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Exosomes, extracellular vesicles crafted via a regulated process involving endocytosis, 

biomolecule packaging, and exocytosis, possess diverse functions. Exosomes participate 

in many processes crucial for the functionality of cells and tissues, e.g. in intercellular 

communication, immune response, programmed cell death, inflammation, and morphogen 

transport. Based on their multifunctional activity, the exosomes also play a significant 

role in many pathological conditions, such as malignancy or neurodegeneration. 

Nanosized exosomes carry various biomolecules as nucleic acids, proteins, lipids, 

metabolites. It has already been revealed that the composition of exosomes often 

corresponds with the (patho)physiological status of a cell, tissue, organ, and, ultimately, 

an organism. That is why the exosomes/oncosomes become promising structure suitable 

for studying the pathogenesis of the relevant disease or for the early and precise 

diagnosis of many serious diseases. The barrier for their wider use is the difficulty to 

isolate exosomes in the desired quantity and quality. To date, various isolation 

strategies have been proposed, spanning physico-chemical and affinity-based methods. 

Even the accelerated exosome isolation techniques exploiting the benefits of magnetic 

carriers or microfluidic platforms are still facing some limitations, and it is already 

clear where new trends can be expected. A concise review of strategies and technologies 

for exosome isolation is given here. 
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Introduction  

 
Exosomes (Figure 1) as cell-derived nanoparticles ranging in size from 30 to 150 nm 
are formed by a strictly regulated process [1]. Firstly, the early endosomes have 
to be created. Then, the bioactive molecules like enzymes, signaling molecules, 
DNAs, microRNAs, non-coding RNAs and lipids are packed into intraluminal 
vesicles. Finally, membrane-enclosed exosomes are produced via exocytosis of 
those multivesicular bodies into the extracellular environment within the late 
endosome and plasma membrane fusion [2]. Based on the biogenesis, the 
membrane-derived vesicles contain a mix of components related to the cells and 
tissues from which they originate [3]. Even so, the exosomes contain an 
evolutionarily conserved set of protein molecules, typical molecular pattern of 
human exosomes consists of tetraspanins like CD9, CD63, CD81, and CD82, 
membrane transport and fusion proteins like Annexins, GTPases, and flotillin, 
proteins associated in multivesicular body biogenesis like ALIX (ALG-2-interacting 
protein X) or TSG101 (tumor susceptibility gene 101 protein), as well as lipid-related 
proteins and phospholipases [4–6]. 

Their major functions are being cell-to-cell communication and the exchange 
of bio-active molecules (such as mRNA and miRNA, DNA, proteins etc.) into 
recipient cells. They are involved not only in intercellular communication 
transferring various effectors or signaling molecules between the specific cells [7], 
but they also engage in processes, such as immune response, programmed cell 
death, angiogenesis, coagulation, and morphogen transport [8–11]. 

 

 
Fig. 1 Exosome structure visualization 
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The role of exosomes has been studied under the different patho-physiological 
conditions. Cancer-derived exosomes activate signaling pathways, promote 
tumor growth, affect immune responses, and deliver tumor antigens to dendritic 
cells to provoke T-cell-mediated antitumor responses. Exosomes derived from 
mesenchymal stem cells fulfil a protective role in stroke models. Exosomes are 
also involved in the release and propagation of misfolded proteins, contributing 
to neurodegenerative diseases like Huntington's, Alzheimer's, and Parkinson's 
disease [12–14]. 

 
 

Methodological strategy applicable for exosome isolation 

 
In exosome-related research or in clinical practice, there is a great demand for 
a simple, fast, and highly effective method which provide the exosomes in 
sufficient purity and in maximal yield.  Despite the various approaches available 
today [15], there is no consensus with respect to the best methodology for 
isolating exosomes with substantial yields and reliable quality.  

Because exosomes are secreted into the extracellular space, they are found 
in body fluids, such as serum, plasma, urine, saliva, breast milk, amniotic fluid or 
cerebrospinal fluid [16]. The liquid nature of biological material facilitates the 

process of exosome isolation. The principles of the methods used today rely on 
traditional separation techniques applied routinely to isolate bioactive molecules, 
organelles, or whole cells. A different strategy is chosen if one wants to perform 
isolation and structural analysis of exosomes, or when there is a need for sufficient 
amount of intact exosomes for the subsequent functional tests.  

