UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ

DISERTAČNÍ PRÁCE

2023

Ing. Tomáš Netolický

Univerzita Pardubice Fakulta chemicko-technologická Katedra obecné a anorganické chemie Chemie a technologie anorganických materiálů

Fotoluminiscence v nanokrystalických oxidech granátové struktury dopovaných ionty vzácných zemin

Autor práce: Ing. Tomáš Netolický

Školitel: prof. Ing. Tomáš Wágner, DrSc.

Disertační práce

2023

University of Pardubice

Faculty of Chemical Technology Department of General and Inorganic Chemistry

Chemistry and technology of inorganic materials

Photoluminescence in rare-earth ion-doped nanocrystalline oxides with garnet structure

Author: Ing. Tomáš Netolický

Supervisor: prof. Ing. Tomáš Wágner, DrSc.

Disertation thesis

2023

Prohlašuji:

Tuto práci jsem vypracoval samostatně. Veškeré literární prameny a informace, které jsem v práci využil, jsou uvedeny v seznamu použité literatury.

Byl jsem seznámen s tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, zejména se skutečností, že Univerzita Pardubice má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona, a s tím, že pokud dojde k užití této práce mnou nebo bude poskytnuta licence o užití jinému subjektu, je Univerzita Pardubice oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložila, a to podle okolností až do jejich skutečné výše.

Beru na vědomí, že v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, a směrnicí Univerzity Pardubice č. 7/2019 Pravidla pro odevzdávání, zveřejňování a formální úpravu závěrečných prací, ve znění pozdějších dodatků, bude práce zveřejněna prostřednictvím Digitální knihovny Univerzity Pardubice.

V Pardubicích dne

Ing. Tomáš Netolický

Poděkování:

Děkuji svému školiteli prof. Ing. Tomáši Wágnerovi, DrSc. za odborné vedení, ochotu a pomoc během celého doktorského studia a rovněž při zpracování této disertační práce. Za provedená měření a pomoc při intepretaci naměřených dat patří veliké poděkování doc. Ing. Ludvíku Benešovi, CSc. (Univerzita Pardubice), Ing. Kláře Melánové, Dr. (Univerzita Pardubice), Ing. Boženě Frumarové, CSc. (Univerzita Pardubice), Ing. Stanislavu Šlangovi, Ph.D. (Univerzita Pardubice), Ing. Lukáši Střižíkovi, Ph.D. (Univerzita Pardubice), Ing. Jiřímu Oswaldovi, CSc. (Fyzikální ústav AV ČR) a RNDr. Petru Bezdičkovi, Dr. (Ústav anorganické chemie AV ČR). Za odborné vedení během zahraniční stáže děkuji profesoru Anthony R. Westovi (The University of Sheffield) a celé jeho skupině.

Děkuji rovněž za finanční podporu z následujících projektů, díky nimž byla financována některá měření spojená s touto prací. Jedná se o projekt Ministerstva školství, mládeže a tělovýchovy ČR LM2018103, projekt Evropského fondu pro regionální rozvoj NANOMAT CZ.02.1.01/0.0/0.0/17_048/0007376, projekt Fakulty chemicko-technologické Univerzity Pardubice "Excelentní týmy" 2020 a projekt Ministerstva školství, mládeže a tělovýchovy ČR NanoEnviCz LM2018124 a LM2023037.

Veliké poděkování patří všem mým blízkým příbuzným za neustálou podporu během mého vzdělávání.

ANOTACE

Předkládaná disertační práce je věnována studiu nanokrystalických oxidů granátové struktury obsahujících trojmocné kationty vzácných zemin. Zvoleným hostitelským materiálem je Yb₃Ga₅O₁₂ s použitím dopantů Er³⁺, či Ho³⁺ s cílem dosažení intenzivní fotoluminiscence od viditelné až po blízkou infračervenou oblast při excitaci laserem s vlnovou délkou 980 nm. Výsledky předkládané práce jsou rozděleny na tři hlavní části. První část je věnována studiu fázového složení, struktury, morfologie a chemického složení nanokrystalických oxidů $Yb_{15-x}Er_xGa_{25}O_{60}$ a $Yb_{15-x}Ho_xGa_{25}O_{60}$ kde x = 0; 0,01; 0,1; 0,5; 1 a 2. Jako výchozí metoda přípravy těchto potenciálních luminoforů je zvolena sol-gel spalovací metoda s použitím kyseliny citronové jako chelatačního činidla. Druhá část práce se zabývá optickými vlastnostmi nanokrystalických oxidů řady Yb_{15-x} $Er_xGa_{25}O_{60}$ (x = 0; 0,01; 0,1; 0,5; 1 a 2) se zaměřením na fotoluminiscenční vlastnosti. Dosažení intenzivní Stokesovy fotoluminiscence v blízké infračervené oblasti ($\lambda_{em} \approx 1450-1650$ nm) a intenzivní anti-Stokesovy fotoluminiscence, která je dominantní v "červené" oblasti ($\lambda_{em} \approx 630-700$ nm), je diskutováno na základě přítomnosti účinných procesů energetického přenosu (ET) $Yb^{3+} \rightarrow Er^{3+}$, zpětného energetického přenosu (EBT) $Er^{3+} \rightarrow Yb^{3+}$ a křížových relaxací (CR) $Er^{3+} \leftrightarrow Er^{3+}$. Třetí část práce se zabývá optickými vlastnostmi nanokrystalických oxidů řady $Yb_{15-x}Ho_xGa_{25}O_{60}$ (x = 0,01; 0,1; 0,5; 1 a 2) opět se zaměřením na fotoluminiscenční vlastnosti. V tomto případě je dosaženo dvou typů intenzivních Stokesových emisních spekter v blízké infračervené oblasti ($\lambda_{em} \approx 1100-1300$ nm a $\lambda_{em} \approx 1800-2200$ nm) a anti-Stokesovy fotoluminiscence, jejíž vnímaná barevná oblast se mění s měnící se koncentrací Ho^{3+} . Jsou diskutovány procesy ET $\text{Yb}^{3+} \rightarrow \text{Ho}^{3+}$, EBT $\text{Ho}^{3+} \rightarrow$ Yb³⁺ a CR Ho³⁺ ↔ Ho³⁺, zodpovědné za pozorované jevy. Interpretace těchto procesů u obou řad studovaných vzorků je možná díky využití fotoluminiscenční spektroskopie v ustáleném stavu, časově rozlišené a fotoluminiscenční spektroskopie s použitím různého excitačního výkonu. Součástí práce je dále i kapitola, jejíž cílem je odhalení širokospektrální emise, překvapivě pozorované v nedopovaném vzorku Yb₃Ga₅O₁₂. Výsledky předkládané práce poukazují na vysoký vliv koncentrace dopantu Er³⁺/Ho³⁺ v nanokrystalickém Yb₃Ga₅O₁₂ na výsledné fotoluminiscenční vlastnosti s ohledem na potenciální využití studovaných materiálů.

KLÍČOVÁ SLOVA

Granáty, Yb₃Ga₅O₁₂, Er³⁺, Ho³⁺, nanokrystalické oxidy, optické vlastnosti, fotoluminiscence, upkonverzní fotoluminiscence.

TITLE

Photoluminescence in rare-earth ion-doped nanocrystalline oxides with garnet structure

ANNOTATION

Presented dissertation thesis is devoted to the study of nanocrystalline oxides with garnetrelated structure containing trivalent cations of rare earths. The chosen host material is $Yb_3Ga_5O_{12}$ with the use of Er^{3+} or Ho^{3+} dopants in order to achieve intense photoluminescence emission from the visible to the near-infrared region when excited by a 980nm laser. The results of the presented thesis are divided into three main parts. The first part is devoted to the study of the phase composition, structure, morphology and chemical composition of nanocrystalline oxides $Yb_{15-x}Er_xGa_{25}O_{60}$ and $Yb_{15-x}Ho_xGa_{25}O_{60}$ with x = 0; 0.01; 0.1; 0.5; 1 and 2. The sol-gel combustion method using citric acid as a chelating agent is chosen as the starting method for the preparation of these potential phosphors. The second part of the thesis deals with the optical properties of nanocrystalline oxides of the Yb_{15-x}Er_xGa₂₅O₆₀ series (x = 0; 0.01; 0.1; 0.5; 1 and 2) with a focus on photoluminescence properties. The achievement of intense Stokes photoluminescence in the near-infrared region ($\lambda_{em} \approx 1450-1650$ nm) and intense anti-Stokes photoluminescence, which is dominant in the "red" region ($\lambda_{em} \approx 630-700$ nm), is discussed based on the presence of efficient energy transfer (ET) $Yb^{3+} \rightarrow Er^{3+}$, energy back transfer (EBT) $Er^{3+} \rightarrow Yb^{3+}$ and cross-relaxation (CR) $Er^{3+} \leftrightarrow Er^{3+}$. The third part of the thesis deals with the optical properties of nanocrystalline oxides of the $Yb_{15-x}Ho_xGa_{25}O_{60}$ series (x = 0.01; 0.1; 0.5;1 and 2), again focusing on photoluminescence properties. In this case, two types of intense Stokes emission spectra in the near-infrared region are achieved ($\lambda_{em} \approx 1100-1300$ nm and $\lambda_{em} \approx 1800-2200$ nm) together with anti-Stokes photoluminescence, where the perceived color area changes with different Ho³⁺ concentration. The ET Yb³⁺ \rightarrow Ho³⁺, EBT Ho³⁺ \rightarrow Yb³⁺ and CR $Ho^{3+} \leftrightarrow Ho^{3+}$ processes responsible for the observed phenomena are discussed. The interpretation of these processes in the both series of studied samples is possible thanks to the use of photoluminescence spectroscopy in the steady-state, time-dependent and powerdependent mode. The thesis also includes a chapter whose goal is to reveal the broadband emission surprisingly observed in the undoped Yb₃Ga₅O₁₂ sample. The results of the presented thesis point to a high influence of the Er³⁺/Ho³⁺ dopant concentration in nanocrystalline Yb₃Ga₅O₁₂ on the resulting photoluminescence properties with emphasis to the potential use of the studied materials.

KEYWORDS

Garnets, Yb₃Ga₅O₁₂, Er³⁺, Ho³⁺, nanocrystalline oxides, optical properties, photoluminescence, upconversion photoluminescence.

OBSAH

1	ÚVOĽ)		22
2	TEOR	ETIC	CKÁ ČÁST	23
	2.1 Ma	ateriá	ly s granátovou strukturou	23
	2.1.1	Yb	₃ Ga ₅ O ₁₂	25
	2.2 Na	anokr	ystalické oxidy dopované lanthanoidy	26
	2.2.1	Me	etody syntéz nanokrystalických oxidů vycházejí z roztoku	27
	2.2.	1.1	Sol-gel spalovací metody	27
	2.2.	1.2	Srážení a spolusrážení	28
	2.2.	1.3	Hydrotermální a solvotermální metody	29
	2.3 La	inthar	noidy	30
	2.3.1	La	nthanoidová kontrakce	30
	2.3.2	Spe	ektroskopické vlastnosti Ln ³⁺	31
	2.4 Fo	otolun	niniscence	32
	2.4.1	Zái	řivá a nezářivá rekombinace	34
	2.4.2	Ki	netika doznívání fotoluminiscence	36
	2.5 Up	okonv	verzní fotoluminiscence	37
	2.5.1	Me	echanismy upkonverzní fotoluminiscence	40
	2.5.	1.1	Absorpce ze základního stavu/absorpce z excitovaného stavu	40
	2.5.	1.2	Upkonverze energetickým přenosem	41
	2.5.	1.3	Kooperativní upkonverze	43
	2.5.	1.4	Lavinová upkonverze	44
	2.5.2	Hla	avní mechanismy limitující upkonverzní fotoluminiscenci	45
	2.5.2	2.1	Křížové relaxace	45
	2.5.2	2.2	Zpětný energetický přenos	47
	2.5.2	2.3	Zářivé procesy do nižších hladin	49
	2.5.2	2.4	Koncentrační zhášení	51

