit ratings and 

capital structure choices, focusing on hypotheses related to wide rating bands, notch ratings, and 

the distinction between investment-grade and speculative-grade ratings. Using multiple linear 
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regression models, the research assessed these dynamics. The results suggest that firms tend to 

issue less net debt relative to equity following a change in their overall credit rating level, such 

as a downgrade from A- to BBB+. The findings also reveal that companies appear to be relatively 

indifferent to changes within notch ratings, provided they remain within the same broad credit 

rating category. Additionally, Zhang et al. (2019) explored credit rating management in the 

context of energy trading across microgrids, considering factors like transmission losses and 

wheeling costs. The study aimed to limit the opportunistic behavior of retailers to encourage 

active engagement from both consumers and retailers in energy trading. By establishing a game 

model with retailers as leaders and consumers as followers, the research introduced a scorecard 

model based on logistic regression to evaluate the credit ratings of retailers. A 'trust degree' 

concept was implemented as a penalty for retailers, correlating their credit ratings with potential 

profit reductions. This approach allowed the researchers to theoretically demonstrate the 

existence of a unique equilibrium for the dynamic game model. Furthermore, a best response 

strategy was proposed to achieve equilibrium between consumers and retailers iteratively. 

Iyer et al. (2022) introduced an innovative blockchain-based system designed to support a bond-

pays model in the credit rating industry, addressing the conflict of interest inherent in the 

traditional issuer-pays model, which has led to rating shopping and inflation. The study reviews 

the current practices in the credit rating sector that have contributed to numerous instances of 

rating failures. It proposes a new set of procedures leveraging blockchain technology to enable 

the adoption of a more impartial bond-pays model. To demonstrate the technological feasibility 

of implementing a segment of the proposed model within a blockchain framework, a proof-of-

concept system named 'Rating Chain' was developed. 

In a separate study, Li et al. (2020) applied machine learning techniques, a subset of artificial 

intelligence, to predict the credit ratings of banks in the Gulf Cooperation Council (GCC) region. 

The analysis was based on a dataset incorporating both macroeconomic and bank-specific 

variables, collected quarterly from 2010 to 2018. An out-of-sample prediction was also 

conducted for a subsequent three-year period. The findings revealed that the random forest 

algorithm achieved the highest level of precision, as evidenced by its F1 score, specificity, and 

accuracy scores. The predictive models maintained robust performance across all credit quality 

categories, from the highest credit quality to default mode. 
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A summary of previous studies on corporate credit rating modelling is presented in Table 1, 

showing the methods and datasets used and performance achieved. 

                Table 1:Summary of previous studies on corporate credit rating modelling 

Study Classification method Dataset Performance  

Golbayani, Florescu 

& Chatterjee (2020) 

bagged decision tree (BDT) 

random forest (RF) 

multilayer perceptron (MLP) 

SVM 

The input data set covers these 

corporate historical financial 

variables from 1990–2018 for 

financial sector and from 2009 

to 2018 for energy and 

healthcare sectors. These 

variables are taken from both 

Bloomberg and Compustat 

Acc for Financial sector:  

BDT = 84.21% 

RF = 82.83% 

MLP = 73.95% 

One vs. One-SVM = 42.12% 

One vs. All-SVM = 40.14% 

Energy sector: 

BDT = 82.11% 

RF = 84.45% 

MLP = 78.19% 

One vs. One-SVM = 75.31% 

One vs. All-SVM = 59.17% 

Health sector: 

BDT = 83.90% 

RF = 82.97% 

MLP = 76.63% 

One vs. One-SVM = 71.29% 

One vs. All-SVM = 61.89% 

Munoz-Izquierdo et 

al. (2022) 

decision tree (C4.5) 

PART algorithm 

rough set theory 

logit model 

131 listed firms in the Spanish 

continuous trading market in 

2017 with available financial 

data 

The PART algorithm 

achieves the highest 

classification accuracy of 

74.14%, followed by the 

C4.5 decision tree (73.28%), 

the rough set algorithm 

(72.70%) and the logit 

model (69.90%). 

Galil, Ami and 

Rosenboim (2023) 

Classification and regression 

trees (CART) and support 

vector regression (SVR). 

COMPUSTAT database from 

2005 to 2016, with an S&P 

issuer rating (non-default) on 

the financial year's last day 

CART model was best with 

three variables, achieving 

Acc of 67.6% 

Petropoulos et al. 

(2018) 

Boruta algorithm (random 

forest model), Extreme 

Gradient Boosting 

(XGBoost) and deep neural 

networks (MXNET), logit 

model and linear discriminant 

analysis (LDA) 

Loan level information on 

corporate and SME loans of 

the Greek banking system, 

from the supervisory database 

of the Central Bank of Greece. 

The dataset covers the 2005-

2015 period; a 10 years’ period 

with semi-annual information 

(i.e., semi-annual snapshots). 

AUC for  

Logit = 66% 

LDA = 65% 

XGBoost = 78% 

MXNET = 72% 

Wu, Hu and Huang 

(2014) 

Support vector machines 

(SVM)  

Neural network (NN) 

Decision tree (DT) 

Bayesian networks (BN)  

The research samples were 

collected from the TEJ data set. 

The TEJ was founded in April 

of 1990 in Taiwan. 

DT, Bagging-DT, and Vote-

(DT + BN + NN + SVM) 

achieved 77.38, 82.96, and 

77.81 percent improvements 

in accuracy, respectively. 

Moreover, the prediction 

accuracies of the DT, 

Bagging-DT, and Vote-(DT 

+ BN + NN + SVM) reached 

86.90, 92.99, and 88.64 

percent, respectively, in 1-

away evaluation 
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Study Classification method Dataset Performance  

Viswanathan et al. 

(2020) 

Modified boosted SVM 

(MBSVMs), SVM, neural 

networks, discriminant 

analysis (LDA) and k-nearest 

neighbors (k-NN) 

classification 

23 Scheduled Commercial 

Banks (SCBs) have been 

chosen (in India) 

The MBSVM exhibited the 

highest geometric mean 

(GM) values in all the three 

FY data consistently with an 

average value of 94.76%. 

Next to MBSVM, the SVM 

with RBF kernel performed 

well and secured the second 

spot with an average GM of 

89.18%. 

De Oliveira and 

Montes (2023) 

k-nearest neighbors, gradient 

boosted random trees and 

MLP methods 

Monthly dataset from January 

1996 to November 201 

MLP technique is the most 

reliable one. Its predictive 

accuracy is relatively high if 

compared to the other two 

methods. 

De Paulo et al. 

(2019) 

Random forest model, logit 

and ordinary least squares 

method (OLS) regression 

Brazilian credit union. 

Behavioral and demographic 

variables of loans were 

observed in a 24-month period 

(from January 2015 to 

December 2016), totaling 

2,012 observations. 

AUC for  

logistic regression = 0.94 

random forest = 0.96 

Kolmogorov–Smirnov for  

logistic regression = 0.69 

random forest = 0.90 

Gini coefficient for  

logistic regression = 0.88 

random forest = 0.92 

Shengdong, Yunjie 

and Jijan (2023) 

Stacking algorithm Real data from an 

entrepreneurial borrowing 

The performance of the 

Stacking-based model 

migration learning is further 

improved compared to the 

benchmark model without 

migration learning 

techniques, with the model 

AUC value rising to 0.8. 

A corporate credit rating represents an evaluation conducted by an independent organization, 

assessing the likelihood of a firm meeting its financial obligations on time. These ratings, carried 

out by credit rating agencies, gauge a company's ability to repay its debts, offering an insight 

into its financial health (Tuovila, 2021). The process involves categorizing businesses based on 

their creditworthiness, where each company is assigned a grade according to a specific rating 

scale, reflecting its credit standing (Hajek and Michalak, 2013). Corporate credit ratings 

encompass a wide range of information, including financial performance, operational 

characteristics, and the broader business and economic environment in which the company 

operates (Doumpos and Figueira, 2018). Regulatory bodies can leverage these ratings to 

ascertain regulatory capital requirements with greater precision (Gama and Geraldes, 2012). 

Essentially, a corporate credit rating is a subjective judgment by a team of experts who assess 

the issuer's overall financial strength and ability to honor its financial commitments. It serves as 

a formal and unbiased indicator of a company's debt repayment capacity. These ratings are 
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widely utilized by various stakeholders, such as investors and the companies themselves, to 

guide their decision-making processes (Goldmann, 2022). 

Extensive research has been undertaken in the domain of corporate credit ratings. Notably, Kaur 

et al. (2023) performed a bibliometric analysis on the determinants of corporate credit ratings, 

reviewing 135 papers published from January 2001 to June 2021. This analysis aimed to pinpoint 

significant themes, topics, and the conceptual, intellectual, and social structure underpinning the 

body of knowledge through various bibliometric techniques. The findings underscore the 

interdisciplinary nature of the research and its theoretical foundations in bankruptcy studies. 

Furthermore, the study highlighted emerging research areas such as corporate social 

responsibility (CSR), environmental, social, and corporate governance (ESG) criteria, machine 

learning, management expertise, and sustainability within this field. Similarly, Chi et al. (2020) 

explored the differences in CSR disclosure practices between private and public companies. 

Their findings suggest that private firms are less likely to issue CSR reports compared to their 

public counterparts. Employing a bivariate probit model to accommodate partial observability, 

the study concluded that supply-side forces predominantly drive these differences, rather than 

demand-side influences. From the perspective of creditors, public companies benefit from 

enhanced credit ratings and lower borrowing costs due to their CSR disclosures. However, 

private firms do not enjoy similar benefits from CSR activities. The study also found that robust 

corporate governance and CSR assurance can alleviate debt holders' concerns regarding private 

companies' CSR engagements. Lin et al. (2020) explored the influence of corporate governance 

and CSR on the credit ratings of Taiwanese companies. Utilizing ordered logit regressions with 

two-stage least-squares estimates, the study examined the causal relationship between these 

factors. The findings reveal that CSR performance plays both a moderating and a partially 

mediating role in the relationship between corporate governance and credit ratings, suggesting 

that effective governance and active CSR engagement can positively impact a firm's credit 

rating. 

Petropoulos et al. (2016) introduced an innovative approach for corporate credit rating using 

Student's t Hidden Markov Model (SHMM), which are adept at modeling heavy-tailed time-

series data. This method employs a selected set of financial ratios for credit scoring, subsequently 

modeled with SHMM. The effectiveness of this approach was evaluated using a dataset 

pertaining to Greek businesses and SMEs, encompassing five years of financial data and 
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instances of delinquent behavior. Comprehensive comparisons were made between the credit 

risk assessments derived from this method and those from models traditionally employed by 

financial institutions. The proposed approach yielded highly accurate forecasts, offering a 

crucial, intelligent tool for banking professionals to improve their decision-making processes. 

Furthermore, Gupta (2023) delved into the determinants of credit ratings assigned to Indian 

enterprises, focusing on both long-term and short-term perspectives. Utilizing panel data and 

cross-sectional analysis, the study examined the impact of various factors on credit ratings. An 

ordered probit analysis was conducted to explore the relationship between credit ratings (the 

dependent variable) and six financial metrics (the independent variables). The analysis revealed 

a strong correlation between a company's size, profitability, and leverage, and its corporate credit 

ratings in both panel data and cross-sectional evaluations. Notably, company size emerged as the 

most significant factor influencing credit ratings, followed by leverage and profitability. The 

major contribution of this research lies in the development of two distinct mathematical models 

that demonstrate a high prediction accuracy. These models can be utilized by investors, 

academics, practitioners, and other stakeholders to predict the rating categories of various firms, 

providing a reliable insight into their creditworthiness and financial stability. 

Galil et al. (2023) employed machine learning methods, specifically Classification and 

Regression Trees (CART) and Support Vector Regression (SVR), to predict corporate credit 

ratings. While SVR showed slightly higher accuracy, CART was noted for its interpretability. 

However, a challenge with unrestricted models is their potential to create non-monotonic 

relationships between credit ratings and fundamental characteristics, an undesirable outcome. To 

address this, the study advocated for the use of constrained CART models, ensuring interpretable 

and theoretically sound results. The research underscored the importance of firm size in the 

accurate prediction of credit ratings and proposed an optimal model incorporating size, interest 

coverage, and dividends as key variables. 

Al-Najjar and Al-Najjar (2014) developed an NN model to predict the credit ratings of non-

financial firms in Jordan, utilizing 19 financial indicators such as profitability, leverage ratios, 

liquidity, bankruptcy risk, and sales performance. The study applied two neural network 

approaches: the Kohonen network and the Back Propagation Neural Network (BPNN). The 

BPNN algorithm effectively distinguished between high-performing (A-rated) and bankrupt (D-

rated) companies during the 2005-2007 period. Furthermore, Feng et al. (2020) evaluated the 
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performance of traditional machine learning models in predicting corporate credit ratings and 

introduced a novel approach called Corporate Credit Ratings via Convolutional Neural Networks 

(CCR-CNN). This method capitalizes on the strengths of convolutional neural networks and 

extensive financial datasets, transforming each company into an 'image' from which CNNs can 

discern complex feature interactions that previous models might have missed. Comprehensive 

evaluations using a dataset of Chinese publicly-listed companies, specifically compiled for this 

research, demonstrated that CCR-CNN consistently outperforms existing leading methods. 

Hajek et al. (2017) developed a method for extracting themes from annual reports related to 

corporations using latent semantic analysis. This approach integrates the extracted information 

with traditional financial metrics to construct a multi-class model for predicting corporate credit 

ratings. Informative features are identified through a correlation-based filter during the feature 

selection phase. The study found that Naïve Bayesian networks offer classification performance 

comparable to other machine learning techniques, which is statistically significant. It was also 

shown that "red flag" indicators identified by Naïve Bayesian networks could signal poor credit 

quality, particularly in non-investment grade categories for businesses. These findings hold 

substantial importance for investors, banks, and market regulators. 

In the work of Koerniadi (2023), the research centered on the impact of changes in businesses' 

credit ratings on their subsequent risk-taking activities, along with the strategies employed by 

these firms to implement their risk-taking approaches. Using fixed-effect regression models, the 

study analyzed the risk behavior of companies following downgrades to the lower boundary of 

investment-grade rating (i.e., BBB-) and below. The findings suggest that changes in credit 

rating generally correlate with reduced risk-taking post-event. However, it was observed that 

companies downgraded to BBB- did not show an increase in risk-taking behavior. 

Additionally, Zukanovic et al. (2023) critically evaluated existing credit rating methodologies 

employed by major agencies like Moody's, Standard & Poor's, and Fitch, and proposed an 

enhanced data model for predicting corporate ratings using computational intelligence. This 

research aims to offer new perspectives on credit rating and its predictive accuracy to academics 

and practitioners alike. The study focused on a select group of companies listed in the S&P 500 

index, analyzing data from financial reports covering the period from 2016 to 2019, including 

various financial metrics. The primary focus was on designing the data model, preparing the 
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data, and managing missing information. 

Zhang et al. (2023) developed an advanced neural model to assess the creditworthiness of 

manufacturing companies, incorporating a Multi-head Self-attention (MSA) mechanism and a 

Long Short-Term Memory (LSTM) network. The model employs MSA to simulate market 

dynamics and assign dynamic weights to each indicator, using financial data from manufacturing 

enterprises. Meanwhile, LSTM extracts sequential features from comprehensive financial and 

operational data to understand the long-term financial health and minimize the risk of deviation. 

The experimental results indicate that this methodology provides more unbiased and reliable 

credit ratings for manufacturing companies. 

Ren et al. (2015) aimed to predict business credit ratings using various data mining techniques, 

focusing on the use of SVM and more advanced methods such as SVM+ and SVM+MTL (Multi-

Task Learning). The study showcased the effectiveness of these novel strategies in multi-

classification and corporate credit rating prediction, comparing their performance with 

traditional SVM. The research addressed the challenges of multi-class SVM+ and SVM+MTL 

by creating multiple binary classifiers and demonstrated the superior accuracy of the SVM+MTL 

algorithm in predicting business credit ratings over traditional SVM and SVM+. 

Gu et al. (2022) examined the impact of the geographical proximity between corporate 

headquarters and the main offices of credit rating agencies on the acquisition of corporate 

confidential information by the agencies. The study found a negative correlation between 

geographic distance and the level of corporate private information obtained by rating agencies. 

This relationship contributes to increased information asymmetry, lower credit ratings for 

institutional and corporate bonds, and a decline in the quality of rating information content. 

Cao et al. (2019) explored how management's risk tolerance affects corporate credit ratings and 

the mechanisms through which this influence manifests. The study used the possession of a 

private pilot license by CEOs as a proxy for their risk tolerance and found that companies led by 

pilot CEOs tend to have lower credit ratings. This observation remains consistent even after 

controlling for variables such as company fundamentals, CEO incentives for risk-taking, and 

other CEO characteristics. Path analysis revealed that risk-prone CEOs contribute to lower credit 

ratings by reducing future business value, increasing the volatility of future firm value, and 

influencing the assessment of management by rating agencies. Additionally, the relationship 
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between CEO risk tolerance and credit ratings becomes more pronounced when management 

plays a more dominant role in the company. In a related study, Cho et al. (2020) examined the 

effects of positive credit ratings on corporate decision-making processes. The research utilized 

credit ratings of Korean companies and developed a measure of credit rating optimism by 

comparing actual ratings to benchmark ratings based on US corporate ratings. The findings 

indicate that higher optimism in credit ratings is associated with lower debt costs and increased 

levels of debt financing and investment. 

1.3 Sub-sovereign Credit Rating Forecasting 

Cheikh et al. (2021) presented a groundbreaking approach to explore how sovereign ratings 

influence corporate ratings. In light of the recent easing of policies that previously prevented a 

private issuer from being rated higher than its government, further empirical investigation is 

essential to identify the key factors affecting the relationship between government and corporate 

ratings. The study introduces a nonlinear panel smooth transition regression model, allowing for 

the sovereign impact to vary under different financial conditions at the corporate level. The 

findings suggest that companies with stronger financial standings, as reflected by their interest 

and debt coverage ratios, are less dependent on their home country's credit risk. Furthermore, 

Ntsalaze et al. (2017) examined the effect of sovereign credit ratings on South African 

corporations, specifically questioning whether the credit ratings assigned to South Africa by 

rating agencies act as a ceiling for the ratings of companies within the country. The research 

employed a longitudinal panel design, utilizing fixed effects and generalized method of moments 

approaches. The main findings indicate that sovereign ratings indeed function as a cap for 

corporate ratings in South Africa and play a significant role in shaping business ratings. 

However, the study also noted that company-specific characteristics, particularly accounting 

variables, do not significantly explain the credit risk ratings assigned to companies. 

The generation of sub-sovereign credit ratings is a complex and collaborative endeavor, 

requiring rating analysts to skillfully balance comparability with precision, and quantitative 

analysis with qualitative judgment. Municipal bond ratings offer investors insights into the 

likelihood of bond defaults, while sub-sovereign credit ratings influence social objectives by 

affecting the cost of public infrastructure projects (Yinger, 2010; Besedovsky, 2017; Omstedt, 

2019). There has been considerable research in the area of sub-sovereign credit ratings. Among 
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these studies, Gillette et al. (2020) explored how credit rating levels influence the disclosure 

decisions of municipal debt issuers. The study observed that following the recalibration of 

Moody's sub-sovereign rating scale in 2010, municipalities that received upgraded ratings 

significantly reduced their disclosure of essential ongoing financial information compared to 

those not affected by the recalibration. This reduction in disclosure was more pronounced among 

sub-sovereign bonds held by investors who, prior to the recalibration, relied heavily on such 

disclosures due to a decreased need for information among debt holders. However, the study also 

found that there was no reduction in disclosure among issuers when they were closely monitored 

by underwriters possessing detailed knowledge about the issuer or when issuers were subject to 

direct regulatory oversight through government funding. 

Maher et al. (2016) analyzed the effect of the restrictiveness of tax and expenditure limitations 

(TELs) on the credit ratings of 566 U.S. municipalities from 2007 to 2010. Credit ratings from 

Moody's and municipal fiscal data from the Government Finance Officers Association's (GFOA) 

Certificate of Achievement for Excellence in Financial Reporting program were utilized. The 

study found that more stringent TELs imposed on municipalities modestly negatively impact 

their credit ratings, potentially leading to higher interest costs for these municipalities. 

Herrmann (2020) explored the relationship between cities' use of data for management purposes 

and their credit ratings, highlighting the significant implications of credit ratings on government 

service provision. Employing linear regression on a unique dataset comprising city bond ratings, 

budgetary data, and an independent assessment of data-driven management practices, the 

research demonstrated that municipalities with higher credit ratings are more likely to embrace 

data-driven management, even after adjusting for fiscal and demographic factors identified in 

previous studies. 

Basu et al. (2022) examined how the dissemination of information affects transaction costs in 

the municipal bond market, leveraging a regulatory change that made sub-sovereign credit rating 

data from two of the three major agencies available on the Electronic Municipal Market Access 

(EMMA) database. Utilizing a difference-in-differences approach, the study assessed the impact 

on bond trading post-regulation change, focusing on whether rating information was provided 

on EMMA. The findings suggest that making credit ratings widely available primarily reduced 

transaction costs for individual investors, particularly for bond purchases and in cases where 
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issuer information was previously limited. 

Furthermore, Sharma et al. (2023) investigated the impact of competition among CRAs on the 

credit rating industry's challenges. Using quantitative and regression analyses, the study assessed 

how competition influences a company's credit rating, drawing on financial and credit rating data 

from Indian companies. The research, which examined dual ratings, found that CRAs may inflate 

a company's credit rating due to competitive pressures, and that 'rating shopping' behavior is 

evident in the industry, driven by CRAs' competition for new clients. Nwogugu (2021) delved 

into the constitutionality of private-sector CRAs and their ratings, especially those evaluating 

corporate, municipal, and government financial instruments. He explored the constitutional 

aspects and flaws of government bailouts/bail-ins, linking them to issues in Constitutional 

Political Economy. Additionally, Nwogugu critiqued the unconstitutionality of various 

initiatives, including "Obamacare," European Union bailouts, the US auto industry bailout, and 

the Nigerian banking and power sectors' bailouts. While the chapter primarily addresses US law, 

the fundamental legal principles discussed are broadly applicable in most common law 

jurisdictions. 