Methods can be divided according to the separation mechanism into two 
groups – physicochemical and affinity-based approaches. It should be also 
stressed that different methods provide products of different quality (purity, 
intactness) and quantity. The higher yield or purity of exosomes can be increased 
by combination of two or three separation steps of different separation principles. 
Other parameters, such as the amount of biological material, the cost per one 
analysis, the proper equipment of the laboratory and the experience of a research 
team, all that must be taken into the account.  

 
 

Methods based on physicochemical principles 

 
Separation techniques exploiting the differences in physicochemical properties of 
various components to be separated. Parameters as solubility, charge, molecular 
size, shape, and polarity of compounds are the most useful in this respect. Usually, 
more complex separation procedures are required for multicomponent samples. 
This section is intended to give an overview on the methods already proven for 
the isolation of exosomes from the body fluids mentioned above.  
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Ultracentrifugation 

 
Ultracentrifugation (UC) is a common method for pelleting various substances, 
including lipoproteins, protein complexes, and aggregates, with a g-force. 
However, UC in traditional arrangement is time-consuming and labor-intensive [17], 
in practice, differential UC and UC in a density gradient have proven themselves 
for exosome isolation.  

Differential ultracentrifugation (dU; Figure 2), also known as the pelleting 
method, involves sequential centrifugation cycles with varying forces to separate 
extracellular components based on their density [18]. The first step includes 
centrifugation at 300–400 × g for 10 minutes, which leads to cell pelleting. The next 
step is centrifugation at 2,000 × g for 10 minutes to remove cell debris and then 
at 10 000 × g to exclude structures with higher density than exosomes, like 
apoptotic bodies and biopolymer aggregates. The final centrifugal step runs at 
100,000 to 200,000 × g for 1 to 2 h [16,18]. In case of high sample heterogeneity, 
fractions with exosomes result in lower purity [18]. 

 

 

Fig. 2 Differential centrifugation for exosome isolation 
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Density-gradient ultracentrifugation (dgUC) is a technique when sample 
with exosomes is applied on the top of the density-gradient medium and then 
centrifuged at 100,000 to 200,000 × g. This centrifugal force causes the exosomes 
to move through the gradient at different rates, resulting in distinct zones of 
separated particles [19]. A continuous gradient is preferred for analysis, while 
discontinuous gradients are better for exosomes to be harvested. The limitation of 
this method is smaller loading capacity compared to other centrifugation 
methods [20]. 
 
 
Ultrafiltration 

 
Ultrafiltration (UF) (Figure 3) is an approach in which extracellular vesicles are 
effectively differentiated by size using membranes with pores at different molecular 
weight cut-offs (MWCO). At first, a sample is filtered through a 200 nm filter to 
remove larger particles than exosomes. A 500 MWCO filter is used for elimination 
of soluble proteins, and finally, fractions with enriched exosomes are concentrated 
with a 20 nm filter. Despite its popularity for efficiency and simplicity, this technique 
has some limitations, including vesicle clogging and potential deformation or 
fragmentation due to incorrect transmembrane pressure [19,21]. Visan et al. (2022) 
presented special kind of ultrafiltration called tangential flow filtration. They found 
this method highly reproducible, time efficient, decreasing clogging concerns and 
reducing structural damage of exosomes in comparison with common (dead-end) 
filtration [22].  
 

 

Fig. 3 Ultrafiltration method for exosome isolation 
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Precipitation 

 
The next separation strategy utilizes the change in extracellular vesicles (EVs) 
solubility resulting in their precipitation. This technique involves mixing the 
sample with precipitation-based reagent polyethylene glycol (PEG), incubation, and 
subsequent low-speed centrifugation to separate the precipitated EVs (Figure 4). 
Despite its simplicity, this approach often provides fractions with exosomes that 
are contaminated by proteins, lipoproteins, and nucleoproteins [18,23]. 

Another precipitation method involves the use of protamine, a positively 
charged molecule precipitating negatively charged EVs. The combination of 
protamine with PEG enables a more efficient precipitation and less contaminated 
EVs fractions. The drawbacks as residual protamine contamination and longer 
processing time are balanced by obtaining the intact EVs with preserved 
biological activity [24,25]. 

 

 
Fig. 4 PEG-based precipitation method for exosome isolation 

 
 
EV precipitation by sodium acetate is based on neutralizing the surface charge 

of EVs, causing them to precipitate via hydrophobic interactions [11]. In 2014, 
Brownlee et al. [26] showed this method working well at specific pH and buffer. 
Still, it can lead to contamination of the EV fraction with non-EV proteins, 
especially when isolating EVs from biological fluids like plasma or urine. 
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A more recent approach involves precipitating by the organic solvent, 
known as PROSPR (PRotein Organic Solvent PRecipitation). This method was 
optimized by Gallart-Pallau et al. in 2015 [27]. The isolated EVs were at higher 
purity, low-protein contamination, and matches well-known exosomal markers. 
However, there are concerns about EV aggregation into multivesicular structures 
when using this method, potentially impacting its efficacy [23,27]. 
 