2.5.2.5 Zhášení upkonverzní fotoluminiscence dané přítomností nečistot
2.6 Fotoluminiscenční spektroskopie
3 CÍLE DISERTAČNÍ PRÁCE
4 EXPERIMENTÁLNÍ ČÁST
4.1 Příprava nanokrystalických granátů Yb ₃ Ga ₅ O ₁₂ dopovaných ionty Er ³⁺ /Ho ³⁺ 5
4.2 Charakterizace připravených materiálů
5 VÝSLEDKY A DISKUZE
5.1 Struktura, morfologie a chemické složení nanokrystalických granátů $Yb_3Ga_5O_1$ dopovaných ionty Er^{3+}/Ho^{3+} 60
5.2 Optické vlastnosti nanokrystalických granátů Yb ₃ Ga ₅ O ₁₂ dopovaných ionty Er ³⁺ a nedopovaného Yb ₃ Ga ₅ O ₁₂
5.2.1 Difúzní reflektivita
5.2.2 Fotoluminiscenční vlastnosti
5.2.3 Mechanismus fotoluminiscence
5.3 Optické vlastnosti nanokrystalických granátů Yb ₃ Ga ₅ O ₁₂ dopovaných ionty Ho ³⁺ 86
5.3.1 Difúzní reflektivita
5.3.2 Fotoluminiscenční vlastnosti
5.3.3 Mechanismus fotoluminiscence
6 ZÁVĚR
7 POUŽITÁ LITERATURA104
8 PŘÍLOHA A – CHARAKTERIZACE NEDOPOVANÉHO VZORKU IMPEDANČN SPEKTROSKOPIÍ
9 PŘÍLOHA B – SEZNAM PUBLIKOVANÝCH PRACÍ A PŘÍSPĚVKŮ NA KONFERENCÍCH

SEZNAM ILUSTRACÍ A TABULEK

Obr. 1. Fragment granátové struktury s kationty obsaženými v dodekaedrické pozici (červený kruh), v oktaedrické pozici (modrý kruh) a v tetraedrické pozici (zelený kruh). Bílé kruhy značí Obr. 2. Závislost podílu disociovaných forem kyseliny citronové na pH. H₃A značí kyselinu Obr. 4. Schéma intrinsické fotoluminiscence (vlevo) a extrinsické fotoluminiscence se zobrazenou donorovou a akceptorovou hladinou uvnitř pásu zakázaných energií (vpravo). ..34 Obr. 6. Schéma populace jednotlivých energetických hladin při UCPL. Přerušované šipky Obr. 7. Princip mechanismu GSA/ESA UCPL pro ion Er³⁺ s použitím zdroje excitačního záření Obr. 8. Princip mechanismu ETU UCPL pro dvojici iontů Er³⁺ s použitím zdroje excitačního záření o $\lambda_{\text{exc}} = 980 \text{ nm}....42$ Obr. 9. Princip mechanismu ETU UCPL pro ionty Er³⁺ a Yb³⁺ s použitím zdroje excitačního záření o $\lambda_{\text{exc}} = 980 \text{ nm}.....43$ Obr. 10. Princip mechanismu kooperativní senzibilizace (a) a kooperativní luminiscence (b) pro případ trojice (a) a dvojice (b) iontů Er^{3+} s použitím zdroje excitačního záření o $\lambda_{\text{exc}} = 1550$ nm. Obr. 11. Princip možného dosažení mechanismu lavinové upkonverze pro dvojici iontů Er³⁺ Obr. 12. Princip mechanismu procesů CR pro dvojici iontů Er³⁺ s použitím zdroje excitačního záření o $\lambda_{\text{exc}} = 980 \text{ nm}.....46$ Obr. 13. Princip mechanismu procesu CR pro ionty Ho³⁺ a Ce³⁺ s přítomností iontu Obr. 14. Princip mechanismu procesu EBT pro ionty Er³⁺ a Yb³⁺ s použitím zdroje excitačního Obr. 15. Princip mechanismu procesu EBT pro ionty Ho³⁺ a Yb³⁺ s použitím zdroje excitačního

Obr. 16. Princip mechanismu zářivé rekombinace do nižší hladiny pro ion Er³⁺ (a) a pro dvojici iontů Ho³⁺ a Yb³⁺ (b) s použitím zdroje excitačního záření o $\lambda_{exc} = 1550$ nm (a) a $\lambda_{exc} = 980$ nm Obr. 17. Princip mechanismu depopulace hladin Er^{3+} : ${}^{4}S_{3/2}$ a ${}^{4}I_{11/2}$ energetickým přenosem na Obr. 19. Difraktogramy nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀ (a) a Yb_{15-x}Ho_xGa₂₅O₆₀ (b). Spodní linie odpovídá standardu kubického Yb3Ga5O12 č. 01-073-1373 z databáze PDF-4+.....60 Obr. 20. Závislost velikosti mřížkového parametru (a) na koncentraci dopantu (x)v nanokrystalických granátech Yb_{15-x}Er_xGa₂₅O₆₀ a Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0; 0,01; 0,1; 0,5; 1Obr. 21. ATR spektra nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀ (a) a Yb_{15-x}Ho_xGa₂₅O₆₀ (b). Spektra jsou pro přehled normalizována na nejintenzivnější pás při ≈ 365 cm⁻¹.....64 Obr. 22. Snímky ze SEM vzorků Yb₃Ga₅O₁₂ (a), Yb_{14,99}Er_{0,01}Ga₂₅O₆₀ (b), Yb_{14,9}Er_{0,1}Ga₂₅O₆₀ (c), Yb_{14,5}Er_{0.5}Ga₂₅O₆₀ (d), Yb₁₄Er₁Ga₂₅O₆₀ (e) a Yb₁₃Er₂Ga₂₅O₆₀ (f). Měřítko je 1000 nm. ..66 Obr. 23. Snímky ze SEM vzorků Yb_{14,99}Ho_{0,01}Ga₂₅O₆₀ (a), Yb_{14,9}Ho_{0,1}Ga₂₅O₆₀ (b), Yb_{14,5}Ho_{0,5}Ga₂₅O₆₀ (c), Yb₁₄Ho₁Ga₂₅O₆₀ (d) a Yb₁₃Ho₂Ga₂₅O₆₀ (e). Měřítko je 1000 nm.67 Obr. 24. Spektrum difúzní reflektivity nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀. Vložený Obr. 25. Transformované spektrum difúzní reflektivity podle Kubelkovy-Munkovy teorie pro nanokrystalický Yb₃Ga₅O₁₂ a stanovení *Egopt*......70 Obr. 26. Stokesova emisní spektra nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀ odpovídající elektronovému přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$. Měřeno při $\lambda_{\text{exc}} \approx 977$ nm a při P = 100 mW $(I_{exc} = 0.25 \text{ W} \cdot \text{cm}^{-2})$. Vložený graf zobrazuje širokospektrální emisní spektrum nedopovaného Obr. 27. Závislost integrované PL intenzity emisního spektra pocházejícího z elektronového přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ pro nanokrystalické granáty Yb_{15-x} $\mathrm{Er}_{x}\mathrm{Ga}_{25}\mathrm{O}_{60}$72 Obr. 28. Stokesovo emisní spektrum nanokrystalického granátu Yb₃Ga₅O₁₂ odpovídající elektronovému přechodu Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$. Měřeno při $\lambda_{\text{exc}} \approx 977$ nm a při P = 100 mW Obr. 29. Anti-Stokesova emisní spektra nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx 977$ nm a při P = 100 mW ($I_{exc} = 0.25$ W·cm⁻²). Vložený graf zobrazuje detail spekter

Obr. 30. Závislost poměru "červené" vůči "zelené" integrované UCPL intenzitě UCPL emisního spektra pro nanokrystalické granáty Yb_{15-x}Er_xGa₂₅O₆₀. Vložený graf zobrazuje závislost celkové integrované UCPL intenzity......74 Obr. 31. Diagram chromatičnosti CIE 1931 pro UCPL emisi nanokrystalických granátů Obr. 32. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ pro nanokrystalické granáty Yb_{15-x}Er_xGa₂₅O₆₀. Měřeno při $\lambda_{\mathrm{exc}} \approx$ 977 nm a při P = 100 mW ($I_{exc} = 0.25 \text{ W} \cdot \text{cm}^{-2}$). Vložený graf zobrazuje závislost hodnot Obr. 33. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ pro nanokrystalické granáty Yb_{15-x}Er_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx$ 977 nm a při P = 100 mW ($I_{exc} = 0.25$ W·cm⁻²). Vložený graf zobrazuje závislost hodnot Obr. 34. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ pro nanokrystalické granáty $\mathrm{Yb}_{15-x}\mathrm{Er}_{x}\mathrm{Ga}_{25}\mathrm{O}_{60}$. Měřeno při $\lambda_{\mathrm{exc}} \approx$ 977 nm a při P = 100 mW ($I_{exc} = 0.25 \text{ W} \cdot \text{cm}^{-2}$). Vložený graf zobrazuje závislost hodnot Obr. 35. Dvojitá logaritmická závislost "zelené" (Er³⁺: ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$) a "červené" $(\text{Er}^{3+}: {}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2})$ intenzity UCPL na excitačním výkonu P pro nanokrystalické granáty $Yb_{15-x}Er_xGa_{25}O_{60}$ (x = 0,01; 0,1; 0,5; 1 a 2). Počet absorbovaných fotonů n je dán jako směrnice lineární části podle vztahu (18)......80 36. Navržený mechanismus fotoluminiscence pro nanokrystalické granáty Obr. Yb_{15-x}Er_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) při $\lambda_{exc} \approx 977$ nm.82 Obr. 37. Stokesova emisní spektra nanokrystalických granátů Yb_{14,5}Er_{0,5}Ga₂₅O₆₀, Gd_{9.5}Yb₅Er_{0.5}Ga₂₅O₆₀ a Gd_{14.5}Er_{0.5}Ga₂₅O₆₀ ve viditelné a blízké infračervené oblasti Obr. 38. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového $\mathrm{Er}^{3+}: {}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ pro nanokrystalické granáty $\mathrm{Yb}_{14,5}\mathrm{Er}_{0.5}\mathrm{Ga}_{25}\mathrm{O}_{60}$, přechodu Gd_{9,5}Yb₅Er_{0,5}Ga₂₅O₆₀, Gd_{14,5}Er_{0,5}Ga₂₅O₆₀, Gd_{14,9}Er_{0,1}Ga₂₅O₆₀ a Gd_{14,99}Er_{0,01}Ga₂₅O₆₀. Měřeno při $\lambda_{\text{exc}} \approx 488$ nm. Hodnoty τ_{R} a τ_{D} byly získány fitováním experimentálních dat s použitím Obr. 39. Difraktogramy nanokrystalických granátů Gd_{9.5}Yb₅Er_{0.5}Ga₂₅O₆₀, Gd_{14.5}Er_{0.5}Ga₂₅O₆₀, Gd_{14.9}Er_{0.1}Ga₂₅O₆₀ a Gd_{14.99}Er_{0.01}Ga₂₅O₆₀. Spodní linie odpovídá standardu kubického

Obr. 40. Spektrum difúzní reflektivity nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀. Vložený Obr. 41. Stokesova emisní spektra nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀ odpovídající elektronovému přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$. Měřeno při $\lambda_{exc} \approx 980$ nm a při P = 19,6 mW ($I_{exc} = 10$ W·cm⁻²). Vložený graf zobrazuje závislost integrované PL intenzity na koncentraci Ho³⁺....87 Obr. 42. Stokesova emisní spektra nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀ odpovídající elektronovému přechodu Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$. Měřeno při $\lambda_{exc} \approx 980$ nm a při P = 19,6 mW ($I_{exc} = 10$ W·cm⁻²). Vložený graf zobrazuje závislost integrované PL intenzity na koncentraci Ho³⁺....88 Obr. 43. Anti-Stokesova emisní spektra nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx 977$ nm a při P = 955 mW ($I_{exc} = 2,39$ W·cm⁻²). Vložený graf zobrazuje detail spekter Obr. 44. Závislost poměru "červené" vůči "zelené" integrované UCPL intenzitě UCPL emisního spektra pro nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀. Vložený graf zobrazuje závislost celkové integrované UCPL intenzity......90 Obr. 45. Diagram chromatičnosti CIE 1931 pro UCPL emisi nanokrystalických granátů Obr. 46. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ pro nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx$ 980 nm a při P = 23,6 mW ($I_{exc} = 12$ W·cm⁻²). Vložený graf zobrazuje závislost hodnot $\tau({}^{5}I_{6})$ na atomární koncentraci dopantu.92 Obr. 47. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ pro nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx$ 980 nm a při P = 23.6 mW ($I_{exc} = 12 \text{ W} \cdot \text{cm}^{-2}$). Vložený graf zobrazuje závislost hodnot $\tau_1({}^5I_7)$, Obr. 48. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ pro nanokrystalické granáty Yb_{14,99}Ho_{0,01}Ga₂₅O₆₀ a Yb_{14,9}Ho_{0,1}Ga₂₅O₆₀. Měřeno při $\lambda_{exc} \approx 977$ nm a při P = 100 mW ($I_{exc} = 0,25$ W·cm⁻²). Vložený Obr. 49. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$ pro nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx$ 977 nm a při P = 955 mW ($I_{exc} = 2,39$ W·cm⁻²). Vložený graf zobrazuje závislost hodnot Obr. 50. Dvojitá logaritmická závislost "zelené" (Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$), "červené" (Ho³⁺: ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$) ${}^{5}I_{8}$) a "755 nm" (Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{7}$) intenzity UCPL na excitačním výkonu P pro

nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2). Počet absorbovaných Obr. 51. Stokesova emisní spektra nanokrystalického granátu Yb₁₄Ho₁Ga₂₅O₆₀ odpovídající elektronovému přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ při různé excitační intenzitě (I_{exc}). Měřeno při $\lambda_{exc} \approx$ Obr. 52. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu $\text{Ho}^{3+}: {}^{5}I_{6} \rightarrow {}^{5}I_{8}$ pro nanokrystalický granát $\text{Yb}_{14}\text{Ho}_{1}\text{Ga}_{25}\text{O}_{60}$ při různé excitační intenzitě (I_{exc}). Měřeno při $\lambda_{exc} \approx 980$ nm. Hodnoty $\tau({}^{5}I_{6})$ činí: 274±1 µs při $I_{exc} = 0,7$ W·cm⁻² (a), 272 ± 1 µs při $I_{exc} = 1.5$ W·cm⁻² (b), 271 ± 1 µs při $I_{exc} = 4.7$ W·cm⁻² (c), 270 ± 1 µs při $I_{exc} = 15,3 \text{ W} \cdot \text{cm}^{-2}$ (d), 268±1 µs při $I_{exc} = 31,6 \text{ W} \cdot \text{cm}^{-2}$ (e), 267±1 µs při $I_{exc} = 46,9 \text{ W} \cdot \text{cm}^{-2}$ (f) 53. Navržený mechanismus fotoluminiscence pro nanokrystalické granáty Obr. Obr. 54. Difraktogram slinuté tablety Yb₃Ga₅O₁₂ (a) a snímek ze SEM povrchu tablety Yb₃Ga₅O₁₂ (po leštění) s měřítkem 5000 nm (b).117 Obr. 55. Frekvenční průběh kapacitance tablety Yb₃Ga₅O₁₂ při různé teplotě.118 Obr. 56. Frekvenční průběh admitance tablety Yb₃Ga₅O₁₂ při různé teplotě......118 Obr. 57. Závislost imaginární složky impedance na reálné složce impedance tablety Yb₃Ga₅O₁₂ při různé teplotě......119 Obr. 58. Závislost výrazu log σ na 1000/T a určení aktivační energie iontové vodivosti (E_A) na

Tab. 1. Vybrané geometrické charakteristiky tetraedru, oktaedru a trojúhelníkového
dodekaedru23
Tab. 2. Značení základních energetických hladin pro Ln ³⁺ s aktivními 4f ↔ 4f elektronovými
přechody
Tab. 3. Střední velikost krystalitů (D) a mřížkový parametr (a) nanokrystalických granátů
$Yb_{15-x}Er_xGa_{25}O_{60} (x = 0; 0,01; 0,1; 0,5; 1 a 2)61$
Tab. 4. Střední velikost krystalitů (D) a mřížkový parametr (a) nanokrystalických granátů
$Yb_{15-x}Ho_xGa_{25}O_{60} (x = 0,01; 0,1; 0,5; 1 a 2).$
Tab. 5. Průměrné meziiontové vzdálenosti iontů Er^{3+} (<i>REr</i> 3+ \leftrightarrow <i>Er</i> 3+) v Yb _{15-x} Er _x Ga ₂₅ O ₆₀ a
Ho^{3+} (<i>RHo</i> 3+↔ <i>Ho</i> 3 +) v Yb _{15-x} $\text{Ho}_x\text{Ga}_{25}\text{O}_{60}$ nanokrystalických granátech

SEZNAM ZKRATEK A ZNAČEK

а	Mřížkový parametr, $(a) = Å$
A	Absorpční konstanta
А	Aktivátor luminiscence v základním energetickém stavu
A^*	Aktivátor luminiscence v excitovaném energetickém stavu
A_i	Amplituda
A_{MPR}	Celková pravděpodobnost multifononové relaxace, $(A_{MPR}) = s^{-1}$
$A_{MPR}(0)$	Materiálová konstanta závislá na hostitelském materiálu, $(A_{MPR}(0)) = s^{-1}$
A_{pr}	Preexponenciální faktor
A_T	Celková pravděpodobnost přechodu excitovaného centra z vyšší
	energetické hladiny na základní energetickou hladinu, $(A_T) = s^{-1}$
ATR	Technika zeslabené totální reflexe v infračervené spektroskopii
a.u.	Libovolná jednotka
C_{DA}	Mikroparametr energetického přenosu, $(C_{DA}) = \text{cm}^{6} \cdot \text{s}^{-1}$
<i>C</i> _{Ln} ³⁺	Procentuální obsah trojmocných kationtů lanthanoidů, $(c_{Ln^{3+}}) = \%$
СР	Kolorimetrická čistota, (CP) = %
CR	Křížové relaxace
D	Střední velikost krystalitů $(D) = nm$
d_{hkl}	Mezirovinná vzdálenost $(d_{hkl}) = \text{Å}$
е	Elementární náboj elektronu, $e = 1,60218 \cdot 10^{-19} \text{ C}$
Ε	Rychlostní konstanta procesu absorpce z excitovaného stavu, $(E) = s^{-1}$
E_A	Aktivační energie iontové vodivosti, $(E_A) = eV$
EBT	Zpětný energetický přenos
EDX	Energiově-disperzní rentgenová spektroskopie
Eem	Energie emitovaného záření, $(E_{em}) = eV$
$E_{ m exc}$	Energie excitačního záření, $(E_{exc}) = eV$
E_g^{opt}	Optická šířka zakázaného pásu, $(E_g^{opt}) = eV$
ESA	Absorpce z excitovaného stavu
ET	Energetický přenos

ETU	Upkonverze energetickým přenosem
F(R)	Kubelkova-Munkova funkce
G	Rychlostní konstanta procesu absorpce ze základního stavu, (G) = s^{-1}
$G_{ m exc}$	Generační člen excitace luminiscenčního záření, $(G_{\text{exc}}) = \text{cm}^{-3} \cdot \text{s}^{-1}$
GSA	Absorpce ze základního stavu
h	Planckova konstanta, $h = 6,62607 \cdot 10^{-34} \text{ J} \cdot \text{s}$
h,k,l	Indexy osnovy rovin, na kterých dochází k difrakci rentgenového záření
H_F	Hamiltonián volného iontu
hv	Energie fotonu, $(hv) = eV$
$\hbar\omega_{max}$	Maximální fononová energie, $(\hbar\omega_{max}) = \text{cm}^{-1}$
Iexc	Excitační intenzita, $(I_{exc}) = W \cdot cm^{-2}$
$I_{PL}(0)$	Intenzita luminiscence v čase $t = 0$, $(I_{PL}(0)) = \text{cm}^{-3} \cdot \text{s}^{-1}$
$I_{PL}(t)$	Intenzita luminiscence v čase t , $(I_{PL}(t)) = \text{cm}^{-3} \cdot \text{s}^{-1}$
IRF	Funkce odezvy přístroje při fotoluminiscenční spektroskopii
I _{UCPL}	Intenzita upkonverzní fotoluminiscence, $(I_{UCPL}) = a.u.$
J	Russell-Saundersovo kvantové číslo
Κ	Scherrerova konstanta
<i>k</i> ₁	Rychlostní konstanta zářivého procesu z hladiny "1" na hladinu "0", $(k_I) = s^{-1}$
k_{2a}	Rychlostní konstanta zářivého procesu z hladiny "2" na hladinu "0", $(k_{2a}) = s^{-1}$
<i>k</i> _{2<i>b</i>}	Rychlostní konstanta zářivého procesu z hladiny "2" na hladinu "1", $(k_{2b}) = s^{-1}$
l	Vedlejší kvantové číslo
L	Celkový orbitální moment hybnosti
Ln ³⁺	Trojmocné kationty lanthanoidů
m	Hmotnost, $(m) = g$
MPR	Multifononová relaxace
n	Počet absorbovaných fotonů
Ν	Počet procesů luminiscenčního doznívání

Ν	Počet elektronů obsažených ve 4f atomových orbitalech
N_{0}	Hustota populace energetické hladiny "0"
N_{I}	Hustota populace energetické hladiny "1"
$N_{l,Er}$	Aktuální hustota populace energetické hladiny Er^{3+} : ${}^{4}I_{13/2}$
N_2	Hustota populace energetické hladiny "2"
$N_{2,Er}$	Zvyšování hustoty populace energetické hladiny Er^{3+} : ${}^{4}I_{13/2}$ z vyšších
	energetických hladin
N_A	Koncentrace opticky aktivních center, $(N_A) = \text{cm}^{-3}$
N_{A0}	Koncentrace opticky aktivních center v čase $t = 0$, $(N_{A0}) = \text{cm}^{-3}$
$N_A(t)$	Koncentrace opticky aktivních center v čase t , $(N_A(t)) = \text{cm}^{-3}$
n_D	Index lomu
$N_{Ln^{3+}}$	Počet dostupných míst, která mohou trojmocné kationty lanthanoidů
	v základní buňce obsazovat
Р	Excitační výkon, $(P) = W$
r	Iontový poloměr, $(r) = Å$
R	Difúzní reflektivita
R	Plynová konstanta, $R = 8,314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
R_{0}	Kritická vzdálenost trojmocných kationtů lanthanoidů pro
	luminiscenční zhášení, $(R_{\theta}) = \text{\AA}$
\mathbb{R}^2	Koeficient determinace
r_A	Iontový poloměr kationtu A , (r_A) = Å
<i>r</i> _B	Iontový poloměr kationtu <i>B</i> , $(r_B) = \text{Å}$
<i>r</i> _C	Iontový poloměr kationtu <i>C</i> , (r_C) = Å
ľЪ	Iontový poloměr aniontu O^{2-} , (r_D) = Å
$R_{Er^{3+}\leftrightarrow Er^{3+}}$	Průměrná mezi iontová vzdálenost kationtů $\mathrm{Er}^{3+}, (R_{Er^{3+}\leftrightarrow Er^{3+}})=\mathrm{\AA}$
$R_{Ho^{3+}\leftrightarrow Ho^{3+}}$	Průměrná mezi iontová vzdálenost kationtů Ho ³⁺ , ($R_{Ho^{3+}\leftrightarrow Ho^{3+}}$) = Å
$R_{Ln^{3+}\leftrightarrow Ln^{3+}}$	Průměrná meziiontová vzdálenost trojmocných kationtů lanthanoidů,
	$(R_{Ln^{3+}\leftrightarrow Ln^{3+}}) = \text{\AA}$
S	Spinové kvantové číslo

S	Celkový spinový moment hybnosti
S	Senzibilizátor v základním energetickém stavu
S^*	Senzibilizátor v excitovaném energetickém stavu
SEM	Skenovací elektronový mikroskop
t	$\check{C}as, (t) = s$
Т	Teplota, $(T) = K$
UCPL	Upkonverzní fotoluminiscence
V	Objem základní buňky, $(V) = Å^3$
WETU	Rychlostní konstanta upkonverze energetickým přenosem, (w_{ETU}) = s ⁻²
<i>x</i> , <i>y</i>	Parametry vzorků z diagramu chromatičnosti CIE 1931
Xd, Yd	Parametry dominantní vlnové délky vzorků z diagramu chromatičnosti CIE 1931
x_i, y_i	Parametry bílého světla z diagramu chromatičnosti CIE 1391
XRD	Rentgenová difrakční analýza
Ζ	Koordinační číslo centrálního atomu
Z	Reálná složka impedance, $(Z') = \Omega \cdot cm$
Ζ΄΄	Imaginární složka impedance, $(Z') = \Omega$ ·cm
α	Materiálová konstanta závislá na hostitelském materiálu, (α) = cm
β	Materiálový parametr funkce napnuté exponenciály
β_{hkl}	Rozšíření difrakční čáry
ΔE	Rozdíl energetických hladin, (ΔE) = cm ⁻¹
η	Kvantová účinnost fotoluminiscence
η_{v}	Výkonová účinnost fotoluminiscence
$ heta_{hkl}$	Difrakční úhel, $(\theta_{hkl}) = \circ$
λ	Vlnová délka elektromagnetického záření obecně, (λ) = nm
λem	Vlnová délka emitovaného záření, $(\lambda_{em}) = nm$
$\lambda_{ m exc}$	Vlnová délka excitačního záření, $(\lambda_{exc}) = nm$
σ	Objemová elektrická vodivost, (σ) = S·cm ⁻¹
τ	Celková doba života luminiscence, $(\tau) = s$