In their research, Huang et al. (2021) examined how the use of multiple credit ratings by 

companies changed following the Dodd-Frank Act's implementation. The study found a 

decreased tendency among companies to obtain a third rating, typically from Fitch, for bonds 

near the high yield (HY) and investment grade (IG) boundary, aiming to strengthen their new 

corporate bond offerings. After Dodd-Frank, the importance of third-party ratings declined, as 

evidenced by their reduced impact on credit spreads for firms with ratings from both S&P and 

Moody's that straddle the HY-IG divide. This study provides new insights into how Dodd-Frank 

has limited corporate borrowers' strategic use of varied credit ratings around critical thresholds. 

Additionally, Hájek (2011) explored the application of NNs in accurately modeling municipal 

credit ratings, a challenging real-world problem. The paper begins by reviewing existing credit 

rating modeling methods and previous research on municipal credit rating modeling. The goal 

was to classify municipalities in the State of Connecticut into different rating categories. The 

modeling process involved data preprocessing, selecting input variables, and constructing 

various neural network architectures for classification. Genetic algorithms were utilized to select 

input variables. The results demonstrated that bond issuers' rating categories could be precisely 
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determined using a limited set of input features. 

In a study by Abakah (2020), the aim was to investigate the effect of religion-induced risk 

aversion on the municipal bond market from 1990 to 2017. The research indicates that U.S. 

counties with a higher proportion of Catholics relative to Protestants typically exhibit local 

government bonds with lower credit risk ratings, smaller yield spreads, and a decreased 

likelihood of credit enhancement. These findings remained robust upon further examination. The 

study also explored the impact of political party affiliations within the issuer's county and state 

term limits, consistently revealing significant effects. Additionally, Chun et al. (2019) developed 

a model to gauge the intensity of municipal yields, factoring in credit default swap premiums of 

insurers and data from both insured and uninsured municipal bond transactions. The model was 

individually estimated for 61 municipal issuers, capitalizing on the marked decline in bond 

insurers' credit quality from July 2007 to June 2008. Subsequent decomposition of the municipal 

yield spread based on the model's parameters revealed the considerable role of the liquidity 

component and the interaction between liquidity and default risks. This finding is consistent with 

the approach taken by Chen et al. (2018) in their work on assessing the liquidity and default risks 

of corporate bonds throughout the economic cycle. 

In Liu's (2012) study, the ability of bond insurers to accurately assess the credit risk of covered 

bonds was scrutinized, with significant implications for the future of municipal bond insurance. 

The research involved analyzing a set of insured municipal bonds to determine if the premiums 

paid for bond insurance could predict future credit rating changes, indicative of bond credit risk. 

The findings suggest that while municipal bond insurance premiums, considering bond credit 

ratings and other pertinent factors, can explain credit rating downgrades, they do not predict 

upgrades.  

Lorenzo et al. (2022) examined how diverse fiscal regulations across US states affect municipal 

bond returns. Utilizing a dynamic equilibrium model, they assessed the interplay between fiscal 

policies and municipal credit risk. State governments determine their optimal debt levels and 

default policies based on a fiscal rule that considers the government's debt and the state's 

economic output. A nationally recognized investor, evaluating the risk associated with municipal 

claims, influences the valuation of these claims. By modifying fiscal rules, the study estimated 

the impact of fiscal institutions on tax policy, finding that reduced fiscal stringency correlates 
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with higher expected returns and debt levels for municipal bonds across states. This relationship 

is largely due to a credit risk premium, which significantly increases during economic 

downturns, as further supported by Masungini et al. (2023). 

Table 2 summarizes existing research efforts on sovereign and sub-sovereign credit rating 

modelling. Similarly, as for corporate credit rating overview, methods and data, together with 

classification performance, are presented to provide an overview of previous research. 

 

Table 2: Summary of studies on sovereign and sub-sovereign credit rating modelling 

Study Classification Method Dataset Performance  

Hajek 

(2011) 

Multiple discriminant 

analysis (MDA) and 

logistic regression (LR), 

genetic algorithms 

Dataset from US municipalities 

and the other one for non-US 

municipalities 

In this study the results 

obtained for four-class 

problem using statistical 

methods (78.6% for MDA, 

74.4% for LR) are slightly 

better than previous results, 

while especially probabilistic 

NNs (98.8%) and SVMs 

(96.0%) achieved 

significantly better 

classification quality. For the 

nine-class municipal credit 

rating, the classification 

accuracies on testing data 

obtained by NNs are also 

high. The best results are 

achieved by PNNs (96.3%). 

Shan and 

Nilson 

(2018) 

Logistic regression, 

artificial neural network, 

multilayer perceptron 

network (MLP), SVM, 

decision tree, probabilistic 

neural network (PNN) and 

deep learning  

The dataset consists of approved 

loans from 2015 – 2017, which 

contains 1 299 083 observations 

with 101 variables. 

Acc for  

Logistics = 93.73% 

MLP = 93.62% 

Decision Tree=95.6% 

SVM = 97% 

PNN = 92.9% 

Deep learning = 90.0% 

Pamuk and 

Schumann 

(2023) 

NN, XGBoost, Logistic 

regression (LR), and 

Decision tree (DT) 

For this paper, we have selected 

the dataset from the study of 

Pamuk et al. (2021), which 

consists of 3.3 Mio. entries of 

annual financial statements from 

2000–2012 with 74 metrics 

The ML models (NN, 

XGBoost, LR, and DT) are 

combined with four sampling 

techniques to balance the 

distribution of ten credit 

rating classes. The results 

indicate that XGBoost 

provides the best outcome 

with Synthetic Minority 

Oversampling Technique and 

Edited Nearest Neighbor 

(SMOTE-ENN) (75–89%). 

Chalak and 

Kim (2022) 

S&P (standard & poor) 

rating, Fitch, and Moody’s 

rating  

Dataset were retrieved from 

Municipal Securities 

Rulemaking Board (MSRB), 

Refinitiv Eikon, Bloomberg, and 

Acc for  

S&P = 93% 

Moody’s rating = 96.1% 

Fitch = 96.4%  
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Study Classification Method Dataset Performance  

S&P Capital IQ 

Weng and 

Huang 

(2021) 

C4.5 algorithm, DT 

(decision tree), MLP 

(multiple-layer perceptron), 

NB (naive Bayes 

classifiers), RF (random 

forest), and SVM (support 

vector machine). 

clustering-based decision 

tree (CBDT) 

A cost matrix is provided on the 

Statlog (German credit data) 

dataset website 

Acc for  

CBDT = 89% 

DT = 84% 

MPL = 73% 

NB = 75% 

RF = 78% 

SVM = 83% 

Suleri 

(2023) 

Logistics regression (LR) 

Penalised logistic tree 

regression (PLTR), RuleFit 

and RUle eXtraction 

(RUX), random forest 

(RF), Extremely 

randomized trees (ERT), 

Adaptive boosting 

(AdaBoost) and eXtreme 

Gradient Boosting 

(XGBoost) 

The data that we use consists of 

aggregated United States (US) 

state-level data with 

LendingClub’s loan book 

covering the period from 2008 to 

2019 

AUC for  

RF-RUX = 74.9% 

LR = 75.7% 

RF-RuleFit = 80.6% 

Ada-RleFit = 81.1% 

PLTR = 81.3% 

Ada-RUX = 81.7% 

AdaBoost = 87.8% 

XGBoost = 87.9% 

ERT = 84.1% 

RF = 87.2% 

Cheng 

(2020) 

Logistic regression (LR), 

classification and 

regression tree (CART), 

gradient boosting model 

(GB), SVM, random forest 

(RF), neural networks 

(NN), and semi-supervised 

learning 

The dataset consists of approved 

loans from 2015 – 2017, which 

contains 1 299 083 observations 

with 101 variables 

Acc for 

Extra Tree Classifier 

(ETC) = 87.35% 

SVM = 75% 

ANN = 89% 

RF= 81.27% 

DT = 95% 

XGBoost = 80.21% 

CatBoost = 80.47% 

 

 

Maran, 

Funnell and 

Castellini 

(2019). 

Logistic regression, MLP, 

SVM, decision tree, 

probabilistic neural 

network (PNN) and deep 

learning  

The dataset consists of approved 

loans from 2015 – 2017, which 

contains 1 299 083 observations 

with 101 variables. 

AUC for  

LR = 85.73% 

MLP = 83.62% 

DT = 87.6% 

SVM = 88% 

PNN = 72.9% 

Deep learning = 80.0% 

Jia et al. 

(2021) 

Principal components 

analysis (PCA), particle 

swarm optimization (PSO) 

and extreme learning 

machine (ELM) model 

Data were collected from the 

Wind Database 

PCA–PSO–ELM proposed in 

this research has the highest 

accuracy in terms of the 

prediction compared with 

ELM, BPNN and auto 

regression. 

Nakashima, 

Mantovani 

and 

Machado 

Junior 

(2022) 

Local interpretable model-

agnostic explanations 

(LIME) algorithms 

Dataset from Compustat S&P 

Ratings database between 1996 

and 2013) and traditional 

financial variables from Center 

for Research in Security Prices 

(CRSP) databases 

Average accuracy of SVM= 

75.9% 

RF = 83.1% 

LR = 76.6% 

DT = 79.4% 
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1.4 Partial Conclusion 

In summary, while previous research has sought to elucidate the factors influencing regional 

financial health, these studies have often been constrained by limited data availability 

(primarily focusing on single countries) and the challenge of high-dimensional data, also 

known as the curse of dimensionality. This issue was typically addressed by selecting the most 

crucial features, primarily due to the risk of imbalanced classes and the necessity to manage 

highly imbalanced multi-class data pertaining to regional entities. Toseafa and Hajek (2019) 

tackled this problem with a novel hybrid model that merges data oversampling with cost-

sensitive ensemble classification, demonstrating that the Synthetic Minority Over-sampling 

Technique (SMOTE) can effectively balance multi-class data and mitigate the imbalance issue. 

Furthermore, ensemble classification methods have gained popularity for their ability to 

minimize overfitting and variance. Capitalizing on these benefits, this dissertation employs 

potent combinations of soft computing techniques, including ensemble classifiers integrated 

with MetaCost classifiers and base classifiers (feature selection + classifier/hybrid 

methods/ensemble learning models). This approach is applied across various ensemble learning 

techniques, such as boosting, bagging, XGBoost, and random forest, to enhance predictive 

accuracy and robustness. 
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2 Aim and Objectives of the Dissertation 

This thesis aims to employ a novel hybrid model based on the effective combination of different 

soft computing methods, including their ensembles, to forecast regional financial performance 

in terms of sub-sovereign credit ratings. Different models are compared for the real-world 

imbalanced multiclass classification task. 

To achieve this aim, the following specific objectives are defined: 
 

• Perform feature selection. Feature selection aims to reduce the dimension of the feature 

space, making learning algorithms operate faster and maximizing classification accuracy 

in building learning models. It is done by visualizing and understanding the data to reduce 

storage requirements and training times (Hajek and Michalak, 2013; Dash et al., 2000; 

Petrides and Verbeke, 2022). The two main models of feature selection are the filter and 

wrapper methods. Wrapper models optimize predictors as part of the selection process, 

whereas filter models rely on the general tendencies of the training data to select features 

that depend on any predictor. Although filter methods are usually computationally less 

expensive than wrappers, wrapper models tend to give better results. Correlation-based 

feature selection is a simple filter algorithm that ranks feature subsets according to the 

correlation-based heuristic evaluation function. In this thesis, I compare the effects of 

wrappers and filters for predicting regional financial performance. 

• To demonstrate the effectiveness of the proposed combinations of soft computing 

methods (feature selection + classifier / hybrid methods / ensemble learning models), the 

results will be compared with those of the baseline and state-of-the-art machine learning 

methods. Notably, cost-sensitive ensemble learning, such as meta-cost, are used to 

overcome the problem of imbalanced data (as only few sub-sovereign entities are 

assessed by the best / worst rating classes). The following classification measures are 

used to evaluate the performance of the prediction models: Accuracy, area under ROC 

(receiver operating characteristics) curve (AUC) (to evaluate the performance on 

imbalanced classes), F-measure (the combination of precision and recall), and 

Misclassification cost (to consider different financial effects of misclassified regional 

units). 

• The problem of imbalanced data is further addressed using data balancing methods, such 

as random oversampling and SMOTE. 
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• Using eXtreme Gradient Boosting (XGBoost) due to its superiority in many machine 

learning competitions. In broad terms, XGBoost has become popular due to its 

computational efficiency (parallel computation, cross-validation at each iteration), 

regularization through lasso and ridge methods, and feasibility (system optimization and 

hardware efficiency).  

• Using complementary log-log approach which a statistical method that is preferred due 

to its asymmetrical distribution and allows for values beyond the binary classification. It 

is frequently used in situations where the event probability is very small or large. 

Furthermore, this model has a direct interpretation of hazard ratios (Allison, 2012; Gupta 

et al., 2018). 

• Explainability of the best-performing prediction models is achieved using the SHAP 

values, showing the contributions and effects of sub-sovereign credit rating determinants.
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3 Research Methodology 

This section of the thesis presents the research methodology, as depicted in Figure 1. The process 

begins with the collection of benchmark datasets from Moody's credit rating agency. The 

subsequent step involves data preprocessing, which includes cleaning the data by filling in 

missing attributes, followed by normalization and aggregation to reduce the number of attributes 

for analysis. After preprocessing, feature selection is carried out using both wrapper and filter 

methods to identify a subset of features that will facilitate the development of robust learning 

models, such as neural networks and decision trees. The experimental phase involves training 

and testing the datasets with a split of 67% for training and 33% for testing, alongside the use 

of 10-fold cross-validation to ensure the reliability of the results. Various machine learning 

algorithms are employed to train a novel hybrid model. The study will also explore multiple 

ensemble classifiers, ensemble base classifiers, and cost-sensitive approaches. 
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Figure 1: Research methodology 

3.1 Datasets 

To assess the effectiveness of credit rating prediction systems based on machine learning across 

different time frames, several benchmark datasets from relevant fields are utilized. Selecting 

datasets that showcase the broad applicability of the proposed models is crucial. As such, two 

categories of datasets were sourced from Moody's credit rating agency, focusing on sub-

sovereign credit ratings for both developed and emerging countries across Europe, North and 

South America, Africa, and other regions, spanning the years 2003-2007. Additionally, data for 
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one-year and two-year ahead forecasts for 2008 and 2009, respectively, were acquired. The input 

variables for credit rating evaluation were carefully chosen based on the criteria used by 

Moody's. The predictive model will incorporate economic, financial, and debt-related variables 

(as detailed in Table 3). A comprehensive time-series dataset comprising sub-sovereign entities 

from 257 regions during 2003-2007 was compiled based on Moody's ratings and organized into 

long-term rating classes ranging from Aaa, Aa1 to C. 

            Table 3: List of input variables for sub-sovereign credit rating prediction (dataset with 2008-2009 

predictions) 
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                * rating classes Aaa, Aa1, … , C were transformed to numbers 1, 2, … , 21 

An additional dataset, encompassing 451 regional units, was collected from Moody's for the 

years 2015 and 2016. These units were classified into eight rating categories, ranging from Aaa 

Category Input Variable Mean Standard Deviation 
Economic Country rating class 4.18 4.04 
 Developed country (0/1) 0.54 0.50 
 Government rating class 5.26 3.83 
 City (0/1) 0.44 0.50 
 Previous sovereign default (0/1) 0.36 0.48 
 GDP per capital 21939.92 18311.96 
 GDP/(national average) 105.20 44.36 
 GDP in PPP 22729.18 13388.28 
 Real GDP change 3.19 2.88 
 Unemployment rate 6.40 3.84 
Debt Net debt per capital 188.63 3906.52 
 Debt/GDP 7.06 13.76 
 Debt/operating revenue 6.22 73.32 
 Short-term debt/debt 16.33 22.78 
 FX debt/debt 7.23 19.24 
 Long-term debt/debt 51.46 41.39 
 Debt maturity 7.88 3.73 
Financial Own revenue/OR 40.42 29.45 
 Government transfers/OR 46.85 27.99 
 Earmarked revenue/OR 23.86 25.92 
 Interest/OR 2.53 2.66 
 Debt service/TR 7.65 9.63 
 Cash surplus/TR -0.45 8.55 
 Borrowing/TR 7.29 10.95 
 TE per capita 2261.95 2819.64 
 TE/GDP 12.26 7.75 
 Operating balance/OR 13.49 10.89 
 Gross operating balance/OR 10.99 11.14 
 Self-financing ratio 0.97 1.04 
 Capital spending/TE 19.72 12.91 
 TR-TE(%) 0.14 2.98 
 NWC/TE 4.18 22.40 
Output 
variables 

Rating class +1* 6.62 4.75 
Rating class +2 6.71 4.76 
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to C. The 2015 data served as the input for the predictive model, while the 2016 rating categories 

were used as the model's outputs. The prediction model employed the same set of variables as 

those detailed in Table 4, see Toseafa (2018). Figure 2 illustrates the distribution of regions 

across the eight rating classes, from Aaa to Ca. The histogram in the figure also highlights the 

significant imbalance within the dataset. 

            Table 4: List of input variables for sub-sovereign credit rating prediction (dataset with 2016 

predictions) 

 

 

 

 

 

 

 

The input and output variables presented in Tables 3 and 4 were derived from Moody's financial 

reports. Economic variables are essential in assessing the ability to generate resources for 

repaying sub-sovereign debt. The rating class for the country and government provides long-

term foreign currency credit ratings for sovereign and government bonds, indicating the 

creditworthiness of these entities (Mohapatra et al., 2018).  

GDP per capita serves as an indicator of relative economic performance and is included to 

evaluate the potential effects of redistributive programs on fiscal health. The GDP/national 

average reflects relative wealth levels, which can vary significantly within a country and 

highlight regions with concentrated economic activities. Such disparities may affect the fiscal 

capabilities of sub-sovereign governments. GDP in purchasing power parity (PPP) terms is used 

to gauge the economic size for international comparisons based on current exchange rates. 

However, it may not fully capture the real cost-of-living variations between countries, 

potentially leading to inaccuracies in representing relative living standards in certain cases. The 

Notes: GDP – gross domestic product, OR – operating revenue, TR – total revenue, PPP – purchasing power 

parity, TE – total expenditures, OB – operating balance, NWC – net working capital. 

Variable Mean Variable Mean Variable Mean 

Population 2848.5 Debt/OR 73.07 Fin. surplus/TR                                    -4.61 

GDP 100,037 Net debt/TR 68.19 Cash surplus/TR -1.83 

GDP per capita 104.10 Debt before swap 9.56 Borrowing need/TR 10.28 

GDP/Nat.Avg. 27,056 Debt after swap 7.82 TE per capita 4,057 

GDP (PPP) 27,881 Short-term debt/Debt 15.79 TE/GDP 14.71 

Real GDP 1.96 Long-term debt/Debt 50.56 OB/OR 7.39 

Unempl. rate 8.527 Maturity debt 8.43 Gross OB/OR 5.04 

Nat. unempl. rate 8.95 Own Revenue/OR 40.03 Net OB/OR -1.63 

Total debt 12,426 Govern. transfers/OR 40.37 Self-financing ratio 0.92 

Net debt 10,895 Earmarked Revenue/OR 25.81 Capital spending/TE 17.03 

Net debt per capita 3,263 Interests/OR 2.52 TR-TE -0.04 

Debt/GDP 11.86 Debt service/TR 8.17 NWC/TE 14.7 



44  

change in real GDP, indicated by the annual percentage growth rate adjusted for inflation, is a 

crucial measure of economic dynamism. The unemployment rate reveals the degree of the output 

gap and the underutilization of the workforce, and it may also signal potential political pressure 

on the government to stimulate economic recovery. 

 

 
 
                                    

Figure 2: Histogram of sub-sovereign rating classes for 2016 

      

Net debt per capita is a ratio that compares the sum of net direct and guaranteed debt to the 

population size, offering a measure of debt levels that is comparable across countries. The debt-

to-GDP ratio represents the total gross government debt as a percentage of GDP, serving as a 

crucial indicator of government financial sustainability. Short-term debt encompasses debt 

instruments with a maturity of less than one year, including government securities and treasury 

bills, whereas long-term debt comprises instruments payable over periods longer than one year. 

Debt maturity delineates the timeline until the principal amount of notes, drafts, and other debt 

instruments are due for repayment to investors, indicating when the government's debt 

obligations will mature or be redeemed. 

Own revenue consists of all government income from taxes, fees, and other sources under partial 

government control, reflecting the government's fiscal flexibility to tackle financial challenges. 

Governmental transfers include revenues transferred from higher government levels, intended 

0

10

20

30

40

50

60

70

80

90

Aaa Aaa A Baa Ba B Caa Ca



45  

for general fiscal support or specific spending categories. Earmarked revenue encompasses all 

revenue streams designated for particular purposes, excluding debt service, which can constrain 

a government's debt service capacity. The interest/operating revenue ratio assesses the 

government's capability to cover interest payments with its operating revenue. Total expenditure 

as a percentage of GDP gauges the impact of a government's spending on national economic 

output. The operating balance measures the government's inherent ability to maintain operating 

expenses below its operating revenues, indicating structural fiscal health. A self-financing ratio 

below one suggests a necessity to borrow for capital budget needs. Lastly, the NWC (Net 

Working Capital) ratio offers a glimpse into the entity's liquidity position, highlighting the 

requirement for short-term market access.1

 

 

 

 

 

 

 

 

 

 

 

          
          1 https://www.moodys.com/ 
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3.2 Data Preprocessing and Feature Selection  

The data preprocessing stage involved imputing missing values for some variables with their 

mean values, followed by normalization to the [0,1] range. Subsequently, feature selection was 

undertaken to streamline the number of variables for analysis. To tackle the challenge of class 

imbalance, the SMOTE technique was employed to generate a synthetically balanced or nearly 

balanced training dataset, facilitating effective classifier training (Chawla, 2002; Fernández et 

al., 2018). After applying SMOTE application, all classes in the training data achieved the same 

frequency as the most prevalent class, typically the Ba class. It is noteworthy that the testing 

data remained untouched during this phase, preserving its highly imbalanced nature to 

realistically assess classifier performance. 

Given the ordinal nature of the output classes, I advocate for the use of a cost matrix, with the 

MetaCost classifier leveraging this matrix to enhance prediction accuracy. Consequently, 

MetaCost was integrated with various base classifiers, including ensemble classifiers (Toseafa 

and Hajek, 2019). 