 
Size-exclusion chromatography 

 
Size-exclusion chromatography (SEC) is a size-based separation technique that 
has been applied to isolate the components differing in molecular weight. SEC 
involves passing a liquid sample through a column filled with particles of desired 
porosity. Smaller molecules enter the pores and are slowed down, while larger 
molecules are eluted earlier as they cannot enter the pores [28] (Figure 5). 
With the discovery of exosomes, SEC has been adapted for their separation. One of 
the main advantages of SEC is its ability to preserve the natural biological activities of 
exosomes. SEC is compatible also with small volumes of high-concentrated samples, 
requires minimal pre-treatment, and allows one fine-tuning pore size for specific 
exosome subpopulations [29,30]. 

 

 

Fig. 5 Size-exclusion chromatography method for exosome isolation 
 
 
However, SEC faces challenges. Exosomes isolated via SEC may display 

a wider size distribution, suggesting contamination with similarly sized particles 
like protein aggregates and lipoproteins [17]. In 2015, Baranyai et al. compared 
exosome isolation with ultracentrifugation and SEC and they found out higher 
yield of exosomes with UC with high contamination of albumin. On the other 
hand, SEC enabled great albumin depletion and gave undamaged exosomes, but with 
lower yield [31]. Combined strategies involving ultrafiltration and SEC have been 
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proposed and practiced addressing this, leading to the improved exosome purity 
and functionality [17]. Despite these challenges, SEC-based exosome isolation is 
gaining popularity for its versatility and ease of use [32]. 

To improve exosome isolation, combination of several techniques is used. 
For example, Franco et al. used SEC followed by ultrafiltration [33] for 
extracellular vesicle isolation or Qian et al. combined ultrafiltration with polymer 
precipitation [34]. In 2022, Visan compared ultracentrifugation with tangential 
flow filtration, both connecting with size-exclusion chromatography [22].  

In general, combinations of two or three physicochemical techniques 
becomes more and more popular, especially if such combination includes SEC, 
as showed by Monquió-Tortajada in 2019 [35]. 
 
 
Methods based on affinity interactions  
 
Compounds to be separated are passed by mobile phase through a solid stationary 
phase inside a column and then separated according to their affinity to mobile/stationary 
phases. The nature of this interaction allows one a temporary binding and subsequent 
release of analyte. 
 

 

TiO2 microparticles-based exosome isolation  

 
Within exosomal systems, the principal constituents of the lipid bilayer are 
amphiphilic phospholipids. These lipids contain hydrophilic phosphate head, 
which is positioned on the outer surface of the membrane. Exosome isolation was 
carried out by exploiting this feature using electrostatic interactions between 
positive charge of TiO2 particles surface and negatively charged phosphate groups 
on the exosomal membrane surface (Figure 6). The TiO2-based isolation approach 
achieved remarkable separation efficiency [36–38]. Table 1 shows the advantages 
and disadvantages of this method.  

 

Fig. 6 Exosome isolation with TiO2 microparticles 
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Targeting negative charge of exosome surface with poly-L-lysine 

 
Aiming at the negative charge with other molecules than titanium dioxide is also 
possible. A novel ion-exchange platform called ExoCAS-2 was developed and 
tested by Kim and Shin in 2021. In this method, magnetic beads functionalized 
with poly-L-lysine are incubated with filtered plasma. The positively charged 
poly-L-lysine-coated beads readily attract the negatively charged exosomes 
through the electrostatic interactions. Subsequently, a magnet is used to catch the 
exosome-captured beads, followed by the removal of excess liquid [39]. 
 
 
Exosome isolation by immunoaffinity principle 

 
Immunoaffinity-based exosome isolation capitalizes on the presence of common 
protein markers or receptors on exosomes surface. This technique exploiting the 
benefits as high specificity and selectivity of molecular recognition principle between 
specific antibodies, mostly IgG molecules, and antigens, in this case (Figure 7). 
Some of exosome membrane components unique to exosomes/oncosomes and 
absent in the extracellular fluid serve as a basis for this isolation method. Over the 
years, various exosome markers have been identified, including transmembrane 
proteins [40], heat shock proteins [41], growth factor receptors [42], fusion 
proteins [43], and lipid-related proteins [19]. Transmembrane proteins like Rab5, 
CD9, CD63 [44], CD81 [41], CD82, annexin [45], and ALIX [46] have been 
extensively used for selective exosome isolation, leading to the development of 
popular exosome isolation products [19]. 