$\tau({}^5I_6)$	Celková doba života fotoluminiscence pocházející z elektronového přechodu Ho ³⁺ : ${}^{5}I_{6} \rightarrow {}^{5}I_{8}, \{\tau({}^{5}I_{6})\} = \mu s$
$ au_1({}^4I_{13/2})$	Krátká složka doby života fotoluminiscence daná přítomností neznámých opticky aktivních center, $\{\tau_1({}^4I_{13/2})\} = ms$
$ au_1({}^5I_7)$	Krátká složka doby života fotoluminiscence pocházející z elektronového přechodu Ho ³⁺ : ${}^{5}I_{7} \rightarrow {}^{5}I_{8}, \{\tau_{1}({}^{5}I_{7})\} = ms$
$ au_2(^4I_{13/2})$	Dlouhá složka doby života fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$, $\{\tau_2({}^{4}I_{13/2})\} = \text{ms}$
$ au_2({}^5I_7)$	Dlouhá složka doby života fotoluminiscence pocházející z elektronového přechodu Ho ³⁺ : ${}^{5}I_7 \rightarrow {}^{5}I_8$, { $\tau_2({}^{5}I_7)$ } = ms
$ au_{3}(^{4}F_{9/2})$	Krátká složka doby života fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, $\{\tau_{3}({}^{4}F_{9/2})\} = \mu s$
$ au_3({}^5F_4/{}^5S_2)$	Krátká složka doby života fotoluminiscence pocházející z elektronového přechodu Ho ³⁺ : ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}, \{\tau_{3}({}^{5}F_{4}/{}^{5}S_{2})\} = \mu s$
$ au_4({}^4F_{9/2})$	Dlouhá složka doby života fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, $\{\tau_{4}({}^{4}F_{9/2})\} = \mu s$
$\tau_4({}^5F_4/{}^5S_2)$	Dlouhá složka doby života fotoluminiscence pocházející z elektronového přechodu Ho ³⁺ : ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}, \{\tau_{4}({}^{5}F_{4}/{}^{5}S_{2})\} = \mu s$
$ au_{ m Yb}(^2F_{5/2})$	Celková doba života fotoluminiscence pocházející z elektronového přechodu Yb ³⁺ : ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$, { $\tau_{Yb}({}^{2}F_{5/2})$ } = µs
<7>	Průměrná doba života luminiscence, ($<\tau>$) = s
$<\tau>(^{4}F_{9/2})$	Průměrná doba života fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, $\{<\tau > ({}^{4}F_{9/2})\} = \mu s$
$<\tau>(^{5}I_{7})$	Průměrná doba života fotoluminiscence pocházející z elektronového přechodu Ho ³⁺ : ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$, {< τ >(${}^{5}I_{7}$)} = ms
$ au_{ m D}$	Doba života fotoluminiscence pocházející z elektronového přechodu Er ³⁺ : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ při použití $\lambda_{\text{exc}} \approx 488$ nm, (<i>t</i> _D) = ms
$ au_f$	Toleranční faktor pro vznik granátové struktury

$ au_{nr}$	Nezářivá doba života	luminiscence, (τ	(nr) = s

- τ_r Zářivá doba života luminiscence, $(\tau_r) = s$
- $τ_R$ Doba "náběhu" populace hladiny Er³⁺: ⁴*I*_{13/2} z vyšších hladin daná zejména procesy MPR při použití $λ_{exc} \approx 488$ nm, (*t*_R) = ms

1 ÚVOD

Studium nízkodimenzionálních anorganických materiálů prochází v posledních několika desetiletích obrovským rozvojem. Je to dáno jednak rozvojem metod jejich přípravy a charakterizace, tak i širokou škálou aplikací např. v medicíně, katalýze, elektronice, optoelektronice, fotonice aj. Pro aplikace založené na konverzi, generování, či detekci elektromagnetického záření mají významnou roli nanokrystalické oxidy dopované trojmocnými kationty lanthanoidů [1, 2].

Jako vhodné hostitelské matrice pro trojmocné kationty lanthanoidů se jeví oxidy se strukturou odvozenou od minerálu granátu, ve kterých je v dodekaedrických polohách obsažen trojmocný kation vzácných zemin. Zájem o tyto materiály začal vzrůstat objevením laserových oscilací roku 1964 v dnes již komerčně dostupném granátu Y₃Al₅O₁₂ dopovaném Nd³⁺ v monokrystalické formě. Důvodem neustálého zájmu o tuto skupinu materiálů v monokrystalické i práškové formě jsou některé jejich ojedinělé vlastnosti. Jedná se zejména o vynikající mechanickou, tepelnou a chemickou odolnost a relativně nízké fononové energie [3–7].

Předkládaná disertační práce se zabývá nanokrystalickým granátem Yb₃Ga₅O₁₂ dopovaným ionty Er^{3+} , či Ho³⁺. Teoretická část práce je věnována základním fyzikálním, strukturním a chemickým vlastnostem materiálů s granátovou strukturou, nanokrystalickým oxidům a základním metodám jejich syntézy z roztoku. Stěžejní část je věnována trojmocným kationtům lanthanoidů, 4f \leftrightarrow 4f elektronovým přechodům u těchto iontů a tedy fotoluminiscenčním vlastnostem. Podrobněji jsou rozebrány aspekty tzv. anti-Stokesovy fotoluminiscence, tedy upkonverzní fotoluminiscence. Experimentální a navazující část je zaměřena na studium struktury, morfologie, chemického složení a optických vlastností připravených nanokrystalických granátů. Důraz je kladen na vysvětlení fotoluminiscenčních vlastností připravených materiálů studiem ustálených a časově závislých emisních spekter a emisních spekter s různým excitačním výkonem. Připravené materiály se jeví jako vhodné k potenciálnímu použití například pro zobrazování biologických struktur, senzory plynů, či pro detektory infračerveného záření.

2 TEORETICKÁ ČÁST

2.1 Materiály s granátovou strukturou

Skupina materiálů s granátovou strukturou označuje všechny materiály s obecným chemickým vzorcem A₃B₂C₃X₁₂, vyskytujících se s převážnou většinou v kubické (krychlové) mřížce. "A" značí kation obsažený v dodekaedrické pozici, "B" kation obsažený v oktaedrické pozici, "C" kation obsažený v tetraedrické pozici a "X" označuje jeden z aniontů: O^{2-} , OH^{-} , F^{-} , nebo jejich kombinaci. Většina granátů, ať už vyskytujících se v přírodě ve formě minerálů, či syntetických, však obsahuje pouze anion O^{2-} . Hovoříme pak o oxidových granátech s obecným vzorcem A₃B₂C₃O₁₂. Kubická mřížka oxidových granátů je tělesově centrovaná, s prostorovou grupou $Ia\overline{3}d$, přičemž obsahuje 160 atomů (8 vzorcových jednotek). Uspořádání atomů v základní buňce je relativně těsné a granátová struktura je také charakteristická vysokým podílem sdílených hran jednotlivých polyedrů. Granátovou strukturu si lze představit jako souvislou trojrozměrnou síť, ve které každý tetraedr sdílí dvě nesousední hrany s trojúhelníkovými dodekaedry, každý oktaedr sdílí šest hran s trojúhelníkovými dodekaedry a zároveň každý trojúhelníkový dodekaedr sdílí čtyři hrany s okolními trojúhelníkovými dodekaedry. Tetraedry zároveň sdílejí vrcholy s oktaedry. Všechny tři typy polyedrů mohou mít určitou míru deformace, podle toho, jaké kationty jsou v jednotlivých polyedrech obsažené. Obecně platí, že iontový poloměr kationtu přítomného v trojúhelníkovém dodekaedru je vyšší než iontový poloměr kationtu přítomného v oktaedru a iontový poloměr kationtu přítomného v oktaedru je vyšší než iontový poloměr kationtu přítomného v tetraedru; tedy: $r_A > r_B > r_C$. Některé geometrické charakteristiky tetraedru, oktaedru a trojúhelníkového dodekaedru uvádí pro přehled Tab. 1. Obr. 1 zobrazuje fragment granátové struktury s kationty obsaženými v jednotlivých polyedrech [3, 8–10].

	Koordinační číslo centrálního atomu Z	Počet stěn	Počet hran
Tetraedr	4	4	6
Oktaedr	6	8	12
Trojúhelníkový dodekaedr	8	12	18

Tab. 1. Vybrané geometrické charakteristiky tetraedru, oktaedru a trojúhelníkového dodekaedru.

Obr. 1. Fragment granátové struktury s kationty obsaženými v dodekaedrické pozici (červený kruh), v oktaedrické pozici (modrý kruh) a v tetraedrické pozici (zelený kruh). Bílé kruhy značí anionty O^{2–}.

Pro předpovídání a popis fázové stability materiálu určité struktury na základě chemického složení daného materiálu se využívá určení tolerančního faktoru, navrženého poprvé roku 1926 V.M. Goldschmidtem [11] pro perovskity. Toleranční faktor pro materiály s granátovou strukturou byl navržen teprve roku 2019 Z. Songem a spoluautory [12] a je definován vztahem (1):

$$\tau_f = \frac{3\sqrt{(r_B + r_D)^2 - \frac{4}{9}(r_A + r_D)^2}}{2(r_C + r_D)} \tag{1}$$

kde r_A značí iontový poloměr kationtu A, r_B značí iontový poloměr kationtu B, r_C značí iontový poloměr kationtu C a r_D značí iontový poloměr aniontu O^{2^-} . Ideální hodnota tolerančního faktoru τ_f pro vznik stabilní granátové struktury je 1.

Výše popsaná komplikovaná struktura granátů s vysokým podílem sdílených hran polyedrů bývá vysvětlována jako příčina některých ojedinělých vlastností granátů, zejména relativně vysoké tvrdosti, hustoty a indexu lomu ($n_D \approx 1.70-1.94$). Maximální fononové energie oxidových granátů jsou relativně nízké, nižší než u většiny běžných oxidových skel, avšak vyšší ve srovnání s chalkogenidovými skly. Například pro Y₃Al₅O₁₂ je hodnota maximální fononové energie $\hbar\omega_{max} \approx 860$ cm⁻¹, pro Gd₃Ga₅O₁₂ je $\hbar\omega_{max} \approx 580$ cm⁻¹. Pro porovnání, fosfátová skla mají $\hbar \omega_{max} \approx 1200 \text{ cm}^{-1}$, silikátová skla mají $\hbar \omega_{max} \approx 1100 \text{ cm}^{-1}$ a pro chalkogenidová skla bývá $\hbar \omega_{max} \approx 400 \text{ cm}^{-1}$ [7, 8, 13].

Další výhodou relativně komplikované struktury oxidových granátů je možnost zabudování dalších příměsí (dopantů) do této struktury za účelem řízení a optimalizace výsledných vlastností. Dopanty mohou být ionty vzácných zemin, alkalických kovů, kovů alkalických zemin, přechodných i nepřechodných kovů. Syntetické oxidové granáty mají široké spektrum aplikací, například jako pevné elektrolyty, magneto-optické senzory, scintilátory, lasery, elektroluminiscenční diody, luminofory pro zobrazování biologických struktur atd. V závislosti na cílených aplikacích se připravují vzorky monokrystalické, polykrystalické, či tenké vrstvy [4–6, 14–17].

2.1.1 Yb₃Ga₅O₁₂

Ytterbito-gallitý granát (Yb₃Ga₅O₁₂) je středem pozornosti této práce jakožto potenciálně vhodná hostitelská matrice pro trojmocné kationty lanthanoidů. Kationty Yb³⁺ jsou zde přítomny v dodekaedrických pozicích, zatímco kationty Ga³⁺ se nachází v oktaedrických a tetraedrických pozicích. Pro tento materiál je předpovězena vysoká fázová stabilita, s hodnotou $\tau_f = 0.998$ [12].

Rešerše dosavadních poznatků týkající se Yb₃Ga₅O₁₂ zmiňuje mnoho aspektů o tomto materiálu. M. Guillot a spoluautoři [18] studovali Faradayovu rotaci v monokrystalech Yb₃Ga₅O₁₂. Studium paramagnetických vlastností Yb₃Ga₅O₁₂ zmiňuje např. literatura [19–23]. Studiem spinové dynamiky Yb₃Ga₅O₁₂ se zabývají práce [24, 25]. O dielektrických vlastnostech Yb₃Ga₅O₁₂ pojednává práce [26]. Práce [27, 28] se zabývají aplikací Yb₃Ga₅O₁₂ pro termofotovoltaické zářiče. Studiu luminiscenčních vlastností dopovaného Yb₃Ga₅O₁₂ však byla doposud věnována malá pozornost. V. Singh a spoluautoři [29] připravili Cr³⁺-dopované Yb₃Ga₅O₁₂ nanokrystaly spalovací metodou z roztoku s použitím glycinu s výslednou střední velikostí krystalitů \approx 29 nm a zaznamenali emisní spektrum ve viditelné oblasti po excitaci zářením o vlnové délce $\lambda_{exc} = 371$ nm. A. Dulda [30] připravil Er³⁺/Nd³⁺-dopované Yb₃Ga₅O₁₂ nanokrystaly srážecí metodou z roztoku s výslednou střední velikostí krystalitů do 10 nm a zaznamenal emisní spektrum ve viditelné a blízké infračervené oblasti po excitaci zářením s $\lambda_{exc} = 805$ nm a $\lambda_{exc} = 980$ nm.