Feature selection, a pivotal aspect of data analysis, entails determining the most suitable subset 

of variables for precise prediction. The presence of redundant, irrelevant, or misleading features 

in data classification necessitates feature selection for effective classification problem-solving 

(Jirapech-Umpai & Aitken, 2005; Gheyas & Smith, 2010; Yongjun et al., 2012; Zhongyi et al., 

2015). After addressing missing attributes and applying normalization and aggregation, the 

feature selection techniques were categorized into filters, wrappers, and embedded methods 

(John et al., 1994). 

This analysis utilized wrapper models, which integrate predictor optimization into the selection 

process, and filter models, which select features based on the overarching characteristics of the 

training data without dependency on any predictor (Chen et al., 2015). For instance, correlation-

based feature selection, a filter technique, prioritizes feature subsets using a correlation-based 

heuristic evaluation function. Although filter methods are generally more computationally 

efficient, wrapper models often yield superior outcomes.  

In the context of forecasting regional financial performance, particularly through sub-sovereign 

credit ratings, the terms "wrappers" and "filters" denote distinct methodologies for feature 
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selection. This process is pivotal in modeling, as it entails selecting a subset of pertinent features 

(variables or predictors) to enhance model efficacy. Wrapper methods assess feature subsets by 

employing different combinations in model training and testing. The model's performance with 

a specific learning algorithm serves as the benchmark for identifying the optimal feature subset. 

This iterative approach involves evaluating various feature combinations based on model 

performance, with the wrapper method favoring features that significantly enhance model 

prediction within a given context. It is adept at identifying feature interdependencies tailored to 

the model, although it may be computationally intensive for extensive feature sets and prone to 

overfitting with limited data. On the other hand, wrapper methods are particularly valuable when 

feature interactions are crucial for accurate predictions, potentially elevating model performance 

at the expense of increased computational demands. Such methods are adept at discerning subtle 

dynamics among predictors of creditworthiness. 

The illustration below (Figure 3) depicts the algorithm of the wrapper method.  
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Figure 3: Algorithm of the wrapper feature selection method 

Filter methods, conversely, are suited for large datasets and scenarios with constrained 

computational resources, focusing on the individual relevance of features rather than their 

interplay. They offer a rapid assessment of feature significance, providing an efficient means to 

gauge the importance of each predictor independently. 

Filter methods employ variable ranking techniques as the primary criteria for variable selection 

by ordering. These methods are used due to their simplicity and reported success in practical 

applications. A suitable ranking criterion is used to score the variables, and a threshold is applied 

to remove variables below the threshold. Ranking methods are considered filter methods since 
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they are applied before classification to filter out less relevant variables. A fundamental 

characteristic of a distinctive feature is to contain valuable information about the various classes 

in the data. This characteristic can be defined as feature relevance, which measures the 

usefulness of the feature in distinguishing the different classes (Chandrashekar et al., 2014). 

Filtering methods evaluate the relevance of features independently of a specific learning 

algorithm. Features are scored based on certain criteria, e.g., correlation, mutual information, 

and a subset is selected based on features that are ranked or scored according to a certain 

criterion. A threshold is set and features that meet the criterion are selected. Computational filter 

methods are very efficient and fast compared to wrapper methods and are less prone to 

overfitting because they do not involve iterative training of the model and provide insight into 

the importance of features. As a result, interactions between features that contribute to predictive 

power are lost. The features selected may not be optimal for a particular learning algorithm. 

However, the filter method can be used for a quick feature selection process and the wrapper 

method for fine-tuning and capturing interactions. The choice between wrapper and filter 

methods depends on the specific context, the size of the dataset and the importance of the feature 

interactions. Figure 4 below depicts the algorithm of the filter methods. 
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           .  

Figure 4: Algorithm of filter feature selection methods 

 

3.3 Classification Methods 

This section discusses important soft computing methods, specifically ensemble learning and 

single classification methods that can serve as base classifiers in ensembles and were chosen to 

predict regional financial performance due to their success in previous studies on corporate 

credit rating prediction (Wang and Ku, 2021; Luo, 2022; Yu et al., 2022). 

3.3.1 Statistical models 

Logistic regression estimates probabilities through a logistic function, which represents the 

cumulative distribution function of logistic distribution. This model follows a similar approach 

to probit regression, which uses a cumulative normal distribution curve instead. Linear 

regression and logistic regression are both statistical models used to measure the association 

between dependent and independent variables: 



51  

[
𝑃𝑖 

1 − 𝑃𝑖
] =  𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖                                                               (1) 

The formula for calculating the probability of the outcome is denoted by Pi, where subscript i 

represents the i-th observation in the sample. The intercept term is symbolized by β0, and the 

coefficients linked to each explanatory variable X1, X2, ... , Xk are represented by β1, β2, ... , βk. 

Ordered Probit Model 

The ordered probit model is commonly used for regression analysis, particularly for dealing 

with qualitative ordinal dependent variables, such as ratings that are classified into more than 

two categories. This model expresses the probability of credit ratings assigned to a country as a 

function of a set of explanatory variables. The dependent continuous variable that measures 

creditworthiness, Y, is a linear function of a set of explanatory variables X, with a parameter 

vector β, and a term: 

𝑝𝑟𝑜𝑏(𝑌𝑖 = 1|𝑋𝑖) = ∫ ∅(𝑡)𝑑𝑡 = ∅(𝑋′𝑖𝛽)

𝑥′𝛽

−∞

                                                                       (2) 

 

 

• β is a vector of parameter estimates, 

• ∅ is a cumulative distribution function (the normal, logistic, or extreme value), 

• X is a vector of explanatory variables, 

• P is the probability of a response, 

• t is the natural (threshold) response rate. 

The complementary log-log model can be expressed as log (- log [1- F (t; X)]) = Xβ. Here, F (t; 

X)]) is a cumulative distribution function (CDF) of the survival time at time t given covariates 

X, where 

• X is the vector of the covariates. 

• β is the vector of the coefficient. 
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The formula reflects the complementary log-log transformation, which introduces asymmetry 

into the hazard function. The left-hand side of this equation is known as the complementary log-

log transformation. The complementary log-log transformation alters the response from a range 

of (0,1) to (-∞, +∞). Unlike the logit and probit, the complementary log-log model displays 

asymmetry and is commonly applied when the event's probability is significant: 

    𝑙𝑛(−𝑙𝑛(1 − 𝑃(𝑌 = 1)) =  𝛽0 + 𝛽1 ·  𝑥1  +   𝛽2 ·  𝑥2  + ⋯ +   𝛽𝑘  ·  𝑥𝑘    (3) 

where: 

• P(T < t) is the probability that the event of interest (failure or survival) occurs by time t, 

• β0, β1, … , βk   are the coefficient of the model, 

• x1, x2, … , xk are the predictor variables. 

In this formula, the complementary log-log function is applied to the linear predictors. The 

exponential function and the negative sign are used to transform the linear predictor in a way 

that suits survival analysis. 

Cauchit model calculates the transformation for the Cauchit or tangent link, its inverse, and the 

first two derivatives. This link function provides an alternate way of fixing parameters that fall 

within the unit interval. The relationship this link has to the Cauchy distribution is like that of 

the probit link to Gaussian. A noteworthy characteristic of this link function is its heavier tail 

when compared to other link functions. Numerical values of f that are close to 0 or 1 should be 

noted: 

𝑓(𝑥; 𝑥0; 𝜗) =
1

𝜋𝜗 [1 + (
𝑥 − 𝑥0

𝜗
)2]

                                                                                                      (4) 

where 𝜗 is the scale parameter, which controls the width of the distribution, and 𝑥0 is the 

location parameter, which specifies the location of the peak of the distribution. 

3.3.2 Single classifiers  

There are numerous single classifiers in machine learning, each designed to address specific 

types of classification problems. Below is a list of some commonly used single classifiers: 
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Decision trees are non-parametric supervised learning models used for classification and 

regression tasks. They recursively partition the feature space into regions, with each partition 

associated with a specific decision or outcome. At each node of the tree, a decision is made 

based on the value of a selected feature, resulting in a partition criterion that optimally separates 

the data according to certain criteria, often maximizing information gain or minimizing 

impurity. Decision trees are interpretable, making them valuable for understanding the decision 

process and identifying important features in the data. However, they are prone to overfitting, 

especially with deep trees, which can be mitigated by techniques such as pruning, setting a 

minimum number of samples required to split a node, or using ensemble methods such as 

random forests. Despite this limitation, decision trees are still widely used because of their 

simplicity, interpretability and flexibility in handling both categorical and numerical data. 

The Naive Bayes algorithm is a probabilistic classifier based on Bayes' theorem, which assumes 

that features are conditionally independent given the class label, hence the "naive" assumption. 

It calculates the probability of a class label given a set of features by multiplying the conditional 

probability of each feature given the class label and the prior probability of the class label itself, 

and then normalizing to obtain a probability distribution over the possible class labels. Despite 

its simplistic assumption, Naïve Bayes often performs remarkably well in practice, especially 

for text classification tasks, due to its efficiency, ease of implementation, and ability to handle 

high-dimensional data with sparse feature sets. However, its performance can suffer when the 

independence assumption is violated or when features are highly correlated. Nevertheless, Naïve 

Bayes remains a popular choice for classification tasks, particularly in situations where 

computational resources are limited or interpretability is critical. A Bayesian network, or Bayes 

net, is a type of probabilistic graphical model that represents a set of random variables and their 

conditional dependencies through a directed acyclic graph. This provides a transparent and 

modular model equipped with probabilistic reasoning. However, it is necessary to specify the 

model, and as the number of variables increases, so does the computational complexity. 

The SVM algorithm is a powerful supervised learning method, primarily used for classification 

tasks, but also extended to regression and outlier detection. SVMs work by finding the optimal 

hyperplane that separates data points of different classes in a high-dimensional space, 

maximizing the margin between classes. This hyperplane is determined by support vectors, 

which are the data points closest to the decision boundary. SVMs use a kernel function to map 



54  

the input data into a higher-dimensional feature space where non-linear decision boundaries can 

be represented linearly. This flexibility allows SVMs to effectively handle complex data 

distributions and achieve high generalization performance. However, SVMs can be sensitive to 

the choice of kernel and parameters, and training large datasets with SVMs can be 

computationally intensive. Nevertheless, SVMs are widely used in various fields due to their 

ability to handle both linear and non-linear classification problems and their strong theoretical 

foundations. The sequential minimal optimization algorithm is an iterative method used to solve 

quadratic programming problems and can therefore be used to train SVM. 

The MLP classifier is a versatile NN architecture commonly used for classification tasks. It 

consists of multiple layers of nodes, including an input layer, one or more hidden layers, and an 

output layer. Each node in the network applies a non-linear activation function to the weighted 

sum of its inputs, allowing the MLP to model complex, non-linear relationships in the data. 

During training, the network learns to adjust weights and biases through backpropagation, 

minimizing a predefined loss function such as cross-entropy. MLPs are highly flexible and can 

approximate any continuous function, given sufficient data and computational resources. 

However, they are prone to overfitting, especially with large, complex data sets, requiring 

regularization techniques such as dropout or L2 regularization. Despite their complexity, MLPs 

have been successfully applied in several domains, including credit rating prediction (Overes 

and van der Wel, 2023). 

3.3.3 Ensemble classification methods 

The primary objective of an ensemble classifier is to decrease the misclassification rate or error 

rate of a weak classifier by combining multiple classifiers. This is achieved by obtaining 

predictions from several classifiers on the original data and merging them to create a robust 

classifier. Enlisted below are some examples of ensemble classifiers. 

Bagging (Breiman, 1996), also known as Bootstrap Aggregating, is a technique used to reduce 

the variance of forecasts. It does this by creating supplementary datasets for training novel 

datasets using combinations with recurrences to produce multisets of the same size as the novel 

data. Bagging is used to generate multiple forms of prediction. When the size of the training set 

is increased, it does not necessarily improve the predictive power. However, reducing the 

variance can help to bring the prediction closer to the expected result. In such cases, the new 
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data set can be used to combine predictors. The ensemble method offers an alternative approach 

by creating artificial training data, which increases the diversity of base classifiers. This makes 

it particularly suitable for smaller datasets. 

Algorithm 1: Bagging 

  

Input  The set T of training data (xi; yi), i=1,2, … ,n; the number B of base classifiers 

Output Ensemble of base classifiers {Cb} 

For b=1 to B Create a bootstrapped replicate Tb of the training data set T; 

Construct a base classifier Cb on Tb;} 

Combine base classifiers Cb, b=1,2,…,B into an ensemble {Cb} by simple 

majority voting; 

Random forest is a highly popular and powerful machine learning algorithm used for financial 

performance forecasting (Yeh et al., 2012). The algorithm employs a small twist to bagging by 

exploiting random feature selection. It is an ensemble learning method used for classification, 

regression, and other tasks that operate by building a multitude of decision trees. Random forest 

is a supervised machine learning algorithm that combines numerous classifiers to enhance 

model performance. It is composed of decision trees. 

Algorithm 2: Random forest 

  

Input  The set T of training data (xi; yi), i =1,2,….., n; the number B of base 

classifiers  

Output Ensemble of base classifiers {Cb} 

For b=1 to B Bagging + randomly select % of possible splitting features N{node in the 

tree}, select feature Xj with the highest information gain to split on from the 

original training data set T; 

Construct a base classifier Cb in Tb; 

Create nodes  N1... Nj, where Xj has the values Xj1… Xjn 

 

AdaBoost (Freund et al., 1996; Koutanaei et al., 2015) can be used to improve the performance 

of any machine learning algorithm such as decision trees by sequentially improving the 

performance of base classifiers. These classifiers are simple and contain only one decision for 

classification and are therefore called decision stumps. Each instance in the training dataset is 

weighted. The initial weight is set to weight(x) = 1/n, where x is the training example, and n is 

the number of training examples. AdaBoost is best used to boost the performance of decision 

trees by placing greater weight on examples misclassified by the preceding classifiers.  
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Algorithm 3: AdaBoost 

  

Input  The set T of training data (xi; yi), i=1,2, … ,n; the number B of base classifiers 

 

Output Ensemble of base classifiers {Cb} 
For b=1 to B Construct a base classifier Cb on weighted training data T*=(w1T

1
b, w2T

2
b, … , 

wnT
n
b); 

Calculate the probability estimates of the error errb=1/n Σ wib×ξ
i
b (ξ

i
b=0 if Ti 

classified correctly, ξi
b=1 otherwise); 

Set weight cb=0.5×log((1–errb)/errb); 

If errb<0.5, set  wib+1=wib×exp(cbξ
i
b); 

Otherwise, set all weights wib=1 and restart the algorithm;} 

Combine base 

classifiers 

Cb, b=1,2,…,B into an ensemble {Cb} by weighted majority voting; 

 

The LogitBoost algorithm (Friedman et al., 2000) is a backfitting additive logistic classifier. It 

justifies the exponential bound established in the preceding section as an estimate to the 

objective function derived when a generalized additive linear model is used to fit a classification 

problem after certain logistic transform. Logitboost attempts to minimize the likelihood of the 

classifier, which in turn is restricted to a parametric family of density functions. LogitBoost 

performs additive logistic regression and, thus, can effectively handle multi-class problems. 

XGBoost, short for extreme Gradient Boosting, is a boosting algorithm that sequentially trains 

weak models, which are decision trees, on the same data. Chen and Guestrin (2016) introduced 

XGBoost. It uses gradient descent optimization to minimize the loss function and a 

regularization technique to prevent overfitting. The regularization technique involves adding a 

penalty term to the loss function. 

Stacking, as described by Tsai and Chen (2010), involves training a learning algorithm to 

combine the predictions of multiple other learning algorithms. The individual algorithms are 

trained using available data, and then a combiner algorithm is trained to make a final prediction 

using all the predictions of the other algorithms as additional inputs. When using an arbitrary 

combiner algorithm, stacking can theoretically represent any of the ensemble techniques 

described in this article. However, in practice, a single-layer logistic regression model is often 

used as the combiner. 

Voting ensembles (Finlay, 2011) can be used for both classification and regression problems. 
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It’s usually selected multiple sub-models and allow another model to specify and learn how best 

to combine the predictions from the sub-models. A meta model is used for the best combination 

of the predictions of sub-models. This technique is sometimes called blending, as it blends the 

predictions together. The built classifier is selected from a set of classifiers based on the error 

on the training data, instances serve as training data. 

DECORATE (Diverse Ensemble Creation by Oppositional Relabeling of Artificial Training 

Examples) is a machine learning algorithm that aims to reduce overfitting in ensembles by using 

additional artificially generated training data and introducing diverse training examples through 

oppositional relabeling. The algorithm achieves this by adding different randomly constructed 

instances to the training set, generating highly diverse ensembles. This helps to make the base 

classifiers less prone to memorizing noise in the data (Patel et al., 2013).  

3.3.4 Rule-based classification methods 

JRip algorithm, also known as JRip (J48 Rules), is a rule-based classification algorithm which 

implements a propositional rule learner (Repeated incremental Pruning to produce Error 

Reduction (RIPPER)). It is an extension of the C4.5 decision tree algorithm and is designed to 

extract classification rules from a dataset. JRip was introduced as part of the Weka machine 

learning software, which is a popular open-source collection of machine learning algorithms. 

The algorithm begins by constructing a decision tree using the C4.5 algorithm. The decision tree 

is a collection of rules that can be derived from the dataset. Each path from the root to a leaf 

node corresponds to a rule. Once the decision tree is constructed, JRip extracts a set of rules 

from it. Each rule consists of a combination of conditions on the data features that lead to a 

specific class prediction. JRip applies a pruning process to simplify and improve the 

interpretability of the rules. This process removes conditions from rules that do not significantly 

contribute to their accuracy. The algorithm optimizes the extracted rules to improve their 

compactness and reduce redundancy in rule optimization. This step involves combining or 

simplifying rules without sacrificing their accuracy (Veeralakshmi, 2015). 

Fuzzy rule-based systems begin by defining a set of input variables and their linguistic terms, 

represented as fuzzy sets that capture the data's uncertainty. The evolutionary scheme can 

approximate and describe fuzzy rule bases. As the evolutionary algorithm progresses, the 

population of rule sets evolves to better fit the predicted classes, and the best rule set is selected 
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as the final model. The Fuzzy Unordered Rule Induction Algorithm (FURIA) (Huhn and 

Hullermeier, 2009) is a machine learning method specifically designed for rule-based 

classification tasks. FURIA operates by generating fuzzy if-then rules from the dataset, where 

each rule consists of conditions and corresponding class labels represented in fuzzy logic terms. 

It employs a heuristic approach to iteratively refine and optimize these rules, aiming to 

maximize classification accuracy while minimizing rule complexity. FURIA considers the 

unordered nature of features, allowing it to handle datasets with categorical or nominal attributes 

efficiently. By utilizing fuzzy logic, FURIA can capture the uncertainty and vagueness inherent 

in real-world data, enabling robust classification in domains where traditional crisp rules may 

not suffice. FURIA is particularly beneficial for datasets with noisy or imprecise features, 

providing a flexible and interpretable framework for rule-based classification tasks in various 

fields, including pattern recognition, decision support systems, and expert systems. 

FURIA is an extension of the well-known RIPPER algorithm, which is a state-of-the-art rule 

learner, while maintaining its superiority, such as simple and coherent rule sets. This method 

allows for a more precise and flexible classification method. FURIA learns fuzzy rules rather 

than conventional rules and unordered rule sets instead of rule lists. Moreover, it employs an 

effective rule extension method to handle uncovered examples. 

3.3.5 Cost-sensitive ensemble classification 

In the thesis, I employed the use of the MetaCost classifier, a principled method for making an 

arbitrary classifier cost-sensitive by wrapping a cost-minimizing technique around it (Toseafa 

and Hajek, 2019). This technique treats the fundamental classifier as a black box, requiring no 

knowledge of its functioning or a change to it. MetaCost is applicable to any number of classes 

and to arbitrary cost matrices. Realistic trials on a large group of target databases show that 

MetaCost almost always yields large cost cutbacks compared to the cost-blind classifier used. 

The MetaCost operator makes its base classifier cost-sensitive by using the cost matrix specified. 

MetaCost relies on an internal cost-sensitive classifier in order to relabel classes of training 

examples, see Domingos (1990). The MetaCost operator is a nested operator and has a sub-

process. The sub-process must have a learner as the operator that expects an example set to 

generate a model. This operator tries to build a better model using the learner provided in its 

sub-process. MetaCost is based on the Bayes optimal prediction that reduces the expected cost 

R(j|x) (Michie et al., 1994): 
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                   𝑅(𝑗|𝑥) = ∑ 𝑝((𝑗|𝑥)𝑐𝑜𝑠𝑡(𝑖, 𝑗))
𝐼

𝑖
                                                                                                                 (5) 

where p(j|x) is the probability of class j given example x and cost(i,j) is the cost of misclassifying 

a class i example as class j. The Bayes optimal prediction rule implies a division of the example 

space into I classes, such that class i is the minimum expected cost prediction in class i. If 

misclassifying class i becomes more expensive relative to misclassifying others, then parts of 

the former non-class i regions shall be re-allocated as class i since it is now the minimum 

expected cost prediction. 

3.4 SHAP Values 

The Shapley (SHAP) value, named after Lloyd Shapley, who introduced it in 1951 and won the 

Nobel Memorial Prize in Economic Sciences for it in 2012, is a solution concept in cooperative 

game theory. Furthermore, SHAP is a mathematical method used to explain machine learning 

model predictions. It is based on game theory concepts and can calculate the contribution of 

each feature of the prediction. This allows for the determination of the most important features 

and their influence on the model's prediction.  

The Shapley value is a way to fairly distribute the gains of a cooperative game among the 

players. The game is defined by a set of players and a payoff function, which assigns a payoff 

to each player for each possible combination of players. The Shapley value is calculated by 

considering all possible combinations of players and the marginal contribution of each player to 

the payoff of the coalition. This value has several desirable properties, including efficiency, 

symmetry, linearity, and the null player property. Efficiency means that the sum of the Shapley 

values of all players is equal to the total payoff of the game. Symmetry dictates that players who 

have an equal impact on the payoffs of all coalitions will receive the same Shapley value. 

Linearity states that a player's Shapley value is equal to the sum of their Shapley values in all 

possible subgames. The null player property ensures that a player who has no impact on the 

payoffs of any coalition will receive a Shapley value of zero. 