The use of antibodies against markers overexpressed on tumor-derived 
exosomes enables to specifically isolate exosomes from both cell culture medium 
and clinical samples. Commercial systems designed to isolate specific exosome 
subpopulations then allow one targeted investigations and disease diagnosis [47,48]. 
Tauro et al. compared already in 2012 immunoaffinity-based approach using 
anti-EpCAM antibodies combined with ultracentrifugation methods. Immunoaffinity 
capture outperformed ultracentrifugation yield in exosome isolation by at least 
twice more effectively [49].  
 
 
Exosome isolation by microfluidic platform 
 
Methods described in the two previous chapters provide suitable tools how to obtain 
exosomes in desired purity and quality. However, it is always necessary to consider 
time consumption, cost, yield/recovery, laboratory equipment, availability, and 
quantity of biological material. Recently, the innovations in the form of microfluidic 
systems, small laboratory system with integrated micro-/nano-structures used for 
separation of exosomes [50], have been appearing more and more frequently. 
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Fig. 7 Exosome isolation with specific antibody 
 
 
Most microfluidic devices are closed-loop system, in which the flow can be 
precisely controlled [51]. This bring a considerable number of advantages in terms 
of reducing of diffusion, more efficient interactions between an analyte and 
micron-sized structures of the microfluidic chip, reducing the required amount of 
input material (sample, reagents), as well as duration of the whole process [52–56]. 
The recovery is significantly higher without the risk to increase the level of 
contamination. Therefore, conventional methods of isolating exosomes are 
increasingly being transferred into a microfluidic setup [57].  

For example, Davies et al. used nanoporous membranes in microfluidic 
filtration system for small vesicles isolation [58]. Dehdhani et al. obtained a new 
microfluidic device (Figure 8) based on tangential flow filtration approach [59]. 
Chen et al. developed an efficient exosome purification device using negative 
pressure oscillation and double coupled harmonic oscillator-enabled membrane 
vibration [60] and many other microfludic platforms have been developed 
specifically for exosome isolation [61–68]. 

Tamarin et al. (2021) describe microfluidic technologies figuring in 
label-free exosome isolation via the mechanism of separation into the following 
categories: sieving, electrical, viscoelastic, inertial, centrifugal, acoustic, 
deterministic lateral displacement separations, flow field and pinched flow 
fractionations [56]. 

The integration of separation and enrichment of sample, together with its analysis 
into one complex microfluidic platform, avoids sample loss and cross-contamination. 
That is welcome and substantial especially in clinical practice. This combination 
of separation and analysis within one microfluidic pattern is called “lab-on-a-chip”, 
having been highlighted by Surappa et al. in 2023 [57]. Despite the number of 
advantages, microfluidic techniques also have some limitations, for example, higher 
acquisition costs associated with the need for specialized equipment compared to 
other isolation techniques, or, among others, low throughput [69].  
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For greater clarity, the pros and cons of long-established methods are 
summarized in Table 1. The microfluidic configuration of these, pointing out its 
advantages, are also included. 

 

 
 

Fig. 8 Schematic representation of microfluidic device – separation region filled with 
a magnetic carrier biofunctionalized with a specific antibody 

Example of one popular configuration 

 
 
Conclusions 

 
Nowadays, there are various strategies for isolating exosomes. Some are very 
effective, but expensive. Others yield large amounts of intact exosomes in one 
separation step, but contaminants are present. However, it is still true that the 
isolation and purification strategy has to be optimized for different types of 
biological materials, body fluids [72,80]. The limitations that each of the methods 
brings can be minimized by their appropriate combination.  

Also, the choice of a suitable procedure is often determined by the purpose, 
for which the isolation of exosomes is carried out, like observing exosome surface 
with an electron microscope [29,81], testing the membrane composition [82], 
testing the cytosolic cargo of exosome [83], or functional analysis [84]. 

The goal of this article is to provide the basic information about methods, 
separation strategy, including the respective merits and drawbacks. In overall, 
rapid progress in exosome isolation techniques with respect to our better 
understanding of these vital extracellular vesicles, accelerating research in diverse 
fields, from fundamental biology to diagnostics and therapeutics. As technology 
continues to evolve, further optimization of isolation strategies will undoubtedly 
contribute to unearthing of the full potential of exosomes and their applications in 
modern medicine. 
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