2.2 Nanokrystalické oxidy dopované lanthanoidy

Tato kapitola s jednotlivými podkapitolami pojednává o nanokrystalických oxidech nejen granátové struktury, kde jako dopanty vystupují trojmocné kationty lanthanoidů. Nanokrystalické oxidy lze definovat jako materiály s velikostí částic menší než 100 nm, kde jako anionty vystupují pouze ionty O²⁻. Oproti objemovým materiálům se liší zejména vysokým poměrem povrchu vůči objemu, avšak zachovávají si stále vysokou chemickou stabilitu. Vysoký poměr povrchu vůči objemu však vede k adsorpci některých látek, zejména hydroxylových (–OH) skupin, na povrchu nanokrystalů. To vede ke snížení luminiscenčního kvantového výtěžku ve srovnání s objemovými oxidy dopovanými lanthanoidy, avšak rovněž dochází k rozšíření luminiscenčních spekter vlivem vyššího podílu strukturních defektů. Ve srovnání s hojně studovanými polovodičovými kvantovými tečkami (např. CdSe) však u nanokrystalických oxidů dopovaných lanthanoidy nedochází se snižující se velikostí částic k jevům daným kvantovým omezením. Nanokrystalické binární či multikomponentní oxidy dopované ionty lanthanoidů jsou studovány zejména pro své luminiscenční vlastnosti a mohou nalézt konkrétní aplikace. Jedná se například o optické vlnovody, plynové senzory, či citlivé termometry. Další významnou aplikací je zobrazování biologických struktur, které je založené na excitaci luminoforů nanesených v živých tkáních a detekci emitovaného záření, přičemž vlnová délka excitačního i emitovaného záření spadá do oblasti vysoké propustnosti tkání (650-1000 nm). Z hlediska chemické stability zde mohou například nanokrystaly Er³⁺-dopovaného Yb₂O₃ konkurovat komerčně dostupným nanočásticím β -NaYF₄ dopovaným Er³⁺ a Yb³⁺ [1, 2, 31-36].

Syntézy nanostrukturovaných materiálů lze rozdělit podle principu na dva přístupy označované jako "top-down" (odshora dolů) a "bottom-up" (odspoda nahoru). Přístup "top-down" je založen na transformaci objemných materiálů na nanostrukturované částice. Zahrnuje zejména metody založené na mletí sypkých materiálů, dále například laserovou ablaci, či naprašování. Ačkoliv se jedná o relativně jednoduché metody, jejich nevýhodou je obtížné řízení výsledného tvaru a velikosti produktů. Přístup "bottom-up" vychází z jednotlivých atomů či molekul, které jsou řízeně shlukovány a uspořádány za účelem vzniku nanostrukturovaných částic. Výhodou oproti přístupu "top-down" je zde možnost významněji ovlivnit výsledné chemické složení, společně s tvarem a velikostí částic produktů syntetickými podmínkami. Přístup "bottom-up" zahrnuje metodu chemické depozice z plynné fáze a metody vycházející z roztoku, které budou následně detailněji rozebrány [1, 2, 31, 37].

2.2.1 Metody syntéz nanokrystalických oxidů vycházejí z roztoku

Následující podkapitoly pojednávají o nejrozšířenějších metodách syntéz práškových nanokrystalických oxidů vycházejících z roztoku.

2.2.1.1 Sol-gel spalovací metody

Jako sol-gel spalovací metody lze označit soubor metod syntézy anorganických materiálů, při kterých dochází k přeměně kapalných prekurzorů na sol a následně na gel, který se kalcinuje. Jako sol lze označit koloidní suspenzi, která je za daných podmínek stabilní a vzniká hydrolytickými a kondenzačními reakcemi v roztocích kovových alkoxidů, či ve vodných roztocích solí kovů. Gel vzniká polykondenzací a lze ho chápat jako tuhou makromolekulární 3D síť, která zachycuje určité množství kapaliny. Gel je obvykle před kalcinací sušen, přičemž odstranění uzavřené kapaliny sušením při běžných podmínkách vede ke smrštění porézní sítě a vzniku xerogelu. Při následné kalcinaci v atmosféře vzduchu dochází k odstranění organické složky, povrchových –OH skupin a ke kontrolované tvorbě oxidů kovů [38].

Pokud se zaměříme pouze na sol-gel spalovací metody vycházející z vodného prostředí, tak se k modifikaci vodných roztoků obsahujících kovové kationty využívá chelatačních činidel z řad malých organických molekul. K tvorbě stabilních kovových komplexů se využívá kyselina citronová, kyselina ethylendiamintetraoctová, glycin, kyselina vinná, kyselina šťavelová aj. Kyselina citronová jakožto snadno dostupná sloučenina zde patří k nejrozšířenějším chelatačním činidlům. Kyselina citronová je slabá trikarboxylová kyselina, která disociuje ve třech stupních. Disociace je silně závislá na pH, jak uvádí závislost podílu jednotlivých disociovaných forem kyseliny citronové na pH na Obr. 2. pH solu se tedy obvykle zvyšuje přídavkem roztoku amoniaku, či ethylendiaminu za účelem zvýšení podílu citrátových aniontů navázaných na kovové kationty. Zvyšování pH se provádí i při použití jiných chelatačních činidel a vede k tvorbě stabilních kovových komplexů. Po odpaření vody a vzniku gelu zabraňují organické molekuly shlukování jednotlivých kovových kationtů (i různých druhů) a následná kalcinace pak vede ke vzniku malých krystalitů binárních či multikomponentních oxidů. Pokud se vychází z roztoků dusičnanů kovů a pH chelatačního činidla se modifikuje pomocí roztoku amoniaku, dochází rovněž ke vzniku NH4NO3, což vede k uvolnění velkého množství plynů při kalcinaci a produkty jsou charakteristické vysokou porozitou [38].

Obr. 2. Závislost podílu disociovaných forem kyseliny citronové na pH. H₃A značí kyselinu citronovou, jejíž struktura je zobrazena vpravo dole.

Kromě malých organických molekul lze k tvorbě gelu využít i (bio)polymery, například polyvinylalkohol, či škrob. Další významnou alternativní metodou, bez nutnosti regulace pH, je Pechiniho metoda. Ta vychází z výše popsaného přídavku kyseliny citronové k vodným roztokům kovových kationtů, zahrnuje však ještě přídavek ethylenglykolu. Zahřátím této směsi dochází k transesterifikaci citrátů kovů (a případně nedisociované kyseliny citronové) a ethylenglykolu za vzniku gelu tvořeného kovalentní sítí se zachycenými kovovými kationty. Oproti sol-gel spalovací metodě s použitím pouze kyseliny citronové, kde gel tvoří komplexní sloučeniny vzájemně vázané slabými intermolekulárními vazbami, je výhodou Pechiniho metody vznik kovalentní vazby v polymerní síti. K rozkladu organické složky během kalcinace tak dochází u Pechiniho metody při vyšší teplotě a lze tak lépe kontrolovat růst krystalitů výsledných oxidů [38].

2.2.1.2 Srážení a spolusrážení

Metoda syntézy nanokrystalických oxidů srážením, či spolusrážením je založena na řízené produkci málo rozpustných látek jednoho, či více druhů kationtů. Málo rozpustné látky jsou vysráženy z vodných, či nevodných roztoků s použitím zásady jako srážedla. Nejčastěji se

používá hydroxid sodný jakožto silná zásada, nebo roztok amoniaku jako slabá zásada, která je vhodnější pro přípravu částic s menší velikostí krystalitů. Kapalné prekurzory obsahují obvykle rozpuštěné dusičnany, chloridy, či octany příslušných kovových kationtů. Během srážení, či spolusrážení dochází nejprve k procesu nukleace, kdy dosažením přesycení roztoku vzniká velké množství malých krystalických zárodků. Následně dochází k agregaci krystalických zárodků a k růstu větších částic. Zvětšování střední velikosti částic je rovněž způsobeno Ostwaldovým zráním, při kterém větší částice rostou na úkor částic menších. Nakonec dochází v roztoku k aglomeraci částic z důvodu snahy částic zmenšit svůj povrch. Velikost částic v roztoku a jejich morfologii lze ovlivnit zejména volbou srážedla (jeho koncentrací a výsledným pH), teplotou a dobou zrání částic. Výsledné práškové nanokrystalické oxidy se získávají vysušením vysrážených částic a jejich kalcinací v atmosfěře vzduchu. Příkladem může být syntéza jednofázového nanokrystalického oxidu MnFe₂O₄ spolusrážením vodného roztoku Mn(NO₃)₂ a Fe(NO₃)₂ pomocí NaOH do dosažení hodnoty pH = 11, s následnou kalcinací při 600 °C [39, 40].

2.2.1.3 Hydrotermální a solvotermální metody

Hydrotermální a solvotermální metody jsou založeny na syntéze nanokrystalických oxidů chemickými reakcemi anebo změnami rozpustnosti látek za podmínek vysoké teploty a tlaku. Syntézy se provádí v uzavřených autoklávech ve vodném prostředí (hydrotermální metody), či v prostředí organického rozpouštědla (solvotermální metody). Zvyšování teploty v autoklávu vede i ke zvyšování tlaku a dochází ke vzniku superkritické tekutiny, která má oproti kapalině výrazně odlišnou hustotu, viskozitu, povrchové napětí, dielektrickou konstantu a rozpouštěcí schopnost. To umožňuje realizovat reakce, které za normálních podmínek nejsou uskutečnitelné. Je také možné rozpustit látky, které jsou za normálních podmínek nerozpustné a následně je řízeně srážet. Podmínkami syntézy, jako je zejména teplota, tlak, doba reakce, koncentrace reaktantů a pH lze řídit danou reakci. Hydrotermální a solvotermální metody umožňují precizní řízení morfologie částic a velikosti krystalitů a vznik i velmi komplikovaných sloučenin. Příkladem může být hydrotermální syntéza jednofázových nanokrystalických oxidů $Ca_{0.8}Sr_{0.2}Ti_{1-x}Fe_xO_{3-\delta}$ (x = 0,1; 0,2 a 0,3) vycházející z Ca(NO₃)₂, Sr(NO₃)₂, Fe(NO₃)₃ a TiO₂ při teplotě 400 °C a tlaku 30 MPa s výslednou velikostí částic ≈ 20 nm. Určitou nevýhodu ve srovnání s předešlými dvěma metodami zde však představuje cenově nákladné vybavení [39, 41].

2.3 Lanthanoidy

Lanthanoidy jsou skupinou patnácti prvků z 6. periody periodické soustavy s protonovými čísly 57 až 71 a zahrnují prvky La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb a Lu. Pokud se k lanthanoidům přidá ještě Sc ze 4. periody a Y z 5. periody, jedná se o skupinu prvků vzácných zemin. Lanthanoidy jsou vnitřně přechodné kovy se vzájemně velice podobnými chemickými a fyzikálními vlastnostmi. Nacházejí významné uplatnění v optice, metalurgii, či v magnetických materiálech. Nejběžnější oxidační stav lanthanoidů v pevných látkách je 3+, avšak existují i látky s lanthanoidy v oxidačním stavu 2+ (Nd²⁺, Sm²⁺, Eu²⁺, Dy²⁺, Tm²⁺ a Yb²⁺), či 4+ (Ce⁴⁺, Pr⁴⁺, Nd⁴⁺, Tb⁴⁺ a Dy⁴⁺). Elektronová konfigurace trojmocných kationtů lanthanoidů (Ln³⁺) je obecně [Xe]4f^N, kde N značí počet elektronů obsažených ve 4f orbitalech Ln³⁺ [42–45].