The Shapley value has several applications in economics, finance, and machine learning. For 

example, it can be used to fairly distribute the profits of a cooperative venture, to allocate 

resources among different departments in a company, or to identify the most important features 

in a machine learning model (Lundberg and Lee, 2017).
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4 Experimental Settings 

4.1 Hardware and Software Specification 

The experiments were conducted on a PC equipped with a Core i5 processor that operates at a 

clock speed of 2.4 GHz, complemented by 16 GB of central RAM. For the operating system, 

Windows 10 (64-bit) was selected as the platform of choice. 

Regarding software specification, experiments were carried out in Weka 3.8.3 x 64 program 

environment (data preprocessing, feature selection, and single classifiers, including FURIA), 

STATISTICA 13.1 (statistical methods, including various versions of logistic regression), and 

scikit-learn (XGBoost) and SHAP libraries in Python 3.12 environments. 

Weka (Waikato Environment for Knowledge Analysis) was chosen as a popular machine 

learning software written in Java and developed at the University of Waikato, New Zealand. It 

stands out from other machine learning platforms for several reasons. Weka has a graphical user 

interface that is intuitive and easy to use, allowing for rapid visualization, analysis and 

interpretation of data and results. Weka also comes with a wide range of tools for data 

preprocessing and classification algorithms. As open-source software, Weka allows its source 

code to be viewed, modified and distributed, facilitating research and development in machine 

learning. While Weka has many advantages, it is important to note that it may not be the best fit 

for very large datasets or highly specialized machine learning tasks that require the use of deep 

learning frameworks such as TensorFlow or PyTorch. However, for standard machine learning 

tasks, such as those addressed in this thesis, Weka provides an easy-to-use and comprehensive 

platform. 

STATISTICA 13.1 is a program for data analysis and visualization2. It offers a wide range of 

algorithms, functions, tests, and methods for data analysis, including simple breakdown tables, 

advanced nonlinear modeling, generalized linear models, and time-series methods. 

Python 3.12, an advanced and high-level programming language, is interpreted and object-

          

          2 https://statistica.software.informer.com/ 
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oriented with dynamic semantics. Its inherent data structures, along with dynamic typing and 

binding, enhance its suitability for rapid application development, as well as for scripting or 

bridging different components. The simplicity and clarity of Python's syntax makes it easy to 

learn, promotes readability and minimizes maintenance. It also supports modularity and code 

reuse through its robust system of modules and packages. Available free of charge in both source 

and binary formats for all major platforms, Python's interpreter and comprehensive standard 

library can be freely distributed, further contributing to its widespread adoption and versatility. 

4.2 Data Preprocessing and Partitioning 

The first step was to replace missing values with mean values. This is a widely used imputation 

method in classification tasks due to its simplicity, its computational efficiency, and its ability 

to preserve the integrity of the data without discarding any valuable information. This approach 

helps to preserve dataset size, reduce potential biases associated with systematic missing data, 

and ensure compatibility with machine learning algorithms that require complete datasets. Mean 

imputation serves as a practical baseline. However, it can lead to reduced variance and 

potentially biased estimates, particularly in datasets with non-normally distributed features or a 

high proportion of missing values, where more sophisticated imputation methods may be 

preferable. In the case of the Moody's data, however, this was not an issue, with less than 1% of 

data missing. 

Second, the data were normalized to the [0,1] scale, as this is critical in classification tasks to 

ensure that features scale uniformly, improving model convergence, accuracy and 

interpretability. It prevents any single feature, particularly in algorithms sensitive to feature 

scale such as k-NN and SVM, from disproportionately influencing the model's decisions. In 

addition, normalization facilitates faster convergence in gradient descent-based algorithms, 

ensures numerical stability, and fulfils the assumptions of certain models that expect data to be 

on a similar scale, by bringing all features to a similar scale. This preprocessing step helps both 

the optimization process and the prevention of overfitting and contributes to a more balanced 

and effective classification model. 

Data partitioning in machine learning refers to the process of dividing a dataset into two or more 

subsets, typically for the purpose of training and testing machine learning models. The primary 

goal of data partitioning is to evaluate the performance of a model on unseen data, thereby 
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assessing its ability to generalize to new, unseen instances. The most common types of data 

partitioning consist of the training dataset, which is the part of the dataset used to train the 

classification model (machine learning model). The model learns patterns, relationships, and 

features from this set. Datasets are usually split into training and testing subsets in order to 

benchmark the algorithm performance. One model is trained on the training dataset, the testing 

dataset is used to evaluate it. The split ratio for data partitioning is commonly expressed as a 

percentage of the total dataset. For this thesis, a 67-33 split was used, implying that 67% of the 

data is used for training, while the remaining 33% is used for testing the model (Sarkar, 2016). 

However, performing the process only once and randomly has a serious constraint and can lead 

to sample selection bias to resolve this issue. To obtain a reliable estimate of classification 

performance, this process was stratified and repeated five times. 

Furthermore, 10-fold cross-validation was used to find the optimal settings of the 

hyperparameters during the training process of the classification models. For K-fold cross-

validation, this approach involves randomly splitting the dataset into K equally sized parts and 

training the model K times. In each training cycle, a single partition is selected that has not been 

chosen in the previous cycles. The selected portion is used for testing, while the remaining 

dataset is used for training. As a result, each model will be trained and tested on a distinct 

training dataset. After all K cycles have been completed, the results are aggregated. Research 

indicates that setting 10 as the K value produces dependable results, avoiding both excessively 

high bias and variance (Kohavi, 1995). 

For feature selection, the correlation-based filter and a wrapper were used. For both algorithms, 

the space of feature subsets was searched using greedy hillclimbing augmented with a 

backtracking facility. The algorithms started with the empty set of features and searched the 

space forward. Area under ROC curve was used as the classification objective criterion due to 

the imbalance in the data. 

4.3 Settings of Classification Methods 

The k-NN classifier was implemented with the Euclidean distance function and k set to 3. This 

thesis employed the K2 algorithm to explore the search space of Bayes net with a simple 

estimator.  
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SVM was trained using the sequential minimal optimization (SMO) algorithm with complexity 

parameter C = {1, 2, … , 128}, polynomial kernel function with exponent = {1, 2}, and RBF 

kernel function with gamma = 0.01. Its complexity parameter was determined using the grid 

search procedure, ranging from 1 to 128.  

The NN model was trained using backpropagation with the following settings: hidden layer 

neurons ranged from 1 to 100 (the grid search procedure used to find the optimal number), the 

learning rate was set to 0.1, and the number of iterations was set to 500 (Overes and van der 

Wel, 2023). 

The J48 algorithm, developed by Ross Quinlan, was used to generate a decision tree. The J48 

version utilized a minimum of two instances per leaf and a confidence factor of 0.25 for pruning. 

The J48 decision tree algorithm also served as the base learner in the Decorate ensemble method, 

with 15 classifiers in the ensemble and an ensemble diversity of 1.0. For the random forest 

model, 100 trees were generated with unlimited maximum depth and the number of variables 

randomly sampled as candidates at each split was calculated as log2(#predictors) + 1. The 

AdaBoost M1 version was trained with decision stump as base learners, and the number of 

iterations was 10. Bagging was trained with REPTree as the base learner. LogitBoost was trained 

with a decision stump as the base learner, and the Z max threshold for responses was set to 3. 

XGBoost was trained with gbtree as booster, learning rate of 0.3, minimum loss reduction of 0, 

maximum depth of a tree set to 6, minimum sum of instance weight (hessian) needed in a child 

of 1, L1 regularization term on weights of 0, and L2 regularization term on weights of 1. Finally, 

Voting was performed using an ensemble of classifiers including Bayes net, Naïve Bayes, SVM, 

random forest, and J48 decision tree.  

For JRip, the minimum total weight of the instances in a rule was set to 2.0, the number of 

optimization runs was 2, and pruning was enabled. The same values of hyperparameters were 

also used for its fuzzy counterpart FURIA. In addition, fuzzy partitions were enabled, and rule 

smoothing was enabled. 

4.4 Evaluation Measures 

While evaluating the experimental results, the following evaluation measures were taken into 

consideration: Accuracy (Acc), AUC (to evaluate the performance on imbalanced classes), 
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Precision, Recall, F1 measure (the combination of precision and recall), False positive rate 

(FPR), Kappa, Matthews correlation coefficient (MCC), and Misclassification cost (to consider 

different financial effects of misclassified regional units). 

Accuracy is a commonly used metric in machine learning to evaluate the performance of a 

classification model. It is a measure of the overall correctness of the model in predicting the 

class labels of the instances in the dataset. Accuracy of a classification model is calculated as 

the ratio of correctly predicted instances to the total number of instances in the dataset. Accuracy 

is expressed as a percentage, ranging from 0% to 100%. A higher accuracy indicates a better-

performing model. Accuracy (Acc) is the percentage of classes which were predicted correctly: 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                                                      (6) 

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives, and 

false negatives. 

TPR and FPR are metrics commonly used to evaluate the performance of binary classification 

systems. TPR, also known as sensitivity or recall, measures the proportion of actual positives 

that are correctly identified by the classifier: 

𝑇𝑃𝑅 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                      (7) 

The FPR measures the proportion of actual negatives that are incorrectly classified as positives 

by the classifier: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                                                                                                        (8) 

 

Precision measures the accuracy of positive predictions made by the classification model. It is 

defined as the number of true positive predictions divided by the total number of positive 

predictions: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                                (9) 

The F1 measure is the harmonic mean of Precision and Recall. It combines Precision and Recall 

into a single metric by taking their harmonic mean to give an overall effectiveness of the 

classification model in terms of both false positives and false negatives: 
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𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                (10) 

MCC takes into account true and false positives and negatives and is generally regarded as a 

balanced measure which can be used even if the classes are of very different sizes: 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁 

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
                                                    (11) 

Kappa, or Cohen's Kappa, is a statistical measure used to evaluate the reliability of agreement 

between two raters (or sets of data) that classify items into mutually exclusive categories. It is 

particularly useful when assessing the degree of agreement beyond what would be expected by 

chance. A Kappa value of 1 indicates perfect agreement between the raters, while a Kappa value 

of 0 indicates that the agreement is no better than what would be expected by chance. 

The ROC curve is a graphical representation of the performance of a classification model at 

different settings of the threshold value. It is a probability curve, and the AUC represents the 

degree of separability, or the two-dimensional area underneath the entire ROC curve. This 

indicates how well the model can distinguish between classes. The AUC is a measure of how 

well the model predicts 0 classes as 0 and 1 classes as 1. It represents the probability that the 

classifier will rank a randomly chosen class higher than a class. 

 
 

                                                                      Figure 5: ROC curve and AUC 
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In the literature on credit rating modelling, AUC was reported to be a suitable performance 

measure, mainly because it is robust against imbalanced data: 

 
1 𝑑 

𝐴𝑈𝐶 = ∫0 
𝑇𝑃𝑅(𝑇)×

𝑑𝑇 
𝐹𝑃𝑅(𝑇)𝑑𝑇, 

(9) 

where T is any cut-off point, 0 < T < 1. On the one hand, the wrong prediction of a class that is 

(type II error) leads to the loss of time.  

To calculate the overall Misclassification cost, the cost matrix is proposed as presented in Table 

5. 

 

Table 5: Cost matrix for eight rating classes Aaa to Ca 

 Rating class target (actual) 

Rating class 

predicted 

Aaa Aa A Baa … Ca 

Aaa 0 1 2 3 … 8 

Aa 1 0 1 2 … 7 

A 2 1 0 1 … 6 

Baa 3 2 1 0 … 5 

… … … … … … … 

Ca 8 7 6 5 … 0 
Note: only 8 classes were used because the remaining classes were not present in the data 
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5 Experimental Results  

In this section, I present the results of the empirical experiments conducted to evaluate the 

effectiveness of the proposed classification models on the two benchmark datasets from 

Moody’s credit rating agency. Subsequently, the averages and standard deviations of the five 

stratified train/test of 67/37% splits are presented. For each classification method, the best and 

statistically similar results at P < 0.05 are presented using the Wilcoxon signed-rank test, which 

is a non-parametric statistical hypothesis test used when comparing two related samples or 

repeated measurements on a single sample to assess whether their population mean ranks differ. 

The advantages of using the Wilcoxon signed-rank test for this purpose are as follows: a) the 

Wilcoxon test does not require the assumption of normality, b) the Wilcoxon test is less sensitive 

to outliers than parametric tests, and c) the Wilcoxon signed-rank test can be used with relatively 

small sample sizes. 

5.1 Performance of Logistic Regression Models 

Table 6 compares the performance of different link functions used in statistical models, such as 

Complementary Log-Log, Probit, Logit, and Cauchit, for the benchmark dataset with 2016 

credit rating outcome. The table provides metrics of model fit, goodness of fit, and a measure 

of explanatory power (pseudo R-squared). It is worth noting that each link function has a 

different way of relating the linear predictor to the mean of the distribution function, with 

Complementary log-log often used for models where the outcome is time to an event (e.g., 

survival models), while Probit is usually applied when the outcome is binary, as in probit 

regression, Logit (in logistic regression) is perhaps the most popular link function for binary 

data, and Cauchy can be useful when outcomes are with heavier tails than the logit model 

assumes. 

The values of model fitting/chi-square indicate how well the model fits the data, with higher 

values generally indicating a better fit. It is based on the chi-square test statistic, which compares 

the observed values with the values expected by the model. The Complementary log-log model 

has a chi-square value of 899.031, indicating a relatively good fit compared to the other models. 

The fit of the Probit model is also better than the Logit and Cauchit models, with a chi-square 

value of 361.696. The Logit model has the lowest chi-square value (242.188), suggesting that it 
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may be the least well-fitting of the models. 

Unlike the fitting/chi-square, higher values goodness-of-fit/Pearson indicate a poorer fit, as they 

suggest a greater discrepancy between observed and expected frequencies. The Complementary 

log-log model has a relatively low Pearson value (1108.241), indicating a good fit. The Probit 

and Cauchit models have higher Pearson values, indicating a poorer fit. The Logit model has 

the highest Pearson value, again suggesting that it may not fit the data as well as the other 

models. 

The Pseudo R-Square/Cox and Shell metric provides an estimate of the proportion of variance 

in the dependent variable that is explained by the model. Higher values indicate that the model 

explains more variance in the response variable, which is desirable. Again, the Complementary 

log-log model has the highest pseudo R-squared value (0.972), indicating that it explains the 

variance in the response variable very well. The explanatory power of the Probit model is 

substantially lower (0.763), followed by the Cauchit (0.674) and Logit (0.619) models. 

Overall, the Complementary log-log model appears to perform best of all the metrics presented, 

indicating a good fit to the data and high explanatory power. The Probit model also shows a 

good fit but has less explanatory power. The Logit and Cauchit models appear to perform less 

well in terms of both fit and explanatory power. 

                Table 6: Results of different link functions 

 

                                                                                    

Table 7 below presents the significant results empirically. The analysis shows that credit ratings 

are not significantly influenced by financial indicators such as GDP per capita and real GDP. 

This finding is surprising given that previous studies have shown that prevailing economic 

conditions in countries are a significant factor affecting credit ratings (Afonso et al., 2011; 

Boumparis et al., 2019). A region's high GDP may not necessarily lead to a positive credit rating 

score due to factors such as large budget deficits and excessive accumulated debt. The study 

also found that national unemployment is a statistically significant determinant of credit rating 

Link function Model fitting/Chi-Square 
Goodness-of-

fit/Pearson 

Pseudo R-Square/ 

Cox and Shell 

Complementary Log–log 899.031 1108.241 0.972 

Probit 361.696 3007.563 0.763 

Logit 242.188 4253.489 0.619 

Cauchit 281.337 4180.606 0.674 
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in the sampled regions at a 95% significance level. The creditworthiness of regions is 

significantly influenced by the level of economic stability and the general economic 

environment. This finding is consistent with Afonso et al.'s (2011) research, which also found a 

positive association. Additionally, this work found that neither short-term nor long-term debt 

variables were significant factors in determining credit rating. However, the thesis found that 

debt maturity is negatively related to credit rating, indicating that it reduces the likelihood of a 

good rating. This can be explained by the fact that a country's inability to refinance its maturing 

debt could lead to financial stress, potentially resulting in a credit rating downgrade. This result 

is consistent with the findings of Sajjad and Zakaria (2018), who also found a negative 

association. The variables OwnRev/OperRev, GovTransf/OperRev, EarRev/OperRev, and 

Inter/OperRev were statistically insignificant factors driving credit ratings. The results indicate 

that only DebtSer/TR was found to be negatively associated with credit ratings. Additionally, 

the variables CashSurp/TR and TEPerCapita were found to be significant but negatively related 

to credit ratings. Refer to Appendices A to C for all the results from the experiments performed 

for the other link functions. 
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Table 7: Parameter estimates for the Complementary log–log model 

 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

             

                                   

 

 

Note: The Ca class was represented with only one sample, statistically significant at * P < 0.05, ** P < 0.01, *** P < 0.001        

   

Variables Estimate 
 

Standard 

Error 

 

 

Wald 

Stat. 
 

  P-value 
 

Threshold [Aaa = 1]       -2.629      0.537     23.942    0.000*** 

                  [Aa = 2]       -1.235      0.483     6.539    0.011** 

                  [A = 3]       -0.530      0.471     1.263    0.261 

                  [Baa = 4]        0.126      0.467     0.073    0.787 

                  [Ba = 5]        1.254      0.471    7.079    0.008** 

                  [B = 6]        2.128      0.489   18.927    0.000*** 

                  [Caa = 7]        2.558      0.514   24.795    0.000*** 

GDPPerCapita 
 

-7.447E-5 0.001 0.003    0.956 

RealGDP 
 

    -0.042 0.046    0.827    0.363 

Unemployment 
 

   - 0.031 0.023 1.739    0.187 

NationalUnemployment 
 

     0.073 0.025 8.577    0.005** 

Debt/GDP 
 

    -0.004 0.009 0.220    0.639 

FXDirectDebt(beforeswap) 
 

     0.016 0.005 8.226    0.005** 

ShortDebt/Debt 
 

      0.011 0.007 2.779    0.095 

LongDebt/Debt 
 

      0.002 0.002 0.768    0.381 

MaturityDebt 
 

     -0.066 0.018   13.940    0.000*** 

OwnRev/OperRev 
 

     -0.007 0.004 3.285    0.070 

GovTransf/OperRev 
 

      0.003 0.004 0.647    0.421 

EarRev/OperRev 
 

    -0.001 0.005 0.031    0.861 

Inter/OperRev 
 

     0.087 0.064 1.846    0.174 

DebtSer/TR 
 

   -0.030 0.015     3.809    0.051* 

AccualFinancingSurplus/TR 
 

     0.003 0.020 0.021    0.884 

CashSurp/TR 
 

    -0.035 0.018  3.856    0.050* 

TEPerCapita 
 

-8.438E-5 2.841E-5 8.825    0.005** 

TE/GDP 
 

    0.017 0.015 1.248    0.264 

OperBalance/OR 
 

   -0.007 0.014 0.239    0.625 

NetOperatingBalance/OR 
 

 - 0.008 0.008 1.043    0.307 

SelfFinRatio 
 

    0.316 0.143 4.898    0.027* 

CapitalSpend 
 

    0.008 0.010 0.605    0.437 

NWC/TE 
 

    -0.011 0.003 9.456    0.005** 
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5.2 Performance of Single Classifiers 

Table 8 presents the performance of single classifiers in an experiment for the benchmark dataset 

with rating classes from 2016, as assigned by the Moody's CRA. This table shows the 

performance metrics of different classifiers, including decision trees (DT), neural networks 

(NN), support vector machines (SVM), naïve Bayes (NB), Bayesian network (BN), JRip (JRIP) 

and FURIA. The metrics include FPR, Precision, Recall, F1 measure, MCC, AUC, Accuracy 

(Acc) and Cohen's Kappa (Kappa). Values are presented as means with standard deviations (±) 

across five 67/33 data splits for testing data. 

FPR measures the proportion of negative cases that are misclassified as positive. Lower values 

are better. SVM and NB have exceptionally low FPR, indicating that they rarely misclassify 

negative instances as positive. In contrast, higher values of Precision are desirable. NB stands 

out for its high precision, indicating that when it predicts an instance as positive, it is very likely 

to be correct. Similarly, DT and NB have relatively high recall rates, indicating that they are 

good at detecting positive instances. NB also scores the highest in terms of F1 measure, 

indicating a good balance between precision and recall. NB also has the highest MCC, indicating 

that its predictions have a high degree of correlation with the actual values. 

Furthermore, a higher AUC indicates a better model. NB, SVM and NN have high AUC values, 

indicating good performance at different thresholds. While NB, NN and DT show moderate 

accuracies, it is important to consider this metric in conjunction with others to get a full picture 

of performance. NB has the highest Kappa, indicating that its predictions are in strong agreement 

with the actual classifications, beyond what would be expected by chance. 

NB appears to perform exceptionally well across most metrics, particularly in terms of precision, 

F1 measure, MCC, AUC and Kappa, suggesting that it is a strong model for this dataset. SVM 

and NN also show strong performance, especially in terms of AUC. It is important to consider 

the specific application and the trade-offs between different types of error when choosing a 

classifier. In this scenario, false positives can be particularly costly, hence, one might prefer a 

classifier with a lower FPR, such as SVM or NB. 
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          Table 8: Results of single classifiers  

Classifier FPR Precision Recall F1-measure MCC AUC Acc Kappa 

DT 0.065±0.030 0.319±0.188 0.560±0.339 0.408±0.239 0.399±0.216 0.763±0.173 0.506±0.048 0.416±0.061 

NN 0.033±0.021 0.473±0.313 0.307±0.132 0.315±0.145 0.331±0.177 0.895±0.054 0.557±0.031 0.455±0.040 

SVM 0.008±0.017 0.450±0.512 0.107±0.098 0.164±0.157 0.198±0.210 0.905±0.071 0.506±0.026 0.369±0.035 

NB 0.010±0.011 0.860±0.142 0.593±0.272 0.648±0.211 0.667±0.160 0.919±0.060 0.553±0.031 0.505±0.039 

BN 0.018±0.014 0.393±0.447 0.300±0.415 0.307±0.358 0.323±0.360 0.852±0.197 0.452±0.074 0.321±0.095 

JRIP 0.048±0.029 0.428±0.190 0.420±0.208 0.400±0.144 0.369±0.163 0.770±0.087 0.469±0.026 0.328±0.030 

FURIA 0.015±0.014 0.683±0.207 0.420±0.171 0.501±0.162 0.501±0.163 0.707±0.100 0.492±0.044 0.416±0.063 

5.3 Performance of Ensemble Classifiers 

Table 9 below provides performance metrics for various ensemble learning classifiers on the 

dataset, including bagging, random forest, AdaBoost M1, LogitBoost, and XGBoost. Random 

forest and LogitBoost have substantially lower FPR, indicating that they are less likely to 

misclassify negative instances as positive. XGBoost has relatively high Precision, suggesting 

that when it predicts an instance as positive, it is very likely to be correct. Random forest stands 

out with a significantly higher recall, suggesting that it is effective at identifying positive 

instances. Random forest also has the highest F1 measure, indicating a good balance between 

precision and recall. Random forest and XGBoost have high MCC values, suggesting that their 

predictions are in good agreement with the actual classifications. Random forest has a high 

AUC, indicating strong performance across different rating classes. Random forest has a high 

Kappa score, indicating a strong agreement between its predictions and the actual classifications, 

beyond what would be expected by chance. Finally, XGBoost has the highest accuracy, 

indicating that it correctly classifies a higher percentage of instances than the other classifiers.  