2.3.1 Lanthanoidová kontrakce

Lanthanoidová kontrakce je jev, kdy s rostoucím protonovým číslem dochází u lanthanoidů k výraznému poklesu atomového (či iontového) poloměru. K obdobnému, avšak méně výraznému jevu dochází i u některých řad přechodných kovů. Pokles iontového poloměru v řadě Ln^{3+} (při Z=8) s rostoucím protonovým číslem je zobrazen na Obr. 3. Při této koordinaci má kation La^{3+} iontový poloměr 1.160 Å, zatímco Lu^{3+} jen 0.977 Å. Lanthanoidová kontrakce bývá vysvětlována méně účinným stíněním kladného náboje jádra s rostoucím počtem elektronů ve 4f orbitalech (a současně s rostoucím počtem protonů v jádře). Jádro tak působí přitažlivou silou na elektrony [46–48].

Obr. 3. Lanthanoidová kontrakce v řadě Ln^{3+} při Z = 8.

2.3.2 Spektroskopické vlastnosti Ln³⁺

Elektronové přechody v rámci Ln^{3+} mohou být trojího druhu: $4f \leftrightarrow 4f$, $4f \leftrightarrow 5d$, nebo přechody na bázi přenosu náboje mezi ligandem a Ln^{3+} (anglicky označované jako "chargetransfer"). $4f \leftrightarrow 4f$ elektronové přechody patří mezi nejvýznamnější u Ln^{3+} , jelikož poskytují snadno rozpoznatelné úzké spektrální pásy a nejsou příliš ovlivňovány ligandovým polem obklopujícím Ln^{3+} . Vyskytují se u všech Ln^{3+} kromě La^{3+} (kvůli prázdnému 4f orbitalu, N = 0) a Lu^{3+} (kvůli zcela zaplněnému 4f orbitalu, N = 14). $4f \leftrightarrow 5d$ elektronové přechody poskytují širší spektrální pásy než $4f \leftrightarrow 4f$ přechody a jejich energie silně závisí na prostředí obklopujícím Ln^{3+} , jelikož vnější 5d orbitaly přímo interagují s okolním ligandovým polem. $4f \leftrightarrow 5d$ elektronové přechody se vyskytují pouze u Ce³⁺, Pr³⁺ a Tb³⁺ a ve spektrálních pásech se vyskytují obecně při vyšších energiích než přechody $4f \leftrightarrow 4f$. Elektronové přechody spojené s přenosem náboje mezi ligandem a Ln^{3+} jsou nejméně významné, jelikož se běžně vyskytují pouze u Eu^{3+} a Yb³⁺. Jejich pozice ve spektrálních pásech se nachází při energiích srovnatelných s $4f \leftrightarrow 5d$ přechody [43–45].

Spektroskopické vlastnosti Ln^{3+} v hostitelských matricích se blíží spektroskopickým vlastnostem volných Ln^{3+} , dochází zde však k mírným odchylkám, které popisuje vztah pro hamiltonián volného iontu (2):

$$H_F = -\frac{h^2}{2m} \sum_{i=1}^{N} \nabla_i^2 - \sum_{i=1}^{N} \frac{Ze^2}{r_i} + \sum_{i
(2)$$

kde první člen z pravé strany vztahu vyjadřuje sumu kinetické energie všech elektronů ve 4f orbitalech. Druhý člen vyjadřuje sumu potenciální energie všech elektronů v poli atomového jádra, třetí člen vyjadřuje sumu coulombické repulze mezi elektronovými páry a čtvrtý člen vyjadřuje spin-orbitální interakci [45, 49].

K označování energetických hladin Ln^{3+} se využívá zápisu ve formě termů, vycházejících z Russell-Saundersova formalismu. V obecném formátu ${}^{2S+1}L_J$ je 2S+1 spinová multiplicita s celkovým spinovým momentem hybnosti *S*, pro který platí: $S = \sum_{i}^{n} s_i$, kde *s* je spinové kvantové číslo. *L* značí celkový orbitální moment hybnosti, pro který platí: $L = \sum_{i}^{n} l_i$, kde *l* je vedlejší kvantové číslo. *J* značí Russell-Saundersovo kvantové číslo, pro které platí: J = L + S, L + S - 1, ..., |L - S|. Značení základních energetických hladin pro Ln^{3+} s aktivními 4f \leftrightarrow 4f elektronovými přechody uvádí pro přehled Tab. 2 [43–45].

Tab. 2. Značení základních energetických hladin pro Ln³⁺ s aktivními 4f ↔ 4f elektronovými přechody.

Ce ³⁺	Pr ³⁺	Nd ³⁺	Pm ³⁺	Sm ³⁺	Eu ³⁺	Gd^{3+}	Tb ³⁺	Dy ³⁺	Ho ³⁺	Er ³⁺	Tm ³⁺	Yb ³⁺
${}^{2}F_{5/2}$	${}^{3}H_{4}$	⁴ <i>I</i> _{9/2}	⁵ <i>I</i> ₄	${}^{6}H_{5/2}$	${}^{7}\!F_{0}$	${}^{8}S_{7/2}$	${}^{7}F_{6}$	${}^{6}H_{15/2}$	${}^{5}I_{8}$	${}^{4}I_{15/2}$	${}^{3}H_{6}$	${}^{2}F_{7/2}$

2.4 Fotoluminiscence

Fotoluminiscence je proces uvolňování elektromagnetického záření (emise) z určité látky po jejím vybuzení (excitaci) jiným elektromagnetickým zářením. Z termodynamického hlediska je fotoluminiscence nerovnovážným procesem. Vlnová délka excitačního záření je při klasické tzv. Stokesově fotoluminiscenci vždy kratší než vlnová délka emitovaného záření $(\lambda_{exc} < \lambda_{em}; \text{ tedy } E_{exc} > E_{em})$. Fotony excitačního záření, které jsou absorbovány daným materiálem, přenáší svou energii na elektrony v základním energetickém stavu a dochází tak k excitaci elektronů do vyšších energetických hladin. V případě existence více excitovaných energetických hladin dochází obvykle k přechodu elektronů z vyšších hladin na první (nejnižší) excitovanou hladinu nezářivými procesy. Elektrony z první excitované hladiny pak přechází na základní energetickou hladinu zářivým procesem a dochází k emisi nadbytečného množství záření, než odpovídá Planckově vyzařovacímu zákonu. Rozdíl mezi energií excitačního záření (E_{exc}) a energií emitovaného záření (E_{em}) je dán zejména nezářivými procesy termalizace a emise fononů (vibrací hostitelské mřížky) a nazývá se Stokesův posun. V případě, že je zářivý proces spinově povolený (excitovaná i základní energetická hladina mají stejnou spinovou multiplicitu, např. singlet-singlet), jedná se o fluorescenci. V případě spinově zakázaného zářivého procesu (spinová multiplicita excitované a základní energetické hladiny se liší, např. triplet-singlet) hovoříme o fosforescenci. Doba dosvitu při fotoluminiscenci (zářivá doba života τ_r) se v případě fluorescence pohybuje obvykle v rozmezí 0,1 až 10 ns, zatímco u fosforescence se pohybuje obvykle v rozmezí 1 ms až 10 s [50–52].

Fotoluminiscence u anorganických polovodičů je z fyzikálního hlediska založena na intrinsických elektronových přechodech mezi elektronovými pásy atomů/molekul, nebo na extrinsických elektronových přechodech určitých příměsí či defektů. V případě intrinsické fotoluminiscence, která je možná pouze u polovodičů vysoké čistoty, dochází k excitaci elektronu z valenčního pásu do vodivostního pásu. Ve valenčním pásu tak vzniká po elektronu vakance, která společně s excitovaným elektronem zářivě rekombinuje. Extrinsická fotoluminiscence je možná pouze u polovodičů s určitou příměsí – aktivátorem (dopantem), či defekty (poruchy hostitelské matrice) a lze ji rozdělit na delokalizovanou a lokalizovanou. Delokalizovaný typ extrinsické fotoluminiscence probíhá mezi energetickými stavy dopantu a volnými nositeli náboje. Lokalizovaný typ extrinsické fotoluminiscence je omezen pouze na dané luminiscenční centrum. Rozdíl mezi intrinsickou a extrinsickou fotoluminiscencí zobrazuje Obr. 4. Mezi nejčastěji používané dopanty patří paramagnetické ionty přechodných kovů a vzácných zemin. Emisní pásy u paramagnetických iontů přechodných kovů pochází z d ↔ d elektronových přechodů částečně zaplněných d orbitalů. V případě paramagnetických Ln^{3+} pochází emisní pásy většinou z 4f \leftrightarrow 4f elektronových přechodů částečně zaplněných f orbitalů, jak bylo uvedeno v předešlé kapitole. Přestože nejsou obecně d \leftrightarrow d ani f \leftrightarrow f elektronové přechody z hlediska výběrových pravidel povolené, jejich uskutečnění je možné z důvodu vlivu okolního ligandového pole. Vlnová délka emisních spekter paramagnetických iontů přechodných kovů ze 4. periody se může výrazně měnit vlivem různé hostitelské matrice, jelikož relativně velké 3d orbitaly nejsou příliš účinně stíněny elektrony z vnějších slupek. Vlnová délka emisních spekter paramagnetických Ln³⁺ se však v různých hostitelských matricích výrazně nemění a tato spektra mívají ostrý tvar. To je dáno přítomností relativně malých 4f orbitalů uvnitř větších slupek, což činí 4f orbitaly méně citlivé k okolnímu ligandovému poli [50-52].

33

Obr. 4. Schéma intrinsické fotoluminiscence (vlevo) a extrinsické fotoluminiscence se zobrazenou donorovou a akceptorovou hladinou uvnitř pásu zakázaných energií (vpravo).

Velmi často se jako dopanty společně s aktivátory fotoluminiscence využívají i senzibilizátory. Účelem senzibilizátoru (S) je absorpce excitačního záření, která vede ke vzniku senzibilizátoru v excitovaném stavu (S^{*}). Následně dochází k energetickému přenosu absorbované energie mechanismem Coulombické interakce, či výměnnou interakcí na ion aktivátoru, což vede ke vzniku aktivátoru v excitovaném stavu (A^{*}) podle rovnice (3):

$$S^* + A \to S + A^* \tag{3}$$

Z řady Ln³⁺ se jako senzibilizátory běžně používají např. Yb³⁺, Er³⁺, či Ce³⁺ (možná je i jejich kombinace) [50–52].

2.4.1 Zářivá a nezářivá rekombinace

Přechod aktivátoru fotoluminiscence z vyšší energetické hladiny (z excitovaného stavu) na základní energetickou hladinu může být doprovázen nejen zářivou rekombinací, ale i nezářivou rekombinací. Zatímco při zářivé rekombinaci dochází k uvolnění energie ve formě fotonů (kvant elektromagnetického záření), tak při nezářivé rekombinaci dochází k uvolnění energie ve formě fononů (kvant mřížkových vibrací). Celková pravděpodobnost přechodu z vyšší energetické hladiny na základní energetickou hladinu $A_T (= \frac{1}{\tau})$ je dána rovnicí (4):

$$A_T = \frac{1}{\tau} = \frac{1}{\tau_r} + \frac{1}{\tau_{nr}} \tag{4}$$

kde τ_r je zářivá doba života luminiscenčního centra a τ_{nr} je nezářivá doba života luminiscenčního centra [50–53].

Jestliže platí: $\tau_r \gg \tau_{nr}$, tak dochází k dominanci nezářivých procesů na úkor zářivých procesů a tento jev se nazývá luminiscenční zhášení. Nezářivé procesy mohou být závislé na koncentraci opticky aktivních látek (např. energetický přenos, křížová relaxace, atd., které budou podrobněji popsány v dalších kapitolách), nebo závislé pouze na hostitelském materiálu a typu dopantu, což je případ multifononové relaxace (MPR). Celková pravděpodobnost multifononvé relaxace (A_{MPR}) je dána vztahem (5):

$$A_{MPR} = A_{MPR}(0)\exp(-\alpha\Delta E)$$
⁽⁵⁾

ve kterém $A_{MPR}(0)$ a α značí materiálové konstanty závislé pouze na hostitelském materiálu. ΔE označuje rozdíl dvou energetických hladin, mezi nimiž dochází k dané rekombinaci [50–53].

Pro posouzení, zda v daném hostitelském materiálu s opticky aktivním dopantem bude dominovat proces zářivé rekombinace, či proces MPR, lze využít empirický vztah (6):

$$P = \frac{\Delta E}{\hbar \omega_{max}} \tag{6}$$

ve kterém *P* značí počet fononů účastnících se dané rekombinace mezi energetickými hladinami. $\hbar\omega_{max}$ je maximální fononová energie hostitelského materiálu s opticky aktivním dopantem, kterou lze chápat jako maximální hodnotu frekvence, při které ještě dochází k vibraci strukturních jednotek dopovaného hostitelského materiálu. Na základě vztahu (6) se předpokládá, že při rekombinaci s účastí více než 5 fononů (*P* > 5) je celková pravděpodobnost MPR zanedbatelná a dominuje zářivá rekombinace. Při *P* ≈ 4 je předpokládána stejná pravděpodobnost MPR a zářivé rekombinace. Z toho vyplývá, že pro *P* < 4 je zářivá rekombinace obtížně uskutečnitelná a daný materiál je pro tuto zářivou rekombinaci nevhodný [50–54].