Random forest appears to perform best in most metrics, particularly in Recall, F1 measure, 

MCC, AUC and Kappa, making it a strong candidate for this dataset. XGBoost also shows 

strong performance, especially in Precision, Acc and MCC. AdaBoost M1, while showing 

decent performance in AUC, has a high FPR which could be a concern taking into account the 

application's sensitivity to false positives. LogitBoost and bagging show moderate performance 

across several metrics. 
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          Table 9: Results of ensemble classifiers 

Classifier FPR Precision Recall F1-measure MCC AUC Acc Kappa 

Bagging 0.018±0.021 0.453±0.441 0.220±0.253 0.266±0.267 0.295±0.251 0.920±0.042 0.508±0.058 0.378±0.077 

Random Forest 0.015±0.010 0.167±0.194 0.527±0.237 0.586±0.208 0.580±0.203 0.949±0.048 0.570±0.034 0.539±0.044 

AdaBoost M1 0.408±0.207 0.650±0.335 0.307±0.177 0.364±0.133 0.398±0.142 0.905±0.071 0.507±0.027 0.374±0.026 

LogitBoost 0.025±0.009 0.167±0.096 0.347±0.169 0.392±0.147 0.286±0.137 0.906±0.072 0.570±0.022 0.492±0.028 

XGBoost 0.028±0.019 0.644±0.221 0.513±0.254 0.514±0.175 0.514±0.144 0.878±0.126 0.616±0.030 0.519±0.037 

5.4 Effect of Feature Selection 

This section presents the performance of feature selection using wrapper (Table 10) and filter 

(Table 11) feature selection methods in terms of classification measures. 

For the wrapper feature selection, an average of 12.6 features were selected, while 3.6 features 

were selected using the filter approach, indicating that the filter approach identified several 

redundant features. For the wrapper method, Unemployment, NationalUnemployment, 

AccualFinancingSurplus/TR, NetOperatingBalance/OR, and NWC/TE were identified most 

relevant, while for the filter method, NationalUnemployment and OperBalance/OR were selected 

in all five runs of experiments. 

For the wrapper approach, Random forest stands out as the most accurate. It also excels in Cohen's 

Kappa score, reflecting a robust agreement between its predictions and the actual classifications. 

SVM, BN and AdaBoost M1 are characterized by an exceptionally low FPR, which underlines 

their ability to minimize false positive predictions. LogitBoost is notable for its superior Precision, 

demonstrating the high reliability of its positive classifications. Furthermore, Random forest shows 

impressive Recall and also leads in the F1 measure, highlighting an optimal balance between 

precision and recall. Both LogitBoost and Random forest are recognized for their high MCC 

values, and Bagging and BN are recognized for their high AUC values, demonstrating their 

performance across different rating classes. For the filter feature selection method, Random forest 

and XGBoost performed best. Overall, however, no significant improvement was achieved using 

the feature selection methods for the used classifiers (using the Wilcoxon signed-rank test at 

P<0.05), with few exceptions, such as BN and XGBoost for AUC. This suggests that feature 

selection is not effective for this problem, indicating that the variables provided by the rating 

agency are relevant to credit rating and are considered in the evaluation process. Therefore, feature 
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selection was not considered in further experiments. 

Table 10: Results of classifiers in combination with wrapper feature selection 

 

Classifier FPR Precision Recall F1-measure MCC AUC Acc Kappa 

DT 0.041±0.037 0.360±0.234 0.353±0.257 0.330±0.218 0.316±0.193 0.733±0.030 0.517±0.072 0.403±0.084 

NN 0.005±0.011 0.300±0.447 0.113±0.176 0.146±0.208 0.162±0.222 0.642±0.222 0.428±0.063 0.261±0.102 

SVM 0.00±0.00 0.200±0.477 0.033±0.075 0.057±0.128 0.079±0.177 0.603±0.152 0.309±0.035 0.056±0.074 

NB 0.071±0.083 0.336±0.391 0.353±0.282 0.306±0.301 0.287±0.309 0.809±0.064 0.321±0.073 0.191±0.077 

BN  0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.867±0.089 0.476±0.059 0.342±0.078 

JRIP 0.008±0.011 0.200±0.274 0.113±0.176 0.139±0.202 0.135±0.193 0.679±0.237 0.456±0.100 0.295±0.144 

FURIA 0.033±0.039 0.300±0.263 0.347±0.265 0.337±0.208 0.343±0.200 0.661±0.122 0.440±0.063 0.416±0.062 

Random Forest 0.025±0.024 0.424±0.276 0.393±0.266 0.432±0.239 0.430±0.236 0.858±0.147 0.555±0.0400 0.446±0.050 

Bagging 0.025±0.025 0.491±0.379 0.287±0.223 0.317±0.206 0.329±0.193 0.880±0.094 0.515±0.057 0.395±0.068 

AdaBoost M1 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.636±0.092 0.281±0.014 0.040±0.037 

LogitBoost 0.013±0.013 0.610±0.418 0.347±0.206 0.439±0.224 0.452±0.221 0.821±0.114 0.496±0.055 0.368±0.062 

XGBoost 0.040±0.045 0.496±0.405 0.387±0.289 0.369±0.269 0.364±0.276 0.845±0.166 0.529±0.063 0.415±0.076 

 

Table 11: Results of classifiers in combination with filter feature selection 

Classifier 
FPR Precision Recall F1-measure MCC AUC Acc Kappa 

DT 0.025±0.013 0.249±0.276 0.133±0.138 0.156±0.182 0.176±0.166 0.722±0.091 0.511±0.040 0.389±0.050 

NN 0.005±0.011 0.067±0.149 0.033±0.075 0.044±0.099 0.039±0.088 0.677±0.081 0.365±0.061 0.177±0.094 

SVM 0.000±0.000 0.200±0.4777 0.033±0.075 0.057±0.128 0.079±0.177 0.513±0.033 0.311±0.039 0.044±0.046 

NB 0.076±0.099 0.135±0.132 0.267±0.303 0.167±0.167 0.140±0.147 0.778±0.048 0.330±00.108 0.179±0.118 

BN  0.010±0.022 0.040±0.089 0.033±0.075 0.036±0.081 0.025±0.057 0.900±0.045 0.487±0.078 0.359±0.094 

JRIP 0.015±0.034 0.200±0.447 0.033±0.075 0.057±0.128 0.094±0.172 0.794±0.113 0.461±0.055 0.300±0.080 

FURIA 0.023±0.044 0.190±0.325 0.167±0.236 0.170±0.264 0.155±0.256 0.590±0.140 0.442±0.059 0.297±0.067 

Random forest 0.030±0.015 0.501±0.104 0.413±0.187 0.435±0.146 0.412±0.136 0.881±0.086 0.541±0.046 0.434±0.061 

Bagging 0.031±0.023 0.217±0.217 0.142±0.189 0.163±0.160 0.160±0.134 0.850±0.117 0.494±0.028 0.366±0.040 

AdaBoost M1 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.663±0.047 0.291±0.023 0.046±0.058 

LogitBoost 0.010±0.014 0.267±0.435 0.067±0.091 0.102±0.141 0.127±0.171 0.861±0.087 0.482±0.046 0.351±0.056 

XGBoost 0.035±0.031 0.444±0.171 0.320±0.177 0.346±0.142 0.325±0.147 0.894±0.070 0.548±0.052 0.439±0.067 
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5.5 Effect of Class Balancing 

Table 12 and Table 13 below demonstrate the experiments while using SMOTE and random 

oversampling for class balancing, respectively.  

Table 12 shows the results for SMOTE. The Random Forest algorithm demonstrates an 

improved Recall and F1 Measure compared to previous results, indicating better performance 

after using SMOTE for class balancing. However, Precision remains low. The DT algorithm 

shows improved TPR, but Precision is still moderate. The use of SMOTE may have helped in 

handling imbalanced classes. For NN, Recall has improved, and Precision is higher compared 

to previous results, indicating better performance with class balancing. SVM shows significant 

improvement in Recall, Precision, and F1 measure after using SMOTE. It performs well in 

handling imbalanced classes. AdaBoost M1 has also shown improvements in Recall and 

Precision, indicating better performance with SMOTE. LogitBoost has improved Precision, but 

other metrics show only moderate improvement. Naïve Bayes has led to improvements in 

Recall, Precision, and F1 measure through the use of SMOTE. Bayes Net shows moderate 

improvement in Recall and Precision. Bagging has improved Recall, but Precision remains 

moderate. FURIA also shows a significant improvement in Recall, Precision, and F1 measures. 

Overall, the use of SMOTE has generally improved the performance of the classifiers. 

As presented in Table 13, Random forest shows improvement in terms of Recall, F1 measure, 

and MCC. DT shows improved Recall and moderate Precision. The resampling technique seems 

to have a positive impact. The performance has been positively affected by oversampling for 

NN. However, SVM shows zero values for various metrics, indicating that resampling might 

not have been effective for SVM in this context. Resampling may also not have been effective 

for AdaBoost in this context. LogitBoost has improved Precision, but other metrics show only 

moderate improvement. Naïve Bayes has shown significant improvement in F1 measure. Bayes 

Net has shown moderate improvement in Recall and Precision. JRIP shows improvement in 

Recall, Precision, and F1 measure, and FURIA also shows improvement in terms of these 

metrics. Resampling techniques have generally been found to have a positive effect on classifier 

performance, particularly in addressing imbalances and improving sensitivity. 
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           Table 12: Results of classification methods enhanced with SMOTE 

Classifier FPR Precision Recall F1-measure MCC AUC Acc Kappa 

DT 0.083±0.022 0.279±0.137 0.487±0.3347 0.348±0.203 0.309±0.239 0.703±0.176 0.447±0.083 0.416±0.104 

NN 0.068±0.019 0.347±0.112 0.487±0.152 0.404±0.127 0.359±0.142 0.886±0.057 0.550±0.059 0.445±0.075 

SVM 0.093±0.036 0.376±0.074 0.727±0.083 0.496±0.072 0.472±0.079 0.895±0.067 0.487±0.041 0.352±0.050 

NB 0.210±0.265 0.860±0.142 0.560±0.296 0.561±0.266 0.641±0.165 0.922±0.058 0.543±0.032 0.451±0.038 

BN  0.030±0.021 0.563±0.140 0.527±0.265 0.513±0.188 0.499±0.180 0.919±0.044 0.475±0.020 0.354±0.020 

JRIP 0.063±0.050 0.426±0.124 0.520±0.240 0.424±0.133 0.405±0.123 0.774±0.129 0.464±0.042 0.319±0.051 

FURIA 0.074±0.052 0.347±0.150 0.827±0.199 0.612±0.171 0.610±0.172 0.915±0.077 0.503±0.047 0.416±0.056 

Random Forest 0.035±0.006 0.167±0.124 0.327±0.316 0.561±0.218 0.540±0.227 0.933±0.028 0.570±0.028 0.499±0.037 

Bagging 0.103±0.160 0.398±0.271 0.340±0.259 0.356±0.245 0.345±0.211 0.679±0.094 0.412±0.045 0.245±0.071 

AdaBoost M1 0.055±0.024 0.454±0.143 0.587±0.277 0.483±0.131 0.463±0.154 0.896±0.050 0.527±0.061 0.412±0.083 

LogitBoost 0.033±0.021 0.167±0.253 0.493±0.253 0.480±0.168 0.286±0.148 0.902±0.083 0.570±0.025 0.470±0.036 

XGBoost 0.028±0.011 0.567±0.091 0.527±0.237 0.529±0.186 0.508±0.177 0.855±0.143 0.600±0.039 0.501±0.047 

 

 

Table 13: Results of classification enhanced with random oversampling 

Classifier FPR Precision Recall F1-measure MCC AUC Acc Kappa 

DT 0.059±0.028 0.404±0.134 0.513±0.096 0.446±0.114 0.406±0.121 0.827±0.098 0.496±0.054 0.416±0.071 

NN 0.046±0.021 0.458±0.218 0.487±0.192 0.468±0.196 0.429±0.214 0.903±0.067 0.557±0.036 0.453±0.043 

SVM 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.693±0.037 0.302±0.025 0.096±0.049 

NB 0.005±0.007 0.910±0.124 0.520±0.267 0.618±0.236 0.646±0.188 0.934±0.049 0.569±0.049 0.416±0.062 

BN  0.020±0.007 0.587±0.187 0.487±0.304 0.514±0.268 0.499±0.263 0.905±0.059 0.508±0.058 0.392±0.072 

JRIP 0.043±0.026 0.475±0.317 0.353±0.195 0.350±0.135 0.336±0.146 0.738±0.104 0.391±0.058 0.237±0.058 

FURIA 0.033±0.019 0.470±0.227 0.387±0.205 0.420±0.216 0.387±0.229 0.736±0.133 0.520±0.044 0.416±0.058 

Random Forest 0.033±0.026 0.167±0.396 0.400±0.384 0.387±0.326 0.377±0.340 0.684±0.192 0.570±0.023 0.298±0.031 

Bagging 0.015±0.010 0.220±0.303 0.240±0.251 0.275±0.273 0.271±0.251 0.876±0.106 0.513±0.034 0.385±0.050 

AdaBoost M1 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.659±0.140 0.335±0.045 0.098±0.055 

LogitBoost 0.040±0.027 0.167±0.291 0.347±0.121 0.360±0.072 0.286±0.074 0.843±0.122 0.570±0.022 0.425±0.030 

XGBoost 0.043±0.023 0.530±0.085 0.660±0.284 0.560±0.191 0.546±0.182 0.839±0.171 0.581±0.040 0.486±0.051 

 

5.6 Results of Ordinal Classification  

In the further set of experiments, the ordinal nature of the target class was considered by using 

ordinal class classifiers. That is, the individual and ensemble classifiers were used in 
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combination with a simple ordinal classification approach (Frank and Hall, 2001). 

The results in Table 14 show a mixed performance of the classifiers in predicting sub-sovereign 

credit ratings, with no single classifier excelling in all metrics. The DT shows modest 

performance across the metrics, with an F1 measure and MCC indicating reasonable balance 

and correlation respectively. The NB classifier outperforms others in terms of Precision, Recall, 

F1 measure, MCC and Kappa, suggesting a strong ability to correctly identify positive instances 

and maintain a good balance between Precision and Recall. Its high AUC and Acc also confirm 

its robustness in distinguishing between classes and its overall reliability. However, the standard 

deviations indicate some variability in performance, which is crucial for the stability and 

consistency of the predictions.  

 

            Table 14: Results of ordinal class classifiers 

Classifier 
FPR Precision Recall F1-measure MCC AUC Acc Kappa 

DT 0.045±0.014 0.427±0.075 0.487±0.192 0.443±0.132 0.410±0.128 0.782±0.151 0.518±0.013 0.404±0.011 

NN 0.040±0.018 0.505±0.142 0.513±0.096 0.499±0.075 0.467±0.086 0.876±0.089 0.581±0.037 0.481±0.044 

SVM 0.000±0.000 0.400±0.548 0.067±0.091 0.114±0.157 0.157±0.217 0.533±0.045 0.496±0.022 0.354±0.022 

NB 0.028±0.029 0.667±0.216 0.667±0.312 0.622±0.214 0.622±0.214 0.874±0.111 0.426±0.037 0.416±0.035 

BN 0.225±0.434 0.552±0.439 0.240±0.188 0.303±0.202 0.335±0.202 0.844±0.051 0.459±0.047 0.324±0.060 

JRIP 0.018±0.025 0.736±0.367 0.254±0.194 0.311±0.112 0.363±0.120 0.602±0.135 0.415±0.091 0.259±0.119 

FURIA 0.018±0.019 0.713±0.278 0.380±0.139 0.483±0.120 0.534±0.161 0.735±0.100 0.553±0.034 0.416±0.048 

Random Forest 0.020±0.014 0.167±0.207 0.447±0.183 0.499±0.147 0.501±0.109 0.911±0.068 0.570±0.021 0.495±0.032 

Bagging 0.018±0.017 0.367±0.415 0.133±0.139 0.182±0.178 0.204±0.180 0.853±0.142 0.504±0.071 0.374±0.093 

AdaBoost M1 0.028±0.019 0.480±0.365 0.313±0.251 0.331±0.211 0.451±0.325 0.887±0.059 0.508±0.041 0.381±0.060 

LogitBoost 0.025±0.027 0.167±0.354 0.280±0.159 0.329±0.104 0.349±0.109 0.869±0.074 0.570±0.057 0.373±0.073 

XGBoost 0.028±0.023 0.606±0.257 0.380±0.139 0.420±0.099 0.420±0.072 0.882±0.097 0.584±0.022 0.482±0.029 

On the other hand, the SVM shows a peculiar performance with an FPR of 0.000, indicating no 

false positives, but significantly lower scores in other metrics, particularly in Recall and F1 

measure, suggesting a limited ability to correctly identify positive instances. The Naive Bayes 

(NB) classifier shows high Precision and Recall, but with considerable variability as indicated 

by the standard deviations. Ensemble methods such as Random Forest, XGBoost and AdaBoost 

M1 show high AUC values, indicating their effectiveness in classification tasks, with XGBoost 
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and Random Forest also achieving high Acc and Kappa values, indicating their reliability and 

agreement with true classifications beyond chance.  

Overall, only the DT and FURIA classifiers achieved a significant improvement over their non-

ordinal counterparts, suggesting that ensemble methods effectively address the ordinal class 

problem without the need for ordinal class modifications. 

5.7 Misclassification Costs and Different Forecasting Horizons 

Table 15 shows the performance of the model in terms of the average results of five 

training/testing data split. Recall that the data was split into 67% training and 33% testing to 

avoid overfitting of the machine learning methods. A high AUC value indicates good algorithm 

performance, even on imbalanced classes. Sub-sovereign credit ratings were also assigned 

average Misclassification cost, as defined in Table 5. The Random Forest and SVM algorithms 

were the most effective for both forecasting horizons, resulting in a classification cost almost 

two times lower than that of Naïve Bayes. As expected, the cost increased as the forecasting 

horizon extended (for Rating +2). However, the average Misclassification cost was still low 

enough, below 1, indicating that the average Misclassification was less than one class away. In 

this experiment, Stacking was also used as a heterogeneous ensemble method, combing all the 

other classifiers, both single and ensemble. Random forest was still the best, suggesting that its 

variance reduction strategy is more effective than boosting methods. 

                Table 15: Performance of classifiers in terms of average cost and AUC 

 Rating t + 1 Rating t + 2 

 Misclassification cost AUC Misclassification cost AUC 

LR 0.861 0.866* 0.890 0.869* 

DT 0.971 0.735 0.939 0.725 

BN 0.914 0.876* 0.850* 0.895* 

SVM 0.751* 0.881* 0.825* 0.890* 

NN 1.045 0.820 1.102 0.838 

NB 1.457 0.801 1.354 0.797 

Random Forest 0.747* 0.886* 0.835* 0.870* 

AdaBoost M1 1.714 0.714 1.467 0.701 

Bagging 0.971 0.874* 0.906 0.892* 

Stacking 1.718 0.430 4.731 0.436 
*  Performs significantly better at P<0.05 (Wilcoxon signed-rank test) 
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5.8  Cost-Sensitive Classification 

The MetaCost classifier was used to implement the cost-sensitive classification scheme. Again, 

Misclassification cost from Table 5 were used to produce the objective function. Table 16 

demonstrates that the ensemble learning algorithms, when combined with the MetaCost 

classifier and Random forest, outperformed the other methods. In particular, MetaCost with 

Random forest achieved significantly better results than the other single and ensemble 

classifiers. However, as a single classifier, Random forest outperformed the other ensemble 

classifiers trained in the MetaCost framework. Therefore, it is confirmed that Random forest is 

the benchmark method in this domain. In addition, when used in conjunction with MetaCost, it 

can result in substantial savings in misclassification expenses. This can significantly affect bond 

investors and the associated interest rates. The effective performance on this imbalanced dataset 

can be attributed to the SMOTE oversampling technique, which mitigates the risk of overfitting 

and balances the classes. Overall, the results suggest that this is a cutting-edge approach used in 

this field. 

                   Table 16: Misclassification cost and area under the curve 

*  Performs significantly better at P<0.05 (Wilcoxon signed-rank test) 

 

5.9 SHAP Explanation Models   

 

The best-performing Random forest model was used to explain the sub-sovereign credit rating 

model. Global SHAP values were used for model explanations. Figure 6 demonstrates how the 

model's variables affect sub-sovereign rating classification. A high GDP indicates a strong and 

Method Misclassification cost AUC 

MetaCost + AdaBoost M1 1.635±0.213 0.594±0.045 

MetaCost + Bagging 0.635±0.082 0.823±0.031 

MetaCost + Voting 0.650±0.080 0.838±0.033 

MetaCost + LogitBoost 0.643±0.107 0.837±0.018 

MetaCost + Decorate 0.584±0.067 0.856±0.021* 

MetaCost + Random Forest 0.492±0.063* 0.886±0.021* 

MetaCost + SVM 0.843±0.119 0.611±0.022 

MetaCost + BN 0.775±0.070 0.792±0.033 

MetaCost + NB 0.804±0.087 0.743±0.047 

MetaCost + LR 0.641±0.077 0.836±0.029 

MetaCost + DT 0.708±0.145 0.733±0.047 
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robust economy, which is a fundamental factor in credit ratings as it reflects the country or 

region's ability to generate revenue, repay debt, and maintain fiscal discipline. A larger GDP 

can often result in higher tax revenues for the government. This revenue generation enables the 

government to meet its financial obligations, including debt servicing and public services. This 

contributes to fiscal stability, which is a key consideration for credit rating agencies. Higher 

levels of unemployment can have a direct impact on an individual's ability to repay debts, such 

as mortgages, car loans, and credit cards. This, in turn, can affect their ability to repay sub-

sovereign debt. A decrease in income can make it challenging to meet financial obligations, 

resulting in delayed payments or defaults. This can result in a decrease in credit scores, 

indicating a higher risk to lenders and potentially affecting an individual's access to credit and 

the interest rates they are offered. Additionally, a higher operating balance, also known as an 

operating surplus or positive operating balance, can have a positive impact on the credit ratings 

of sub-sovereign entities. The operating balance is the difference between a government's 

revenues from its day-to-day activities, such as taxes and fees, and its operating expenses, 

excluding interest payments on debt. A positive operating balance indicates that the government 

is generating sufficient revenue to cover its operating expenses, leaving room to allocate funds 

for debt servicing. Credit rating agencies evaluate an entity's capacity to fulfil its debt 

obligations. A higher operating balance can increase confidence in the government's ability to 

service its debt. The impact of an increase in Total External Debt Per Capita (TEPerCapita) on 

sub-sovereign credit ratings can be complex and depend on various factors. Overall, the results 

indicate that CRAs consider a range of economic, financial, and structural indicators when 

assessing a region's creditworthiness. CRAs evaluate a region's creditworthiness by considering 

a variety of economic and fiscal indicators, including the impact of an increase in the cash 

surplus to total revenue ratio (CashSurp/TR) and real gross domestic product (GDP). The effect 

of an increase in CashSurp/TR on sub-sovereign credit ratings can vary depending on several 

factors, and credit rating agencies analyze a range of indicators when assessing a region's 

creditworthiness. 
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Figure 6: SHAP values for input variables 

 

Figure 7 below demonstrates the impact of the variables for all testing data, also showing 

direction of the effect. Again, the variables at the top of the graph are the most important, with 

total expenditure per capita 'TEPerCapita' having the largest positive impact on the credit rating 

classification. This suggests that higher expenditure per capita (i.e., a region’s size) is associated 

with a higher credit rating. Similarly, cash surplus is higher for better rating classes on the output 

of the model. Conversely, 'NationalUnemplyoment', 'GovTransf/OperRev' and 'TE/GDP' appear 

to have a negative impact on the credit rating prediction, as their SHAP values increase with the 

model's output, indicating that higher unemployment, government transfers, and total 

expenditure relative to GDP is likely to lower the credit rating. 

The spread of SHAP values for each variable indicates the variability in the impact of that 

feature across different observations in the testing set. For example, "CashSurp/TR" has a 

mixture of red and blue points on both sides of the zero line, indicating that it can either increase 

or decrease the credit rating prediction, depending on the specific value. The presence of a high 

number of points for a feature such as "National Unemployment" suggests that the feature has 

a variable impact on the model's predictions across different observations, while a more 
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concentrated cluster would indicate a more consistent impact.  

 

                                                                              Figure 7: SHAP values (impact on model output) 
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6 Limitations and Further Research Suggestions 

The dissertation thesis was limited to machine learning methods based on supervised learning 

because all the input and output variables in the datasets were labelled with classes. However, 

previous studies have also used unlabeled data and employed unsupervised or semi-supervised 

learning methods (Kennedy, 2013). It is possible that including additional unlabeled data may 

improve the performance of the proposed models. Collecting additional data is strongly 

recommended and appears to be a promising approach for future research. 

Additionally, this thesis was limited in several ways ranging from the unavailability of more 

recent data, the choice of dataset, time horizon to the approaches used to develop the models. 

For instance, this study employed a time series dataset between 2003 and 2016 which might not 

reflect the current economic or market situation. Besides, the credit rating landscape has 

changed significantly, with new regulations, industry practices, and economic conditions. It’s 

important to ensure that the data is still relevant and representative of the current credit rating 

environment. Using more recent data would provide a more accurate reflection of the 

creditworthiness of regions. The results strongly suggest that the machine learning models based 

on current available financial and economic data could present accurate classifications of credit 

ratings. Another limitation of this study was the linear cost matrix. Different distances from 

default should be considered in the future research to make the cost matrix more realistic. For 

instance, future researchers could consider the actual cost (interest rates and default costs) of 

rating misclassification. 

Also, the study merely focused on traditional crisp rule-based systems such as Moody’s credit 

rating system to assess the creditworthiness of regions. This limits the study from including 

alternative credit systems and perspectives that could provide valuable insights. It would be 

good to consider multiple credit rating systems and approaches in future research to gain a 

comprehensive understanding. Further, neural networks did not perform well for the two 

datasets. Hence, future researchers could employ some other models of neural networks, such 

as MLP with deep learning or ensembles of NNs to improve the poor performance. In a similar 

vein, ensembles of fuzzy rule-based systems could be a promising direction for future 

researchers. Also, the proposed model gives an easier idea of the evaluation of the sub-sovereign 

credit rating for public administration managers, banks, investors, or rating agencies. In future, 
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such models should be developed in a way to make it possible to precisely predict future credit 

ratings. This can be realized by the combination of feature selection and, consequently, by the 

classification of the sub-sovereigns into rating classes using different soft computing methods, 

including those based on fuzzy rules. Moreover, it is imperative to examine several feature 

selections in order to reveal the relevant / redundant input variables. In future, such models 

should be developed in a way to make it possible to precisely forecast credit rating. This can be 

realized by using input variables significant for the credit rating process and, consequently, by 

the classification of the sub-sovereigns into rating classes. I recommend this for future research.
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7 Contributions of the Dissertation Thesis 

The aim of the dissertation was to design a new hybrid model by effectively combining various 

soft computing methods, including their ensembles. Various machine learning methods were 

compared to resolve a real-world imbalanced multiclass classification task. This determined the 

use of cost sensitivity and development of an accurate decision support system for credit rating 

classification of sub-sovereign entities across countries and world regions. The scientific and 

application contributions of this dissertation thesis are outlined below. 

7.1 Scientific Contributions 

 
The scientific contributions of the dissertation thesis include:  

 
• Employing a novel hybrid model based on the effective combination of different soft 

computing methods, including their ensembles, for forecasting regional financial 

performance.  

• A novel hybrid model designed to determine the cost sensitivity of different machine 

learning methods and to develop an accurate decision support system that minimizes the 

cost of rating sub-sovereign entities.  

• A novel hybrid model that combines data oversampling with cost-sensitive ensemble 

classification by employing the SMOTE technique to balance multi-class data 

effectively to solve the imbalance problem.  

• Assigning different misclassification costs in the cost matrix solves the problem of 

ordered classes. The approach is combined with ensemble classification within the 

MetaCost framework. This approach demonstrated more accurate predictions in terms 

of average cost and AUC. 

• Investigation of the effect of data preprocessing techniques on the performance of the 

existing classification methods across different soft-computing methods. Such a 

comparative study is unique in the existing literature. 

• Novel hybrid classification models using ensemble algorithms with different algorithms 

as base classifiers.    Combining multiple base classifiers in a heterogeneous model helps 

increase the performance and robustness over single model. In contrast to previous 

ensemble models using DTs as base classifiers, the proposed approach exploits the 
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advantages of different models in a voting scenario, resolving the problem with high 

variance in the data. 

• Benchmark the proposed hybrid classification models against existing state-of-the-art 

classification methods. The results demonstrate that the proposed models performed 

better than the state-of-the-art methods in terms of the prediction criteria. 

• For the first time, benchmark datasets were used from multiple regions across the globe. 

This statement provides robust evidence to support the findings of the dissertation thesis. 

7.2 Application Contributions 
 

 The dissertation thesis contributes to the field in the following ways: 

• Forecasting regional performance using soft computing methods has various 

applications across different domains. Soft computing techniques, such as fuzzy 

systems, neural networks and ensemble methods, are particularly useful when dealing 

with complex, uncertain, and imprecise information. Below are some examples of the 

applications of forecasting regional performance using soft-computing methods. 

• Governments can utilize the proposed hybrid model to forecast regional economic 

performance, aiding in the formulation of policies for economic development, job 

creation, and infrastructure planning. 

• Investors and financial institutions can use the proposed model to forecast the economic 

performance of different regions. This information guides investment decisions in 

stocks, bonds, real estate, and other assets. 

• The model can be applied in the financial sector to assess the risk associated with loans 

and investments in different regions. With this approach, financial institutions can make 

informed decisions based on objective risk assessments thereby assisting financial 

institutions to make more informed lending decisions. 

 

 

  



87  

Conclusion 

Regional financial performance expressed in terms of credit ratings contributes greatly to the 

efficiency of financial markets. Sub-sovereign credit ratings have become an important source 

of information for financial market participants and regulators. In this thesis, two comprehensive 

financial datasets of sub-sovereign entities over the periods of 2003–2007 and 2015 were 

collected from Moody’s rating agency together with the corresponding credit ratings for 2008–

2009 and 2016, respectively. The study was designed to determine the misclassification cost of 

various machine learning methods to consider the ordinal character of rating classes. The main 

aim was to develop an accurate decision support system that minimizes misclassification cost 

of credit rating classification for sub-sovereign entities across countries and world regions. I 

looked at each side of the economic, financial and debt indicators to provide enough inputs to 

the machine learning models.  

The results strongly suggest that the machine learning models based on current available 

financial and economic data could present accurate classifications of credit ratings. Even though 

the rating agencies and many other institutional writers’ stress the importance of subjective 

analyses in determining the ratings, it seemed that a small list of input variables largely 

determine the rating results. This also asserts that the set of variables discovered in this study 

represent the most relevant information for the credit rating decision. However, in my future 

research, I will examine several feature selection methods in order to reveal the relevant / 

redundant input variables. 

The results of the first experiment also indicate that the regional financial performance can be 

accurately predicted at least two years in advance. In the future, therefore, it would be interesting 

to investigate longer forecasting horizons and update the datasets to cover different economic 

periods. The results from the second experiments showed that the performance of ensemble 

learning algorithms can be further improved by using the MetaCost classifier because the ordinal 

classes are considered. However, the cost matrix was developed in a simplified manner. 

Different distances from default will be considered in the future research to make the cost matrix 

more realistic.  

The proposed model gives an easier idea of the evaluation of the sub-sovereign credit rating for 

public administration managers, banks, investors, or rating agencies. In future, such models 
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should be developed in a way to make it possible to precisely predict future credit rating. This 

can be realized by the combination of feature selection and, consequently, by the classification 

of the sub-sovereigns into rating classes using different soft computing methods, including those 

based on fuzzy rules. So far, I only focused on traditional crisp rule-based systems and their 

fuzzy extensions. Surprisingly, neural networks did not perform well for the two datasets. In an 

effort to improve this poor performance, I plan to employ some other models of neural networks, 

such as MLP with deep learning or ensembles of NNs. In a similar vein, ensembles of fuzzy 

rule-based systems could be a promising direction of the research for my dissertation. 
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 APPENDICES 
 Appendix A 

           Parameter estimates (cauchit) 

Threshold/Variables Estimate Std. Error Wald P-value 

[Class_Aaa = 1] 15604.00 2412.00 41871.00 0.000*** 

[Class_Aa = 2] 8870.00 1600.00 30743.00 0.000*** 

[Class_A = 3] 5264.00 1243.00 17938.00 0.000*** 

[Class_Baa = 4] 3072.00 1169.00 6907.00 0.009*** 

[Class_Ba = 5] -0.524 1064.00 0.243 0.622 

[Class_B = 6] -6245.00 1894.00 10876.00 0.001*** 

[Class_Caa = 7] -50529.00 42002.00 1447.00 0.229 

GDPPerCapita 0.004 0.003 1204.00 0.272 

RealGDP 0.271 0.101 7147.00 0.008** 

Unemployment 0.064 0.047 1854.00 0.173 

NationalUnemployment -0.173 0.055 10012.00 0.002*** 

DebtGDP -0.075 0.022 11791.00 0.001*** 

FXDirectDebtbeforeswap -0.075 0.014 28650.00 0.000*** 

ShortDebtDebt -0.066 0.016 16676.00 0.000*** 

LongDebtDebt -0.025 0.006 19264.00 0.000*** 

MaturityDebt 0.204 0.048 18335.00 0.000*** 

OwnRevOperRev 0.039 0.009 17288.00 0.000*** 

GovTransfOperRev 0.045 0.010 21096.00 0.000*** 

EarRevOperRev -0.001 0.009 0.001 0.978 

InterOperRev -0.819 0.166 24263.00 0.000*** 

DebtSerTR 0.202 0.039 27427.00 0.000*** 

AccualFinancingSurplusTR -0.052 0.044 1406.00 0.236 

CashSurpTR -0.017 0.037 0.201 0.654 

TEPerCapita 0.001 0.000 47292.00 0.000*** 

TEGDP  -0.098 0.032 9212.00 0.002*** 

OperBalanceOR 0.143 0.033 19281.00 0.000*** 

NetOperatingBalanceOR -0.008 0.014 0.306 0.580 

SelfFinRatio -0.255 0.271 0.888 0.346 

CapitalSpend -0.043 0.021 4242.00 0.039* 

NWCTE 0.107 0.017 42146.00 0.000*** 

            Note: statistically significant at * P < 0.05, ** P < 0.01, *** P < 0.001 
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Appendix B 

           Parameter Estimates (logit) 

Threshold/ Variables Estimate Std. Error Wald P-value 

[Class_Aaa = 1] 4.941 1.010 23.940 0.000*** 

[Class_Aa = 2] 2.069 0.889 5.418 0.020*** 

[Class_A = 3] 0.431 0.867 0.247 0.619 

[Class_Baa = 4] -0.965 0.868 1.238 0.266 

[Class_Ba = 5] -3.159 0.893 12.513 0.000*** 

[Class_B = 6] -5.605 1.005 31.110 0.000*** 

[Class_Caa = 7] -7.773 1.422 29.860 0.000*** 

GDPPerCapita -0.001 0.002 0.027 0.870 

RealGDP 0.024 0.082 0.087 0.769 

Unemployment 0.034 0.041 0.683 0.408 

NationalUnemployment -0.157 0.044 12.750 0.000*** 

DebtGDP -0.005 0.017 0.073 0.786 

FXDirectDebtbeforeswap -0.035 0.010 13.334 0.000*** 

ShortDebtDebt -0.025 0.012 4.707 0.030*** 

LongDebtDebt -0.014 0.004 11.027 0.001*** 

MaturityDebt  0.157 0.033 23.204 0.000*** 

OwnRevOperRev  0.023 0.007 10.917 0.001*** 

GovTransfOperRev  0.004 0.007 0.295 0.587 

EarRevOperRev  0.003 0.008 0.118 0.732 

InterOperRev -0.281 0.115 6.034 0.014** 

DebtSerTR  0.133 0.028 21.995 0.000*** 

AccualFinancingSurplusTR -0.011 0.036 0.094 0.760 

CashSurpTR  0.056 0.032 3.077 0.079 

TEPerCapita -0.001 6.36E-02 14.436 0.000*** 

TEGDP -0.046 0.027 2.825 0.093 

OperBalanceOR  0.031 0.024 1.653 0.199 

NetOperatingBalanceOR  0.027 0.013 3.910 0.048*** 

SelfFinRatio -0.628 0.250 6.326 0.012** 

CapitalSpend -0.019 0.018 1.117 0.291 

NWCTE  0.040 0.008 23.681 0.000*** 

           Note: statistically significant at * P < 0.05, ** P < 0.01, *** P < 0.001 
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Appendix C 

Parameters of estimates (Probit) 

Threshold/Variable Estimate Std. Error Wald P-value 

[Class_Aaa = 1] -2.058 0.532 14.944 0.000*** 

[Class_Aa = 2] -0.597 0.486 1.507 0.220 

[Class_A = 3] 0.279 0.481 0.337 0.562 

[Class_Baa = 4] 1.052 0.484 4.718 0.030*** 

[Class_Ba = 5] 2.304 0.498 21.413 0.000*** 

[Class_B = 6] 3.497 0.536 42.634 0.000*** 

[Class_Caa = 7] 4.276 0.613 48.617 0.000*** 

GDPPerCapita -0.001 0.001 0.420 0.517 

RealGDP 0.014 0.047 0.087 0.768 

Unemployment 0.023 0.023 1.033 0.310 

NationalUnemployment -0.098 0.025 15.356 0.000*** 

DebtGDP -0.001 0.009 0.002 0.966 

FXDirectDebtbeforeswap -0.020 0.005 13.206 0.000*** 

ShortDebtDebt -0.012 0.007 3.626 0.057*** 

LongDebtDebt -0.007 0.002 9.045 0.003*** 

MaturityDebt 0.089 0.018 23.886 0.000*** 

OwnRevOperRev 0.010 0.004 6.597 0.010*** 

GovTransfOperRev -0.001 0.004 0.071 0.790 

EarRevOperRev -0.002 0.005 0.145 0.704 

InterOperRev -0.123 0.065 3.632 0.057*** 

DebtSerTR 0.060 0.016 14.634 0.000*** 

AccualFinancingSurplusTR -0.008 0.020 0.175 0.675 

CashSurpTR 0.034 0.018 3.556 0.059*** 

TEPerCapita -0.001 3.23E-02 13.294 0.000*** 

TEGDP -0.028 0.015 3.312 0.069 

OperBalanceOR 0.011 0.014 0.679 0.410 

NetOperatingBalanceOR 0.016 0.008 4.325 0.038*** 

SelfFinRatio -0.366 0.141 6.712 0.010*** 

CapitalSpend -0.012 0.010 1.405 0.236 

NWCTE -0.021 0.004 22.144 0.000*** 

         Note: statistically significant at * P < 0.05, ** P < 0.01, *** P < 0.001 

 

        

        

 

 

 

 



109  

Appendix D 

Experimental results of single classifiers (mean and standard deviation).  

RF          

 FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.500 0.667 0.694 0.988 0.663 0.578 

2 0.025 0.600 0.500 0.545 0.517 0.907 0.659 0.575 

3 0.013 0.800 0.800 0.800 0.787 0.984 0.619 0.518 

4 0.025 0.667 0.667 0.667 0.642 0.979 0.640 0.550 

5 0.013 0.500 0.167 0.250 0.261 0.888 0.581 0.474 

Mean 0.015 0.167 0.527 0.586 0.580 0.949 0.570 0.539 

St.Dev. 0.010 0.194 0.237 0.208 0.203 0.048 0.034 0.044 

 

DT         

 FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.100 0.385 0.833 0.526 0.522 0.860 0.500 0.390 

2 0.063 0.345 0.500 0.429 0.383 0.712 0.529 0.416 

3 0.051 0.500 0.800 0.615 0.604 0.885 0.488 0.369 

4 0.088 0.364 0.667 0.471 0.442 0.879 0.570 0.465 

5 0.025 0.000 0.000 0.000 0.042 0.481 0.442 0.299 

Mean 0.065 0.319 0.560 0.408 0.399 0.763 0.506 0.416 

St.Dev. 0.030 0.188 0.339 0.239 0.216 0.173 0.048 0.061 

 

NN         

 FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.333 0.167 0.222 0.197 0.933 0.535 0.425 

2 0.051 0.333 0.333 0.333 0.283 0.825 0.541 0.441 

3 0.051 0.200 0.200 0.200 0.149 0.929 0.571 0.467 

4 0.038 0.500 0.500 0.500 0.463 0.940 0.535 0.422 

5 0.000 1.000 0.333 0.500 0.563 0.848 0.605 0.518 

Mean 0.033 0.473 0.307 0.351 0.331 0.895 0.557 0.455 

St.Dev. 0.021 0.313 0.132 0.145 0.177 0.054 0.031 0.040 

 

SVM          

 FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.167 0.286 0.396 0.969 0.512 0.375 

2 0.000 0.000 0.000 0.000 0.000 0.835 0.529 0.406 

3 0.000 1.000 0.200 0.333 0.436 0.949 0.464 0.314 

4 0.000 0.000 0.000 0.000 0.000 0.950 0.523 0.390 

5 0.038 0.250 0.167 0.200 0.156 0.821 0.500 0.359 

Mean 0.008 0.450 0.107 0.164 0.198 0.905 0.506 0.369 

St.Dev. 0.017 0.512 0.098 0.157 0.210 0.071 0.026 0.035 
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Adaboost 

M1  
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.167 0.286 0.396 0.969 0.521 0.375 

2 0.000 0.000 0.000 0.000 0.000 0.835 0.529 0.406 

3 0.000 1.000 0.200 0.333 0.436 0.949 0.464 0.314 

4 0.000 0.000 0.000 0.000 0.000 0.950 0.523 0.390 

5 0.038 0.250 0.167 0.200 0.156 0.821 0.500 0.359 

Mean 0.008 0.450 0.107 0.164 0.198 0.905 0.507 0.369 

St.Dev. 0.017 0.512 0.098 0.157 0.210 0.071 0.027 0.035 

 

Logitboost FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.038 0.500 0.500 0.500 0.463 0.963 0.605 0.516 

2 0.025 0.333 0.167 0.222 0.196 0.833 0.624 0.527 

3 0.025 0.500 0.400 0.444 0.416 0.954 0.583 0.480 

4 0.025 0.600 0.500 0.545 0.517 0.960 0.581 0.476 

5 0.013 0.500 0.167 0.250 0.261 0.821 0.570 0.461 

Mean 0.025 0.167 0.347 0.392 0.286 0.906 0.570 0.492 

St.Dev. 0.009 0.096 0.169 0.147 0.137 0.072 0.022 0.028 

 

Naïve 

Bayes  
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.500 0.667 0.694 0.908 0.558 0.480 

2 0.013 0.800 0.667 0.727 0.712 0.939 0.565 0.479 

3 0.025 0.667 0.800 0.727 0.712 0.982 0.512 0.410 

4 0.013 0.833 0.833 0.833 0.821 0.942 0.535 0.432 

5 0.000 1.000 0.167 0.286 0.396 0.823 0.593 0.505 

Mean 0.010 0.860 0.593 0.648 0.667 0.919 0.553 0.505 

St.Dev. 0.011 0.142 0.272 0.211 0.160 0.060 0.031 0.039 

 

Bayes 

Net 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.333 0.500 0.563 0.955 0.547 0.442 

2 0.013 0.000 0.000 0.000 0.030 0.897 0.388 0.244 

3 0.025 0.714 1.000 0.833 0.834 0.997 0.512 0.400 

4 0.013 0.000 0.000 0.000 0.030 0.902 0.384 0.227 

5 0.038 0.250 0.167 0.200 0.156 0.508 0.430 0.293 

Mean 0.018 0.393 0.300 0.307 0.323 0.852 0.452 0.321 

St.Dev. 0.014 0.447 0.415 0.358 0.360 0.197 0.074 0.095 
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Bagging  FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.013 0.667 0.333 0.444 0.445 0.967 0.500 0.370 

2 0.051 0.000 0.000 0.000 0.061 0.905 0.435 0.276 

3 0.025 0.600 0.600 0.600 0.575 0.939 0.524 0.399 

4 0.000 0.000 0.000 0.000 0.000 0.931 0.488 0.357 

5 0.000 1.000 0.167 0.286 0.396 0.856 0.593 0.490 

Mean 0.018 0.453 0.220 0.266 0.295 0.920 0.508 0.378 

St.Dev. 0.021 0.441 0.253 0.267 0.251 0.042 0.058 0.077 

 

JRIP  FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.500 0.333 0.400 0.373 0.821 0.477 0.328 

2 0.076 0.143 0.167 0.154 0.085 0.643 0.459 0.313 

3 0.051 0.429 0.600 0.500 0.470 0.861 0.500 0.365 

4 0.075 0.400 0.667 0.500 0.470 0.804 0.430 0.287 

5 0.013 0.667 0.333 0.444 0.445 0.722 0.477 0.346 

Mean 0.048 0.428 0.420 0.400 0.369 0.770 0.469 0.328 

St.Dev. 0.029 0.190 0.208 0.144 0.163 0.087 0.026 0.030 

 

 

FURIA  FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.500 0.667 0.694 0.700 0.465 0.323 

2 0.013 0.667 0.333 0.444 0.445 0.714 0.541 0.429 

3 0.038 0.500 0.600 0.545 0.516 0.765 0.512 0.388 

4 0.013 0.750 0.500 0.600 0.590 0.811 0.430 0.274 

5 0.013 0.500 0.167 0.250 0.261 0.546 0.512 0.401 

Mean 0.015 0.683 0.420 0.501 0.501 0.707 0.492 0.416 

St.Dev. 0.014 0.207 0.171 0.162 0.163 0.100 0.044 0.063 

 

XGBoost FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.038 0.625 0.833 0.714 0.698 0.979 0.581 0.479 

2 0.051 0.429 0.500 0.461 0.419 0.823 0.600 0.499 

3 0.025 0.500 0.400 0.444 0.416 0.934 0.655 0.564 

4 0.025 0.667 0.667 0.667 0.642 0.973 0.640 0.552 

5 0.000 1.000 0.167 0.286 0.396 0.683 0.605 0.501 

Mean 0.028 0.644 0.513 0.514 0.514 0.878 0.616 0.519 

St.Dev. 0.019 0.221 0.254 0.175 0.144 0.126 0.030 0.037 
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Appendix E 
Experimental results of classifiers used in conjunction with wrapper feature selection.  