Kvantová účinnost fotoluminiscence je definována vztahem (7) jako poměr celkové doby života luminiscence a zářivé doby života luminiscence:

$$\eta = \frac{\tau}{\tau_r} \tag{7}$$

Kvantovou účinnost fotoluminiscence η lze chápat jako poměr počtu emitovaných fotonů vůči počtu absorbovaných fotonů. Dochází-li s rostoucí koncentrací aktivátoru k poklesu η , hovoříme o koncentračním zhášení. Hodnota η při Stokesově fotoluminiscenci a při anti-
Stokesově upkonverzní fotoluminiscenci je vždy $\eta \le 1$. V praxi může být i $\eta > 1$, což platí pro nelineární optický jev zvaný downkonverze. Při Stokesově fotoluminiscenci se do vztahu (7) obvykle přidává korekce na Stokesův posun s použitím energie emitovaného (E_{em}) a excitačního (E_{exc}) záření (8):

$$\eta_{v} = \eta \frac{E_{em}}{E_{exc}} \tag{8}$$

Veličinu η_v pak nazýváme jako výkonovou účinnost fotoluminiscence [50–53].

2.4.2 Kinetika doznívání fotoluminiscence

Pro studium procesů zářivé a nezářivé rekombinace a za účelem objasnění mechanismu fotoluminiscence se využívá časového průběhu intenzity luminiscence v závislosti na energii či intenzitě excitačního záření. Nejjednodušším procesem časového doznívání emitovaného záření je monomolekulární děj, který lze popsat diferenciální rovnicí (9):

$$\frac{dN_A}{dt} = G_{exc} - \frac{N_A}{\tau}$$
(9)

ve které N_A značí koncentraci opticky aktivních center fotoluminiscence, t je čas, G_{exc} značí generační člen excitace luminiscenčního záření a τ je celková doba doznívání luminiscence [52].

Spuštěním zdroje excitačního záření dochází nejprve k postupnému nárůstu intenzity luminiscence, což je dáno postupným zaplňováním vyšších energetických hladin iontů aktivátoru. Jakmile dojde k dosažení rovnovážného stavu saturací vyšších energetických hladin, intenzita luminiscence se výrazně nemění a platí $\frac{dN_A}{dt} = 0$. Následným vypnutím excitačního zdroje ($G_{exc} = 0$) dojde k postupnému vyprazdňování vyšších energetických hladin, což se projeví postupným poklesem intenzity luminiscence v čase. Řešením diferenciální rovnice (9) se získá rovnice (10) popisující monomolekulární doznívání luminiscence:

$$N_A(t) = N_{A0} \exp\left(-\frac{t}{\tau}\right) \tag{10}$$

kde $N_A(t)$ je koncentrace opticky aktivních center v čase *t* a N_{A0} je koncentrace opticky aktivních center v čase t = 0 [52].

Intenzitu luminiscence, tedy množství emitovaných fotonů z objemové jednotky za určitý čas, lze vyjádřit vztahem (11):

$$I_{PL}(t) = \frac{N_A(t)}{\tau_r} = \left(\frac{N_{A0}}{\tau_r}\right) \exp\left(-\frac{t}{\tau}\right) = I_{PL}(0) \exp\left(-\frac{t}{\tau}\right)$$
(11)

ve kterém $I_{PL}(0)$ je intenzita luminiscence v čase t = 0 [52].

Vztah (11) popisuje doznívání intenzity luminiscence vyjádřené jednoduchou exponenciálou, přičemž celkovou dobu doznívání luminiscence τ lze stanovit ze směrnice logaritmické závislosti intenzity luminiscence na čase. Velice často se však u anorganických luminoforů vyskytuje více procesů luminiscenčního doznívání, které mohou mít odlišný původ. V takovém případě je intenzita luminiscence v čase *t* dána multi-exponenciální funkcí (12):

$$I_{PL}(t) = \sum_{i=1}^{N} A_i \exp\left(-\frac{t}{\tau_i}\right)$$
(12)

kde A_i označuje amplitudu a τ_i je celková doba doznívání luminiscence pro určitý proces "*i*" ze všech procesů "*N*", kterou lze stanovit fitováním experimentálních dat touto funkcí (12). Průměrnou dobu doznívání luminiscence $\langle \tau \rangle$ pak lze určit z rovnice (13):

$$\langle \tau \rangle = \frac{\sum_{i=1}^{N} A_i \tau_i^2}{\sum_{i=1}^{N} A_i \tau_i}$$
(13)

přičemž v praxi se obvykle využívá fitování dvojitou exponenciální funkcí, tedy N = 2 [50, 52, 55, 56].

V krystalických látkách se může obecně vyskytovat určitý stupeň nehomogenity. Pro lepší vyjádření intenzity luminiscence v čase lze v takových případech alternativně použít funkci napnuté exponenciály (14):

$$I_{PL}(t) = I_{PL}(0) \exp\left[\left(-\frac{t}{\tau}\right)^{\beta}\right]$$
(14)

ve které β je materiálový parametr funkce napnuté exponenciály s hodnotou $0 < \beta < 1$ [57].

2.5 Upkonverzní fotoluminiscence

Upkonverzní fotoluminiscence (UCPL) je zvláštní druh fotoluminiscence, která se neřídí Stokesovým zákonem a patří tedy mezi anti-Stokesovy procesy. UCPL je založena na emisi elektromagnetického záření kratší vlnové délky, než je vlnová délka excitačního záření ($\lambda_{exc} > \lambda_{em}$; tedy $E_{exc} < E_{em}$). Generování fotonů s kratší vlnovou délkou ve srovnání s fotony excitačního záření zahrnuje postupnou absorpci dvou, či více fotonů nebo energetický přenos probíhající na úrovni reálných metastabilních excitovaných energetických hladin jednoho, či více iontů. Schéma principu UCPL, ve kterém jsou pro zjednodušení ignorovány procesy nezářivé rekombinace, zobrazuje Obr. 5. Excitační záření o energii E_{exc} excituje elektron ze základní energetické hladiny "0" na excitovanou hladinu "1". Excitační záření téže energie E_{exc} následně excituje elektron z excitované hladiny "1" na excitovanou hladinu "2". Elektron poté zářivě rekombinuje zpět na základní hladinu "0" za uvolnění elektromagnetického záření o energii E_{em} [51, 58].

Obr. 5. Zjednodušené schéma principu UCPL pro obecný tříhladinový systém.

Populaci jednotlivých energetických hladin "0", "1" a "2" lze na základě Obr. 6 popsat pomocí kinetických rovnic (15), (16) a (17):

$$\frac{dN_0}{dt} = -G N_0 + k_1 N_1 + k_{2a} N_2 + w_{ETU} (N_1)^2$$
(15)

$$\frac{dN_1}{dt} = G N_0 - E N_1 - k_1 N_1 + k_{2b} N_2 - 2w_{ETU} (N_1)^2$$
(16)

$$\frac{dN_2}{dt} = E N_1 - (k_{2a} + k_{2b}) N_2 + w_{ETU} (N_1)^2$$
(17)

kde N_0 , N_1 a N_2 značí hustotu populace dané hladiny "0", "1" a "2". *G* značí rychlostní konstantu procesu absorpce ze základního stavu (GSA, z anglického "ground state absorption") a *E* značí rychlostní konstantu procesu absorpce z excitovaného stavu (ESA, z anglického "excited state absorption"). w_{ETU} značí rychlostní konstantu upkonverze energetickým přenosem (ETU, z anglického "energy transfer upconversion"), k_1 je rychlostní konstanta zářivého procesu z hladiny "1" na hladinu "0", k_{2a} je rychlostní konstanta zářivého procesu z hladiny "2" na hladinu "0" (tedy upkonverzní fotoluminiscence) a k_{2b} je rychlostní konstanta zářivého procesu z hladiny "2" na hladinu "1". Kinetické rovnice (15), (16) a (17) umožňují simulovat vliv jednotlivých příspěvků ESA a ETU na kinetiku doznívání intenzity UCPL pro obecný tříhladinový systém [51, 58].

Obr. 6. Schéma populace jednotlivých energetických hladin při UCPL. Přerušované šipky znázorňují nezářivé procesy, plné šipky znázorňují zářivé procesy.

Zaznamenává-li se intenzita emisních spekter UCPL (I_{UCPL}) v závislosti na excitačním výkonu (P), platí obecný vztah (18):

$$I_{UCPL} \propto P^n \tag{18}$$

ve kterém *n* je počet absorbovaných fotonů, který se určuje ze směrnice lineární části dvojité logaritmické závislosti I_{UCPL} na *P*. Dvojitá logaritmická závislost I_{UCPL} na *P* je lineární jen v oblasti nízkých excitačních výkonů. K poklesu směrnice této závislosti dochází po překročení "zlomového bodu", kde se již hovoří o oblasti vysokých excitačních výkonů. Redukce parametru *n* v oblasti vysokých excitačních výkonů bývá přisuzována např. kompetici mezi příspěvky ESA a ETU, saturačním efektům či jevům termálního zhášení [51, 58–60].

Jako aktivátory UCPL se používají nejčastěji Ln³⁺, zejména Pr³⁺, Nd³⁺, Ho³⁺, Er³⁺ a Tm³⁺. Jev UCPL byl rovněž pozorován u některých kationtů přechodných kovů, např. Ti²⁺, Ni²⁺, Mn²⁺, či Mo³⁺. Hostitelské materiály mohou být ve formě monokrystalů, optických vláken, skel, tenkých vrstev, či prášků. Jednu z konkrétních vhodných variant představují nanokrystalické oxidy granátové struktury. Jevu UCPL se v současnosti využívá např. pro konstrukci kontinuálních vláknových laserů operujících při pokojové teplotě, vláknových zesilovačů, vrstev pro zvýšení kvantové účinnosti solárních křemíkových článků, či pro již zmiňované luminofory pro zobrazování biologických struktur [35, 51, 53, 58, 61, 62]. Dalším známým nelineárním optickým jevem je fotonová downkonverze, která je opačným jevem vzhledem k UCPL. Při fotonové downkonverzi připadá na jeden absorbovaný foton dva a více emitovaných fotonů o nižší energii, platí tedy $E_{\text{exc}} > E_{\text{em}}$ [51, 53, 58].

2.5.1 Mechanismy upkonverzní fotoluminiscence

Následující podkapitoly pojednávají o dominantních mechanismech UCPL v Ln³⁺. Ačkoliv existuje mnoho mechanismů vybuzení elektronu ze základní energetické hladiny do vyšších energetických hladin, zde se omezíme pouze na čtyři hlavní mechanismy UCPL. Jedná se o absorpci ze základního stavu následovanou absorpcí z excitovaného stavu, upkonverzi energetickým přenosem, kooperativní upkonverzi a lavinovou upkonverzi [51, 53, 58].

Diagramy energetických hladin Ln³⁺, pomocí kterých budou jednotlivé mechanismy UCPL ilustrovány, poprvé představil roku 1968 G.H. Dieke [63].