RF + 

wrapper 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.600 0.500 0.545 0.517 0.947 0.581 0.481 

2 0.063 0.286 0.333 0.308 0.252 0.841 0.506 0.381 

3 0.013 0.800 0.800 0.800 0.787 0.972 0.607 0.508 

4 0.025 0.333 0.167 0.222 0.197 0.921 0.535 0.423 

5 0.000 0.100 0.167 0.286 0.396 0.610 0.545 0.438 

Mean 0.025 0.424 0.393 0.432 0.430 0.858 0.555 0.446 

St.Dev. 0.024 0.276 0.266 0.239 0.236 0.147 0.040 0.050 
 

DT+wrapper FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.600 0.500 0.545 0.517 0.733 0.593 0.496 

2 0.101 0.273 0.500 0.353 0.304 0.690 0.400 0.266 

3 0.051 0.429 0.600 0.500 0.470 0.757 0.524 0.411 

4 0.013 0.000 0.000 0.000 0.030 0.764 0.547 0.431 

5 0.013 0.500 0.167 0.250 0.261 0.721 0.523 0.409 

Mean 0.041 0.360 0.353 0.330 0.316 0.733 0.517 0.403 

St.Dev. 0.037 0.234 0.257 0.218 0.193 0.030 0.072 0.084 

 

NN+wrapper FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 0.000 0.000 0.000 0.000 0.927 0.442 0.294 

2 0.000 0.000 0.000 0.000 0.000 0.553 0.435 0.250 

3 0.025 0.500 0.400 0.444 0.416 0.828 0.381 0.223 

4 0.000 0.000 0.000 0.000 0.000 0.423 0.360 0.128 

5 0.000 1.000 0.167 0.286 0.396 0.481 0.523 0.408 

Mean 0.005 0.300 0.113 0.146 0.162 0.642 0.428 0.261 

St.Dev. 0.011 0.447 0.176 0.208 0.222 0.222 0.063 0.102 

 

SVM 

+wrapper 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 0.000 0.000 0.000 0.000 0.857 0.360 0.181 

2 0.000 0.000 0.000 0.000 0.000 0.475 0.282 0.010 

3 0.000 0.000 0.000 0.000 0.000 0.600 0.274 0.023 

4 0.000 0.000 0.000 0.000 0.000 0.500 0.302 0.000 

5 0.000 1.000 0.167 0.286 0.396 0.583 0.326 0.067 

Mean 0.000 0.200 0.033 0.057 0.079 0.603 0.309 0.056 

St.Dev. 0.000 0.447 0.075 0.128 0.177 0.152 0.035 0.074 
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Adaboost 

M1 + 

wrapper 

FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 0.000 0.000 0.000 0.000 0.750 0.279 0.073 

2 0.000 0.000 0.000 0.000 0.000 0.627 0.282 0.025 

3 0.000 0.000 0.000 0.000 0.000 0.671 0.262 0.086 

4 0.000 0.000 0.000 0.000 0.000 0.638 0.279 0.017 

5 0.000 0.000 0.000 0.000 0.000 0.496 0.302 0.000 

Mean 0.000 0.000 0.000 0.000 0.000 0.636 0.281 0.040 

St.Dev. 0.000 0.000 0.000 0.000 0.000 0.092 0.014 0.037 

 

 

LogitBoost 

+wrapper 

FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.667 0.800 0.806 0.921 0.547 0.437 

2 0.025 0.333 0.167 0.222 0.196 0.766 0.447 0.308 

3 0.025 0.050 0.400 0.444 0.416 0.868 0.440 0.310 

4 0.013 0.667 0.333 0.444 0.445 0.902 0.558 0.427 

5 0.000 1.000 0.167 0.286 0.396 0.647 0.488 0.360 

Mean 0.013 0.610 0.347 0.439 0.452 0.821 0.496 0.368 

St.Dev. 0.013 0.418 0.206 0.224 0.221 0.114 0.055 0.062 

 

Naïve 

Bayes + 

wrapper 

        

 FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.667 0.800 0.806 0.890 0.384 0.247 

2 0.190 0.118 0.333 0.174 0.092 0.781 0.247 0.103 

3 0.127 0.231 0.600 0.333 0.310 0.856 0.310 0.192 

4 0.013 0.000 0.000 0.000 0.030 0.728 0.256 0.129 

5 0.025 0.333 0.167 0.222 0.197 0.788 0.407 0.286 

Mean 0.071 0.336 0.353 0.306 0.287 0.809 0.321 0.191 

St.Dev. 0.083 0.391 0.282 0.301 0.309 0.064 0.073 0.077 

 

Bayes 

Net+wrapper 
        

 FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 0.000 0.000 0.000 0.000 0.897 0.512 0.396 

2 0.000 0.000 0.000 0.000 0.000 0.911 0.541 0.428 

3 0.000 0.000 0.000 0.000 0.000 0.966 0.500 0.366 

4 0.000 0.000 0.000 0.000 0.000 0.825 0.407 0.265 

5 0.000 0.000 0.000 0.000 0.000 0.735 0.419 0.255 

Mean 0.000 0.000 0.000 0.000 0.000 0.867 0.476 0.342 

St.Dev. 0.000 0.000 0.000 0.000 0.000 0.089 0.059 0.078 



114  

Bagging 

+wrapper 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.013 0.667 0.333 0.444 0.445 0.942 0.547 0.435 

2 0.063 0.286 0.333 0.308 0.252 0.729 0.424 0.286 

3 0.038 0.500 0.600 0.545 0.516 0.953 0.500 0.376 

4 0.013 0.000 0.000 0.000 0.030 0.929 0.535 0.421 

5 0.000 1.000 0.167 0.286 0.400 0.846 0.570 0.456 

Mean 0.025 0.491 0.287 0.317 0.329 0.880 0.515 0.395 

St.Dev. 0.025 0.379 0.223 0.206 0.193 0.094 0.057 0.068 

 

JRIP + 

wrapper 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 0.000 0.000 0.000 0.000 0.600 0.523 0.382 

2 0.000 0.000 0.000 0.000 0.000 0.665 0.282 0.041 

3 0.025 0.500 0.400 0.444 0.416 0.904 0.464 0.335 

4 0.000 0.000 0.000 0.000 0.000 0.896 0.523 0.380 

5 0.013 0.500 0.167 0.250 0.261 0.332 0.488 0.335 

Mean 0.008 0.200 0.113 0.139 0.135 0.679 0.456 0.295 

St.Dev. 0.011 0.274 0.176 0.202 0.193 0.237 0.100 0.144 

 

FURIA 

+wrapper  
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.075 0.333 0.500 0.400 0.354 0.780 0.465 0.334 

2 0.076 0.400 0.667 0.500 0.470 0.764 0.329 0.190 

3 0.013 0.667 0.400 0.500 0.494 0.690 0.488 0.345 

4 0.000 0.000 0.000 0.000 0.000 0.500 0.453 0.305 

5 0.000 0.100 0.167 0.286 0.396 0.573 0.465 0.317 

Mean 0.033 0.300 0.347 0.337 0.343 0.661 0.440 0.416 

St.Dev. 0.039 0.263 0.265 0.208 0.200 0.122 0.063 0.062 

 

XGBoost 

+wrapper 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.013 0.800 0.667 0.727 0.712 0.965 0.593 0.496 

2 0.114 0.250 0.500 0.333 0.284 0.768 0.435 0.304 

3 0.051 0.429 0.600 0.500 0.470 0.954 0.548 0.434 

4 0.025 0.000 0.000 0.000 -0.042 0.952 0.500 0.378 

5 0.000 1.000 0.167 0.286 0.396 0.588 0.570 0.462 

Mean 0.040 0.496 0.387 0.369 0.364 0.845 0.529 0.415 

St.Dev. 0.045 0.405 0.289 0.269 0.276 0.166 0.063 0.076 
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Appendix F 
Experimental results of classifiers combined with SMOTE. 

SVM + 

SMOTE 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.075 0.400 0.667 0.500 0.470 0.952 0.512 0.384 

2 0.152 0.250 0.667 0.364 0.337 0.791 0.459 0.326 

3 0.076 0.400 0.800 0.533 0.529 0.933 0.429 0.276 

4 0.100 0.385 0.833 0.526 0.522 0.933 0.512 0.383 

5 0.063 0.444 0.667 0.533 0.503 0.867 0.523 0.392 

Mean 0.093 0.376 0.727 0.491 0.472 0.895 0.487 0.352 

St.Dev. 0.036 0.074 0.083 0.072 0.079 0.067 0.041 0.050 

 

Adaboost M1 

+ SMOTE 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.075 0.500 1.000 0.667 0.680 0.952 0.628 0.548 

2 0.063 0.286 0.333 0.308 0.252 0.861 0.482 0.353 

3 0.063 0.375 0.600 0.462 0.433 0.906 0.536 0.429 

4 0.063 0.444 0.667 0.533 0.503 0.931 0.477 0.346 

5 0.013 0.667 0.333 0.444 0.445 0.829 0.512 0.386 

Mean 0.055 0.454 0.587 0.483 0.463 0.896 0.527 0.412 

St.Dev. 0.024 0.143 0.277 0.131 0.154 0.050 0.061 0.083 

 

 LogitBoost 

+SMOTE 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.038 0.500 0.500 0.500 0.463 0.938 0.581 0.488 

2 0.051 0.333 0.333 0.333 0.283 0.852 0.612 0.520 

3 0.051 0.500 0.800 0.615 0.604 0.972 0.571 0.467 

4 0.025 0.667 0.667 0.667 0.642 0.967 0.558 0.447 

5 0.000 1.000 0.167 0.286 0.396 0.781 0.547 0.427 

Mean 0.033 0.167 0.493 0.480 0.286 0.902 0.570 0.470 

St.Dev. 0.021 0.253 0.253 0.168 0.148 0.083 0.025 0.036 

 

Naive 

Bayes 

+SMOTE 

FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.500 1.000 0.333 0.500 0.563 0.929 0.535 0.453 

2 0.013 0.800 0.667 0.727 0.712 0.932 0.553 0.466 

3 0.025 0.667 0.800 0.727 0.712 0.980 0.512 0.412 

4 0.013 0.833 0.833 0.833 0.821 0.946 0.523 0.418 

5 0.500 1.000 0.167 0.167 0.396 0.825 0.593 0.505 

Mean 0.210 0.860 0.560 0.591 0.641 0.922 0.543 0.451 

St.Dev. 0.265 0.142 0.296 0.266 0.165 0.058 0.032 0.038 
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Bayes 

Net+SMOTE 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.500 0.333 0.400 0.373 0.921 0.477 0.357 

2 0.013 0.800 0.667 0.727 0.712 0.857 0.459 0.336 

3 0.063 0.444 0.800 0.571 0.564 0.971 0.452 0.332 

4 0.038 0.571 0.667 0.615 0.586 0.948 0.500 0.375 

5 0.013 0.500 0.167 0.250 0.261 0.900 0.488 0.371 

Mean 0.030 0.563 0.527 0.513 0.499 0.919 0.475 0.354 

St.Dev. 0.021 0.140 0.265 0.188 0.180 0.044 0.020 0.020 

 

Bagging+ 

SMOTE 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.038 0.000 0.000 0.000 0.052 0.644 0.337 0.127 

2 0.388 0.571 0.667 0.615 0.586 0.811 0.412 0.259 

3 0.038 0.250 0.200 0.222 0.180 0.551 0.440 0.289 

4 0.038 0.500 0.500 0.500 0.463 0.699 0.453 0.307 

5 0.013 0.667 0.333 0.444 0.445 0.692 0.419 0.241 

Mean 0.103 0.398 0.340 0.356 0.345 0.679 0.412 0.245 

St.Dev. 0.160 0.271 0.259 0.245 0.221 0.094 0.045 0.071 

 

JRIP + 

SMOTE 
FPR Prec  Recall 

F1-

measure 
MCC AUC Acc Kappa 

1 0.088 0.417 0.833 0.556 0.548 0.900 0.442 0.295 

2 0.038 0.500 0.500 0.500 0.462 0.851 0.494 0.352 

3 0.139 0.214 0.600 0.316 0.293 0.820 0.512 0.389 

4 0.038 0.500 0.500 0.500 0.463 0.728 0.407 0.260 

5 0.013 0.500 0.167 0.250 0.261 0.573 0.465 0.298 

Mean 0.063 0.426 0.520 0.424 0.405 0.774 0.464 0.319 

St.Dev. 0.050 0.124 0.240 0.133 0.123 0.129 0.042 0.051 

 

FURIA+ 

SMOTE  
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.113 0.400 1.000 0.571 0.596 0.967 0.477 0.359 

2 0.051 0.500 0.667 0.571 0.540 0.809 0.482 0.359 

3 0.076 0.400 0.800 0.533 0.529 0.868 0.512 0.395 

4 0.130 0.333 0.833 0.476 0.476 0.933 0.465 0.337 

5 0.000 0.100 0.833 0.909 0.907 1.000 0.581 0.479 

Aver 0.074 0.347 0.827 0.612 0.610 0.915 0.503 0.416 

St.Dev. 0.052 0.150 0.119 0.171 0.172 0.077 0.047 0.056 
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XGBoost 

+SMOTE 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.667 0.667 0.667 0.642 0.960 0.547 0.437 

2 0.038 0.500 0.500 0.500 0.462 0.810 0.612 0.515 

3 0.025 0.667 0.800 0.727 0.712 0.922 0.655 0.568 

4 0.038 0.500 0.500 0.500 0.463 0.958 0.593 0.494 

5 0.013 0.500 0.167 0.250 0.261 0.623 0.593 0.489 

Mean 0.028 0.567 0.527 0.529 0.508 0.855 0.600 0.501 

St.Dev. 0.011 0.091 0.237 0.186 0.177 0.143 0.039 0.047 
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Appendix G 

 Experimental results of classifiers combined with random oversampling (ROS). 

SVM + 

ROS 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.075 0.400 0.667 0.500 0.470 0.952 0.512 0.384 

2 0.152 0.250 0.667 0.364 0.337 0.791 0.459 0.326 

3 0.076 0.400 0.800 0.533 0.529 0.933 0.429 0.276 

4 0.100 0.385 0.833 0.526 0.522 0.933 0.512 0.383 

5 0.063 0.444 0.667 0.533 0.503 0.867 0.523 0.392 

Mean 0.093 0.376 0.727 0.491 0.472 0.895 0.487 0.352 

St.Dev. 0.036 0.074 0.083 0.072 0.079 0.067 0.041 0.050 

 

AdaBoost 

M1 + ROS 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.075 0.500 1.000 0.667 0.680 0.952 0.628 0.548 

2 0.063 0.286 0.333 0.308 0.252 0.861 0.482 0.353 

3 0.063 0.375 0.600 0.462 0.433 0.906 0.536 0.429 

4 0.063 0.444 0.667 0.533 0.503 0.931 0.477 0.346 

5 0.013 0.667 0.333 0.444 0.445 0.829 0.512 0.386 

Mean 0.055 0.454 0.587 0.483 0.463 0.896 0.527 0.412 

St.Dev. 0.024 0.143 0.277 0.131 0.154 0.050 0.061 0.083 

 

LogitBoost + 

ROS 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.038 0.500 0.500 0.500 0.463 0.938 0.581 0.488 

2 0.051 0.333 0.333 0.333 0.283 0.852 0.612 0.520 

3 0.051 0.500 0.800 0.615 0.604 0.972 0.571 0.467 

4 0.025 0.667 0.667 0.667 0.642 0.967 0.558 0.447 

5 0.000 1.000 0.167 0.286 0.396 0.781 0.547 0.427 

Mean 0.033 0.167 0.493 0.480 0.286 0.902 0.570 0.470 

St.Dev. 0.021 0.253 0.253 0.168 0.148 0.083 0.025 0.036 

 

Naïve 

Bayes 

+ROS 

FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.500 1.000 0.333 0.500 0.563 0.929 0.535 0.453 

2 0.013 0.800 0.667 0.727 0.712 0.932 0.553 0.466 

3 0.025 0.667 0.800 0.727 0.712 0.980 0.512 0.412 

4 0.013 0.833 0.833 0.833 0.821 0.946 0.523 0.418 

5 0.500 1.000 0.167 0.167 0.396 0.825 0.593 0.505 

Mean 0.210 0.860 0.560 0.591 0.641 0.922 0.543 0.451 

St.Dev. 0.265 0.142 0.296 0.266 0.165 0.058 0.032 0.038 
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Bayes 

Net+ROS 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.500 0.333 0.400 0.373 0.921 0.477 0.357 

2 0.013 0.800 0.667 0.727 0.712 0.857 0.459 0.336 

3 0.063 0.444 0.800 0.571 0.564 0.971 0.452 0.332 

4 0.038 0.571 0.667 0.615 0.586 0.948 0.500 0.375 

5 0.013 0.500 0.167 0.250 0.261 0.900 0.488 0.371 

Mean 0.030 0.563 0.527 0.513 0.499 0.919 0.475 0.354 

St.Dev. 0.021 0.140 0.265 0.188 0.180 0.044 0.020 0.020 

 

Bagging+ 

ROS 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.038 0.000 0.000 0.000 0.052 0.644 0.337 0.127 

2 0.388 0.571 0.667 0.615 0.586 0.811 0.412 0.259 

3 0.038 0.250 0.200 0.222 0.180 0.551 0.440 0.289 

4 0.038 0.500 0.500 0.500 0.463 0.699 0.453 0.307 

5 0.013 0.667 0.333 0.444 0.445 0.692 0.419 0.241 

Mean 0.103 0.398 0.340 0.356 0.345 0.679 0.412 0.245 

St.Dev. 0.160 0.271 0.259 0.245 0.221 0.094 0.045 0.071 

 

JRIP + 

ROS 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.088 0.417 0.833 0.556 0.548 0.900 0.442 0.295 

2 0.038 0.500 0.500 0.500 0.462 0.851 0.494 0.352 

3 0.139 0.214 0.600 0.316 0.293 0.820 0.512 0.389 

4 0.038 0.500 0.500 0.500 0.463 0.728 0.407 0.260 

5 0.013 0.500 0.167 0.250 0.261 0.573 0.465 0.298 

Mean 0.063 0.426 0.520 0.424 0.405 0.774 0.464 0.319 

St.Dev. 0.050 0.124 0.240 0.133 0.123 0.129 0.042 0.051 

 

FURIA 

+ROS  
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.038 0.500 500 0.500 0.463 0.877 0.547 0.445 

2 0.063 0.167 0.167 0.167 0.103 0.648 0.471 0.341 

3 0.013 0.750 0.600 0.667 0.653 0.857 0.536 0.415 

4 0.025 0.600 0.500 0.545 0.517 0.731 0.570 0.462 

5 0.025 0.333 0.167 0.222 0.197 0.568 0.477 0.339 

Mean 0.033 0.470 0.387 0.420 0.387 0.736 0.520 0.146 

St.Dev. 0.019 0.227 0.205 0.216 0.229 0.133 0.044 0.058 
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XGBoost+ 

ROS 
        

 FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.050 0.556 0.833 0.667 0.652 0.977 0.628 0.548 

2 0.076 0.400 0.667 0.500 0.470 0.778 0.565 0.472 

3 0.038 0.571 0.800 0.667 0.652 0.901 0.607 0.520 

4 0.038 0.625 0.833 0.714 0.698 0.971 0.581 0.481 

5 0.013 0.500 0.167 0.250 0.261 0.569 0.523 0.413 

Mean 0.043 0.530 0.660 0.560 0.546 0.839 0.581 0.486 

St.Dev. 0.023 0.085 0.284 0.191 0.182 0.171 0.040 0.051 

 

 

 

  



121  

Appendix H 
Experimental results of Ordinal class (OC) classifiers.  

 

RF + 

OC 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.038 0.500 0.500 0.500 0.463 0.963 0.570 0.460 

2 0.025 0.667 0.667 0.667 0.641 0.878 0.624 0.530 

3 0.025 0.500 0.400 0.444 0.416 0.954 0.607 0.505 

4 0.013 0.750 0.500 0.600 0.590 0.952 0.616 0.517 

5 0.000 1.000 0.167 0.286 0.396 0.806 0.612 0.461 

Mean 0.020 0.167 0.447 0.499 0.501 0.911 0.570 0.495 

St.Dev. 0.014 0.207 0.183 0.147 0.109 0.068 0.021 0.032 

 

DT+OC FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.050 0.429 0.500 0.462 0.419 0.967 0.523 0.412 

2 0.038 0.500 0.500 0.500 0.462 0.741 0.518 0.400 

3 0.063 0.375 0.600 0.462 0.433 0.778 0.500 0.388 

4 0.050 0.500 0.667 0.571 0.541 0.864 0.512 0.404 

5 0.025 0.333 0.167 0.222 0.197 0.561 0.535 0.416 

Mean 0.045 0.427 0.487 0.443 0.410 0.782 0.518 0.404 

St.Dev. 0.014 0.075 0.192 0.132 0.128 0.151 0.013 0.011 

 

NN+OC FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.038 0.500 0.500 0.500 0.463 0.904 0.581 0.482 

2 0.063 0.444 0.667 0.533 0.502 0.793 0.553 0.454 

3 0.038 0.400 0.400 0.400 0.362 0.959 0.583 0.481 

4 0.050 0.429 0.500 0.462 0.419 0.952 0.547 0.437 

5 0.013 0.750 0.500 0.600 0.590 0.771 0.640 0.552 

Mean 0.040 0.505 0.513 0.499 0.467 0.876 0.581 0.481 

St.Dev. 0.018 0.142 0.096 0.075 0.086 0.089 0.037 0.044 

 

SVM + 

OC 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.167 0.286 0.396 0.583 0.465 0.326 

2 0.000 0.000 0.000 0.000 0.000 0.500 0.494 0.346 

3 0.000 0.000 0.000 0.000 0.000 0.500 0.512 0.376 

4 0.000 0.000 0.000 0.000 0.000 0.500 0.488 0.345 

5 0.000 1.000 0.167 0.286 0.396 0.583 0.523 0.375 

Mean 0.000 0.400 0.067 0.114 0.158 0.533 0.496 0.354 

St.Dev. 0.000 0.548 0.091 0.157 0.217 0.045 0.022 0.022 
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AdaBoost 

M1 + OC 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.500 0.333 0.400 0.373 0.948 0.523 0.401 

2 0.025 0.000 0.000 0.000 0.043 0.842 0.482 0.350 

3 0.038 0.400 0.400 0.400 0.362 0.908 0.524 0.406 

4 0.050 0.500 0.667 0.571 0.541 0.927 0.558 0.454 

5 0.000 1.000 0.167 0.286 0.936 0.810 0.453 0.296 

Mean 0.028 0.480 0.313 0.331 0.451 0.887 0.508 0.381 

St.Dev. 0.019 0.356 0.251 0.211 0.325 0.059 0.041 0.060 

 

LogitBoost+OC FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.063 0.375 0.500 0.429 0.382 0.915 0.477 0.353 

2 0.038 0.250 0.167 0.200 0.156 0.889 0.435 0.288 

3 0.025 0.500 0.400 0.444 0.416 0.865 0.548 0.438 

4 0.000 1.000 0.167 0.285 0.396 0.931 0.570 0.458 

5 0.000 1.000 0.167 0.286 0.396 0.744 0.465 0.327 

Mean 0.025 0.167 0.280 0.329 0.349 0.869 0.570 0.373 

St.Dev. 0.027 0.354 0.159 0.104 0.109 0.074 0.057 0.073 

 

Naive 

Bayes+OC 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.667 0.800 0.806 0.865 0.395 0.288 

2 0.025 0.667 0.667 0.667 0.641 0.941 0.412 0.306 

3 0.076 0.454 1.000 0.625 0.648 0.982 0.393 0.282 

4 0.025 0.714 0.833 0.769 0.753 0.888 0.453 0.348 

5 0.013 0.500 0.167 0.250 0.261 0.692 0.477 0.358 

Mean 0.028 0.667 0.667 0.622 0.622 0.874 0.426 0.416 

St.Dev. 0.029 0.216 0.312 0.220 0.214 0.111 0.037 0.035 

 

Bayes 

Net+OC 

FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.050 0.429 0.500 0.462 0.419 0.855 0.488 0.368 

2 0.050 0.000 0.000 0.000 0.061 0.793 0.424 0.284 

3 1.000 1.000 0.200 0.333 0.436 0.803 0.488 0.362 

4 0.000 1.000 0.333 0.500 0.563 0.921 0.500 0.369 

5 0.025 0.333 0.167 0.222 0.197 0.850 0.395 0.237 

Mean 0.225 0.552 0.240 0.303 0.335 0.844 0.459 0.324 

St.Dev. 0.434 0.439 0.188 0.202 0.202 0.051 0.047 0.060 
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Bagging+ 

OC 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.500 0.333 0.400 0.373 0.829 0.535 0.419 

2 0.038 0.000 0.000 0.000 0.053 0.616 0.400 0.237 

3 0.000 0.000 0.000 0.000 0.000 0.957 0.595 0.489 

4 0.025 0.333 0.167 0.222 0.197 0.946 0.488 0.358 

5 0.000 1.000 0.167 0.286 0.396 0.916 0.500 0.365 

Mean 0.018 0.367 0.133 0.182 0.204 0.853 0.504 0.374 

St.Dev. 0.017 0.415 0.139 0.178 0.180 0.142 0.071 0.093 

 

JRIP + 

OC 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.167 0.285 0.396 0.599 0.302 0.099 

2 0.038 0.250 0.167 0.200 0.156 0.403 0.506 0.383 

3 0.051 0.429 0.600 0.500 0.470 0.780 0.440 0.322 

4 0.000 1.000 0.167 0.286 0.396 0.643 0.337 0.169 

5 0.000 1.000 0.167 0.286 0.396 0.583 0.488 0.322 

Mean 0.018 0.736 0.254 0.311 0.363 0.602 0.415 0.259 

St.Dev. 0.025 0.367 0.194 0.112 0.120 0.135 0.091 0.119 

 

 

FURIA+OC  FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.038 0.500 0.500 0.500 0.463 0.721 0.547 0.430 

2 0.038 0.400 0.333 0.364 0.322 0.795 0.518 0.390 

3 0.013 0.667 0.400 0.500 0.494 0.777 0.583 0.477 

4 0.000 1.000 0.500 0.667 0.694 0.815 0.523 0.391 

5 0.000 1.000 0.167 0.386 0.696 0.568 0.593 0.495 

Mean 0.018 0.713 0.380 0.483 0.534 0.735 0.553 0.416 

St.Dev. 0.019 0.278 0.139 0.120 0.161 0.100 0.034 0.048 

 

XGBoost+OC         

 FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.600 0.500 0.545 0.517 0.963 0.558 0.447 

2 0.051 0.429 0.500 0.462 0.419 0.732 0.565 0.460 

3 0.051 0.333 0.400 0.364 0.321 0.934 0.592 0.496 

4 0.013 0.667 0.333 0.444 0.445 0.946 0.612 0.520 

5 0.000 1.000 0.167 0.286 0.396 0.835 0.593 0.487 

Mean 0.028 0.606 0.380 0.420 0.420 0.882 0.584 0.482 

St.Dev. 0.023 0.257 0.139 0.099 0.072 0.097 0.022 0.029 
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Appendix I 
Experimental results of classifiers combined with filter feature selection. 

RF 

+filter 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.025 0.600 0.500 0.545 0.517 0.820 0.593 0.502 

2 0.025 0.500 0.333 0.400 0.373 0.759 0.506 0.389 

3 0.051 0.333 0.400 0.364 0.321 0.953 0.488 0.365 

4 0.038 0.571 0.667 0.615 0.586 0.932 0.581 0.492 

5 0.013 0.500 0.167 0.250 0.261 0.940 0.535 0.420 

Mean 0.030 0.501 0.413 0.435 0.412 0.881 0.541 0.434 

St.Dev. 0.015 0.104 0.187 0.146 0.136 0.086 0.046 0.061 

 

DT+filter FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.013 0.667 0.330 0.444 0.445 0.719 0.500 0.386 

2 0.038 0.000 0.000 0.000 0.053 0.747 0.447 0.308 

3 0.013 0.000 0.000 0.000 0.028 0.809 0.536 0.408 

4 0.038 0.250 0.167 0.167 0.156 0.767 0.523 0.402 

5 0.025 0.330 0.167 0.167 0.197 0.570 0.547 0.442 

Mean 0.025 0.249 0.133 0.156 0.176 0.722 0.511 0.389 

St.Dev. 0.013 0.276 0.138 0.182 0.166 0.091 0.040 0.050 

 

NN+filter  FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 0.000 0.000 0.000 0.000 0.767 0.395 0.218 

2 0.000 0.000 0.000 0.000 0.000 0.608 0.259 0.011 

3 0.000 0.000 0.000 0.000 0.000 0.752 0.392 0.229 

4 0.000 0.000 0.000 0.000 0.000 0.669 0.372 0.190 

5 0.025 0.333 0.167 0.222 0.197 0.590 0.407 0.235 

Mean 0.005 0.067 0.033 0.044 0.039 0.677 0.365 0.177 

St.Dev. 0.011 0.149 0.075 0.099 0.088 0.081 0.061 0.094 

 

SVM+filter FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 0.000 0.000 0.000 0.000 0.494 0.337 0.076 

2 0.000 0.000 0.000 0.000 0.000 0.500 0.259 0.039 

3 0.000 0.000 0.000 0.000 0.000 0.500 0.298 0.000 

4 0.000 0.000 0.000 0.000 0.000 0.500 0.302 0.000 

5 0.000 1.000 0.167 0.286 0.396 0.573 0.360 0.103 

Mean 0.000 0.200 0.033 0.057 0.079 0.513 0.311 0.044 

St.Dev. 0.000 0.447 0.075 0.128 0.177 0.033 0.039 0.046 
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AdaBoost 

M1+filter  
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 0.000 0.000 0.000 0.000 0.725 0.291 0.000 

2 0.000 0.000 0.000 0.000 0.000 0.600 0.294 0.000 

3 0.000 0.000 0.000 0.000 0.000 0.671 0.262 0.086 

4 0.000 0.000 0.000 0.000 0.000 0.638 0.280 0.017 

5 0.000 0.000 0.000 0.000 0.000 0.679 0.326 0.128 

Mean 0.000 0.000 0.000 0.000 0.000 0.663 0.291 0.046 

St.Dev. 0.000 0.000 0.000 0.000 0.000 0.047 0.023 0.058 

 

LogitBoost 

+filter 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 1.000 0.167 0.286 0.396 0.813 0.477 0.344 

2 0.025 0.000 0.000 0.000 0.043 0.732 0.435 0.294 

3 0.000 0.000 0.000 0.000 0.000 0.928 0.440 0.300 

4 0.000 0.000 0.000 0.000 0.000 0.896 0.535 0.411 

5 0.025 0.333 0.167 0.222 0.197 0.935 0.523 0.405 

Mean 0.010 0.267 0.067 0.102 0.127 0.861 0.482 0.351 

St.Dev. 0.014 0.435 0.091 0.141 0.171 0.087 0.046 0.056 

 

 

Naïve 

Bayes+filter  
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.088 0.300 0.500 0.375 0.328 0.821 0.465 0.330 

2 0.241 0.174 0.667 0.276 0.246 0.742 0.212 0.056 

3 0.000 0.000 0.000 0.000 0.000 0.837 0.298 0.133 

4 0.000 0.000 0.000 0.000 0.000 0.729 0.256 0.100 

5 0.050 0.200 0.167 0.182 0.127 0.760 0.419 0.277 

Mean 0.076 0.135 0.267 0.167 0.140 0.778 0.330 0.179 

St.Dev. 0.099 0.132 0.303 0.167 0.147 0.048 0.108 0.118 

 

Bayes 

Net+filter 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 0.000 0.000 0.000 0.000 0.932 0.570 0.465 

2 0.000 0.000 0.000 0.000 0.000 0.882 0.553 0.435 

3 0.000 0.000 0.000 0.000 0.000 0.966 0.500 0.366 

4 0.000 0.000 0.000 0.000 0.000 0.856 0.395 0.251 

5 0.050 0.200 0.167 0.182 0.127 0.878 0.419 0.277 

Mean 0.010 0.040 0.033 0.036 0.025 0.903 0.487 0.359 

St.Dev. 0.022 0.089 0.075 0.081 0.057 0.045 0.078 0.094 
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Bagging 

+filter 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.000 0.000 0.000 0.000 0.000 0.784 0.477 0.345 

2 0.051 0.000 0.000 0.000 0.061 0.674 0.459 0.319 

3 0.051 0.333 0.400 0.364 0.321 0.943 0.488 0.353 

4 0.013 0.500 0.167 0.250 0.261 0.926 0.523 0.411 

5 0.038 0.250 0..167 0.200 0.156 0.923 0.523 0.404 

Mean 0.031 0.217 0.142 0.163 0.160 0.850 0.494 0.366 

St.Dev. 0.023 0.217 0.189 0.160 0.134 0.117 0.028 0.040 

 

JRIP + 

filter 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.075 0.000 0.000 0.000 0.075 0.691 0.465 0.323 

2 0.000 0.000 0.000 0.000 0.000 0.781 0.424 0.219 

3 0.000 0.000 0.000 0.000 0.000 0.904 0.405 0.249 

4 0.000 0.000 0.000 0.000 0.000 0.677 0.465 0.286 

5 0.000 1.000 0.167 0.286 0.396 0.915 0.547 0.425 

Mean 0.015 0.200 0.033 0.057 0.094 0.794 0.461 0.300 

St.Dev. 0.034 0.447 0.075 0.128 0.172 0.113 0.055 0.080 

 

FURIA+ 

filter 
FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.100 0.200 0.333 0.250 0.185 0.678 0.453 0.321 

2 0.000 0.000 0.000 0.000 0.000 0.500 0.341 0.179 

3 0.000 0.000 0.000 0.000 0.000 0.500 0.476 0.333 

4 0.000 0.000 0.000 0.000 0.000 0.477 0.453 0.341 

5 0.013 0.750 0.500 0.600 0.590 0.792 0.488 0.340 

Mean 0.023 0.190 0.167 0.170 0.155 0.590 0.442 0.297 

St.Dev. 0.044 0.325 0.236 0.264 0.256 0.140 0.059 0.067 

 

 

 

 

 

 

 

 

 

 

 

XGBoost 

+filter 
        

 FPR Prec  Recall F1-measure MCC AUC Acc Kappa 

1 0.013 0.667 0.333 0.444 0.445 0.931 0.558 0.454 

2 0.025 0.333 0.167 0.222 0.196 0.781 0.459 0.324 

3 0.038 0.500 0.600 0.545 0.516 0.952 0.560 0.449 

4 0.088 0.222 0.333 0.267 0.205 0.875 0.570 0.468 

5 0.013 0.500 0.167 0.250 0.261 0.933 0.593 0.499 

Mean 0.035 0.444 0.320 0.346 0.325 0.894 0.548 0.439 

St.Dev. 0.031 0.171 0.177 0.142 0.147 0.070 0.052 0.067 
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Appendix J 

Rules generated using JRIP and FURIA 

JRIP rules: 

=========== 

(NWC/TE >= 36.08) and (EarRev/OperRev >= 16.98) => Class_1=1 (7.0/0.0) 

(TEPerCapita >= 4809) and (RealGDP >= 1.54) and (RealGDP <= 2.6) and (Debt/GDP <= 20.32) => Class_1=1 

(8.0/0.0) 

(OwnRev/OperRev <= 4.3) and (LongDebt/Debt >= 4.78) and (RealGDP >= 0) => Class_1=3 (17.0/0.0) 

(OperBalance/OR >= 16.44) and (GovTransf/OperRev >= 62.9) and (RealGDP <= 1.36) => Class_1=3 (9.0/1.0) 

(OperBalance/OR >= 25.48) and (MaturityDebt <= 0) => Class_1=3 (6.0/1.0) 

(CashSurp/TR <= -4.44) and (LongDebt/Debt <= 0) => Class_1=6 (11.0/2.0) 

(CashSurp/TR <= -2.64) and (TEPerCapita <= 967.4) and (OwnRev/OperRev <= 31.3) and (Unemployment <= 

5.86) => Class_1=6 (12.0/1.0) 

(TEPerCapita >= 5701) and (OwnRev/OperRev <= 86.58) => Class_1=2 (22.0/1.0) 

(OwnRev/OperRev >= 71.76) and (CapitalSpend >= 19.18) => Class_1=2 (10.0/1.0) 

(NationalUnemployment <= 3.42) => Class_1=2 (2.0/0.0) 

(DebtSer/TR >= 26.5) => Class_1=2 (7.0/3.0) 

(RealGDP >= 5.2) => Class_1=4 (9.0/1.0) 

(NationalUnemployment >= 9.7) and (LongDebt/Debt >= 19.36) => Class_1=4 (24.0/6.0) 

(AccualFinancingSurplus/TR >= 0.22) => Class_1=4 (5.0/1.0) 

 => Class_1=5 (107.0/40.0) 

 

Number of Rules : 15 

 

FURIA rules: 

=========== 

(NWC/TE in [30, 36.08, inf, inf]) and (EarRev/OperRev in [8.48, 16.98, inf, inf]) => Class_1=1 (CF = 0.79) 

(TEPerCapita in [3939.75, 4809, inf, inf]) and (RealGDP in [1.42, 1.54, inf, inf]) and (Debt/GDP in [-inf, -inf, 20.32, 

23.46]) and (Inter/OperRev in [1.64, 2.08, inf, inf]) => Class_1=1 (CF = 0.83) 

(EarRev/OperRev in [-inf, -inf, 10.75, 10.82]) and (NationalUnemployment in [-inf, -inf, 7.18, 14.36]) and 

(DebtSer/TR in [13.08, 13.48, inf, inf]) and (Unemployment in [3.28, 4.3, inf, inf]) => Class_1=2 (CF = 0.92) 

(TEPerCapita in [7435.8, 7888.8, inf, inf]) and (ShortDebt/Debt in [9.86, 10.32, inf, inf]) and (RealGDP in [-inf, -inf, 

1.42, 2.28]) => Class_1=2 (CF = 0.85) 

(TEPerCapita in [1556, 1579.25, inf, inf]) and (NWC/TE in [16.32, 17.94, inf, inf]) => Class_1=2 (CF = 0.71) 

(EarRev/OperRev in [-inf, -inf, 4.58, 6.3]) and (Inter/OperRev in [-inf, -inf, 1.92, 1.96]) and (Unemployment in [-inf, 

-inf, 5.08, 5.15]) and (GovTransf/OperRev in [10.45, 13.42, inf, inf]) => Class_1=2 (CF = 0.81) 

(OwnRev/OperRev in [-inf, -inf, 4.3, 4.66]) and (LongDebt/Debt in [0, 4.78, inf, inf]) and (RealGDP in [-0.38, 0, inf, 

inf]) => Class_1=3 (CF = 0.91) 
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(OperBalance/OR in [12.9, 16.44, inf, inf]) and (GovTransf/OperRev in [44.48, 62.9, inf, inf]) and (RealGDP in [-inf, 

-inf, 1.36, 2.4]) => Class_1=3 (CF = 0.76) 

(OperBalance/OR in [17.53, 25.48, inf, inf]) and (Debt/GDP in [1.78, 2.34, inf, inf]) => Class_1=3 (CF = 0.76) 

(NationalUnemployment in [9.18, 9.7, inf, inf]) and (LongDebt/Debt in [13.38, 19.36, inf, inf]) and (Unemployment 

in [-inf, -inf, 20.04, 20.86]) => Class_1=4 (CF = 0.83) 

(RealGDP in [5.18, 5.2, inf, inf]) and (NationalUnemployment in [-inf, -inf, 5.18, 5.52]) => Class_1=4 (CF = 0.83) 

(NationalUnemployment in [4.84, 11, inf, inf]) and (EarRev/OperRev in [72.6, 79.5, inf, inf]) => Class_1=4 (CF = 

0.65) 

(NationalUnemployment in [27.22, 29.8, inf, inf]) and (Debt/GDP in [0.18, 0.32, inf, inf]) => Class_1=4 (CF = 0.62) 

(DebtSer/TR in [-inf, -inf, 0.56, 0.58]) and (GovTransf/OperRev in [79.98, 91.08, inf, inf]) => Class_1=4 (CF = 0.7) 

(TEPerCapita in [-inf, -inf, 1418.6, 1456]) and (TE/GDP in [5.8, 5.9, inf, inf]) and (TEPerCapita in [996.6, 1056, inf, 

inf]) => Class_1=5 (CF = 0.88) 

(TEPerCapita in [-inf, -inf, 947.2, 967.4]) and (RealGDP in [1.58, 1.63, inf, inf]) and (RealGDP in [-inf, -inf, 3.63, 4]) 

=> Class_1=5 (CF = 0.63) 

(AccualFinancingSurplus/TR in [-inf, -inf, -11.65, -10.4]) => Class_1=5 (CF = 0.68) 

(CashSurp/TR in [-inf, -inf, -4.12, -3.73]) and (LongDebt/Debt in [-inf, -inf, 0, 0.1]) => Class_1=6 (CF = 0.73) 

(TEPerCapita in [-inf, -inf, 612.4, 785.8]) and (OwnRev/OperRev in [-inf, -inf, 28.42, 30.64]) and (Unemployment in 

[-inf, -inf, 5.86, 5.88]) => Class_1=6 (CF = 0.79) 

 

Number of Rules : 19 
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