2.5.1.1 Absorpce ze základního stavu/absorpce z excitovaného stavu

Absorpce ze základního stavu následovaná absorpcí z excitovaného stavu (GSA/ESA) je nejjednodušším mechanismem UCPL. Princip mechanismu GSA/ESA je zobrazen na Obr. 7 pro ion Er^{3+} . Absorpcí excitačního záření o $\lambda_{exc} = 980$ nm přechází elektron ze základní energetické hladiny Er^{3+} : ${}^{4}I_{15/2}$ na hladinu ${}^{4}I_{11/2}$. Následující opětovnou absorpcí excitačního záření o $\lambda_{\text{exc}} = 980$ nm přechází elektron z hladiny ${}^{4}I_{11/2}$ na hladinu ${}^{4}F_{7/2}$. Hladina ${}^{4}F_{7/2}$ je termálně spřažena s hladinami ${}^{2}H_{11/2}$ a ${}^{4}S_{3/2}$, což vede k MPR na hladinu ${}^{4}S_{3/2}$. Elektron z hladiny ${}^{4}S_{3/2}$ následně zářivě rekombinuje na základní hladinu ${}^{4}I_{15/2}$ uvolněním záření o $\lambda_{em} = 550$ nm. Pro uskutečnění mechanismu GSA/ESA u iontů Er³⁺ lze použít i excitační zdroje o jiné λ_{exc} . S použitím $\lambda_{exc} = 1550$ nm může dojít k dvou-fotonové absorpci Er³⁺: ${}^{4}I_{15/2} \rightarrow$ ${}^{4}I_{13/2} \rightarrow {}^{4}I_{9/2}$ s následnou zářivou rekombinací $\mathrm{Er}^{3+}: {}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ ($\lambda_{\mathrm{em}} \approx 800$ nm), nebo může dojít k tří-fotonové absorpci Er^{3+} : ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2} \rightarrow {}^{4}I_{9/2} \rightarrow {}^{4}S_{3/2}$ s následnou zářivou rekombinací Er^{3+} : ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ ($\lambda_{\text{em}} = 550 \text{ nm}$). Další variantou je použití excitačního zdroje o $\lambda_{\text{exc}} = 800 \text{ nm}$, které vede k dvou-fotonové absorpci Er^{3+} : ${}^{4}I_{15/2} \rightarrow {}^{4}I_{9/2} \rightarrow {}^{2}H_{9/2}$ s následnou MPR z vyšší excitované hladiny ${}^{2}H_{9/2}$ na hladinu ${}^{4}S_{3/2}$, vedoucí k již zmiňované zářivé rekombinaci Er^{3+} : ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ ($\lambda_{em} = 550$ nm). Mechanismus GSA/ESA probíhá v rámci jednoho iontu a je téměř nezávislý na koncentraci upkonverzních iontů [51, 53, 58, 64, 65].

Obr. 7. Princip mechanismu GSA/ESA UCPL pro ion Er^{3+} s použitím zdroje excitačního záření o $\lambda_{exc} = 980$ nm.

2.5.1.2 Upkonverze energetickým přenosem

Upkonverze energetickým přenosem (ETU) je mechanismem UCPL, pro který je nutná přítomnost alespoň dvou opticky aktivních iontů. Mechanismus ETU je tedy silně závislý na meziiontové vzdálenosti a tedy na koncentraci daných iontů. Mechanismus ETU lze rozdělit na dva typy – ETU probíhající v rámci jednoho druhu iontu a ETU probíhající v rámci dvou druhů iontů. V obou případech však jeden ion vystupuje jako senzibilizátor a druhý ion jako aktivátor, přičemž energie alespoň jedné metastabilní (excitované) hladiny obou iontů musí být srovnatelná (v rezonanci) [51, 53, 58].

Princip mechanismu ETU probíhající v rámci jednoho druhu iontu je zobrazen na Obr. 8 pro případ dvojice iontů Er^{3+} . Ion Er^{3+} , který vystupuje jako senzibilizátor, absorbuje excitační záření o $\lambda_{\text{exc}} = 980$ nm a dojde k výše popsanému procesu GSA, vedoucímu k populaci hladiny ${}^{4}I_{11/2}$. Absorbovaná energie je následně přenesena procesem ET1 na sousední ion Er^{3+} , fungující jako aktivátor. Dojde k excitaci aktivátoru Er^{3+} : ${}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}$ (první foton). Opětovným procesem GSA je absorbovaná energie senzibilizátoru přenesena na hladinu aktivátoru ${}^{4}I_{11/2}$ procesem ET2. Dojde k excitaci aktivátoru Er^{3+} : ${}^{4}I_{11/2} \rightarrow {}^{4}F_{7/2}$ (druhý foton). Po procesu MPR dochází k zářivé rekombinaci aktivátoru Er^{3+} : ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ ($\lambda_{\text{em}} = 550$ nm). Aktivátor Er^{3+} může být rovněž excitován na hladinu ${}^{4}I_{11/2}$ procesem GSA a může tak proběhnout pouze jeden energetický přenos ze senzibilizátoru [51, 53, 58, 66].

Obr. 8. Princip mechanismu ETU UCPL pro dvojici iontů Er^{3+} s použitím zdroje excitačního záření o $\lambda_{exc} = 980$ nm.

Princip mechanismu ETU probíhající v rámci dvou druhů iontů je zobrazen na Obr. 9 pro případ iontů Er^{3+} a Yb³⁺. Excitovaná hladina ${}^{2}F_{5/2}$ iontu senzibilizátoru Yb³⁺ je populována procesem GSA. Absorbovaná energie je přenesena procesem ET1 na metastabilní hladinu srovnatelné energie sousedního iontu Er^{3+} , kterou je hladina ${}^{4}I_{11/2}$. Opětovným procesem GSA a přenesením absorbované energie procesem ET2 z hladiny ${}^2F_{5/2}$ na hladinu ${}^4I_{11/2}$ dojde k populaci hladiny Er^{3+} : ${}^{4}F_{7/2}$. Po procesu MPR je opět emitováno elektromagnetické záření o $\lambda_{em} = 550$ nm rekombinací Er^{3+} : ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$. Ion Er^{3+} zde také může být excitován na hladinu ${}^{4}I_{11/2}$ procesem GSA a pak proběhne pouze energetický přenos označený jako ET2. Iontů Yb³⁺ se s výhodou používá jako kodopantů spolu s Er³⁺ (či dalšími ionty) v různých luminoforech. Důvodem je vysoká účinnost procesu energetického přenosu $Yb^{3+} \rightarrow Er^{3+}$ a tedy vysoká intenzita emisních spekter UCPL v porovnání s použitím dopantů jednoho druhu. Optimální poměr obsahu Yb3+:Er3+ závisí zejména na hostitelském materiálu. Příkladem může být nanokrystalický Y3Al5O12 kodopovaný Yb3+ a Er3+, ve kterém bylo dosaženo nejvyšších intenzit emisních spekter UCPL při poměrech (Yb³⁺:Er³⁺) 20:1 a 10:1. Přídavku Yb³⁺ se dále využívá pro ladění poměru "zelené" (Er^{3+} : ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$) vůči "červené" (Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$) UCPL emisi, avšak zářivý přechod Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ způsobený populací hladiny ${}^{4}F_{9/2}$ dalšími procesy je zde pro jednoduchost ignorován a bude rozebrán v dalších kapitolách [51, 53, 58, 66-69].

Obr. 9. Princip mechanismu ETU UCPL pro ionty Er^{3+} a Yb³⁺ s použitím zdroje excitačního záření o $\lambda_{exc} = 980$ nm.

2.5.1.3 Kooperativní upkonverze

Kooperativní mechanismus UCPL opět závisí na koncentraci opticky aktivních iontů a dělí se na dva typy – kooperativní senzibilizace a kooperativní luminiscence. Princip kooperativní senzibilizace je zobrazen na Obr. 10 a) pro případ trojice iontů Er^{3+} . Dva sousední ionty Er^{3+} absorbují excitační záření o $\lambda_{exe} = 1550$ nm a dochází u nich k populaci hladiny ${}^{4}I_{13/2}$ procesem GSA. Absorbovaná energie obou iontů Er^{3+} je následně přenesena na třetí ion Er^{3+} , u něhož dochází k populaci excitované hladiny ${}^{4}I_{9/2}$. Následuje zářivá rekombinace Er^{3+} : ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ emitováním záření o $\lambda_{em} = 810$ nm. Kooperativní senzibilizace tedy vyžaduje přítomnost tří iontů, které však nemusí být stejného druhu. Naproti tomu kooperativní luminiscence probíhá v rámci dvou iontů, jak zobrazuje Obr. 10 b), avšak pravděpodobnost kooperativní luminiscence je nižší ve srovnání s kooperativní senzibilizací. V tomto případě opět dochází k populaci hladiny ${}^{4}I_{13/2}$ u dvou sousedních iontů Er^{3+} procesem GSA ($\lambda_{exe} = 1550$ nm), avšak emise záření o $\lambda_{em} = 810$ nm pochází z virtuální hladiny kombinací absorbované energie obou iontů Er^{3+} . Dva ionty účastnící se kooperativní luminiscence bývají nejčastěji stejného druhu, ačkoliv to není nutná podmínka [51, 53, 58].

Obr. 10. Princip mechanismu kooperativní senzibilizace (a) a kooperativní luminiscence (b) pro případ trojice (a) a dvojice (b) iontů Er^{3+} s použitím zdroje excitačního záření o $\lambda_{\text{exc}} = 1550$ nm.

2.5.1.4 Lavinová upkonverze

Mechanismus lavinové upkonverze je posledním uvedeným dominantním mechanismem UCPL, přičemž bývá označován jako nejúčinnější a opět závisí na koncentraci opticky aktivních iontů. Pro vznik lavinové upkoverze je podmínkou přítomnost výše popsaných mechanismů GSA/ESA a GSA/ETU v kombinaci s křížovými relaxacemi (CR, z anglického "cross-relaxation"). Princip možného dosažení lavinové upkonverze je zobrazen na Obr. 11 pro případ dvojice iontů Er³⁺. Mechanismy GSA/ESA a GSA/ETU účinně populují hladiny Er³⁺: ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$, což následně vede k MPR na hladinu ${}^{4}S_{3/2}$. Zároveň dochází dalším procesem ESA (absorpcí třetího fotonu) a následným procesem MPR k populaci hladiny Er^{3+} : ${}^{2}G_{9/2}$. Následným procesem CR hladiny ${}^{2}G_{9/2}$ s hladinou ${}^{4}I_{13/2}$ (populovanou procesem MPR z hladiny ${}^{4}I_{11/2}$) dochází k populaci hladin ${}^{2}H_{11/2}$ a ${}^{4}I_{9/2}$. Proces MPR z hladiny ${}^{2}H_{11/2}$ přispívá k účinné populaci hladiny ${}^{4}S_{3/2}$, která zářivě rekombinuje (${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$) emitováním záření o $\lambda_{em} = 550$ nm. Je však třeba poznamenat, že pro vznik takto relativně komplikovaného mechanismu je třeba nízká pravděpodobnost procesu GSA, avšak vysoká pravděpodobnost procesů ESA a CR. Dosažení lavinové upkoverze dále vyžaduje použití vysokých excitačních výkonů pro účinnou populaci excitovaných energetických hladin. Jev lavinové upkonverze je charakteristický výrazným nelineárním vzrůstem směrnice n v dvojité logaritmické závislosti IUCPL na P, kdy po překročení "kritického výkonu" vzniká v této závislosti křivka esovitého tvaru [51, 53, 58, 70].

Obr. 11. Princip možného dosažení mechanismu lavinové upkonverze pro dvojici iontů Er^{3+} s použitím zdroje excitačního záření o $\lambda_{\text{exc}} = 980$ nm.

2.5.2 Hlavní mechanismy limitující upkonverzní fotoluminiscenci

V následujících podkapitolách jsou podrobněji rozebrány hlavní mechanismy zodpovědné za depopulaci vyšších energetických hladin, mající za výsledek snížení intenzity upkonverzních emisních přechodů. Mimo již zmíněného procesu MPR se jedná o křížové relaxace, zpětný energetický přenos, zářivé procesy do nižších hladin, koncentrační zhášení a o zhášení dané přítomností nečistot. Přestože tyto procesy vedou ke zmíněné depopulaci vyšších energetických hladin, může být jejich přítomnost pro některé účely výhodou. To platí pro první tři uvedené procesy, kterých lze využít např. k potlačení emisních přechodů jednoho druhu a ke zvýraznění emisních přechodů jiného druhu. [51, 53, 58, 71–75].

2.5.2.1 Křížové relaxace

Procesy CR označují nezářivé rekombinační procesy probíhající mezi dvojicí iontů stejného, nebo různého druhu, kdy alespoň jeden z iontů musí být před tímto procesem v excitovaném stavu. Procesy CR lze chápat jako procesy opačné k mechanismu ETU UCPL (probíhají opačným směrem). Oproti mechanismu ETU UCPL se oba ionty po procesu CR nachází v nižším energetickém stavu, než byl nejvyšší energetický stav jednoho z iontů před procesem CR. Účinnost procesů CR tedy opět silně závisí na koncentraci daných iontů. Průběh procesů CR je ilustrován na Obr. 12 pro případ dvojice iontů Er³⁺. Mechanismus GSA/ESA

účinně populuje hladiny Er^{3+} : ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$ prvního iontu, zatímco u druhého iontu dochází k populaci hladiny Er^{3+} : ${}^{4}I_{11/2}$ pouze procesem GSA. Následně dojde k interakci obou iontů procesem označeným CR1: ${}^{4}F_{7/2} + {}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2} + {}^{4}F_{9/2}$. Druhou možností je populace hladiny Er^{3+} : ${}^{2}H_{11/2}$ prvního iontu po procesu GSA/ESA následovaného procesem MPR a interakce se sousedním iontem v základním energetickém stavu. Probíhá tedy proces s označením CR2: ${}^{2}H_{11/2} + {}^{4}I_{15/2} \rightarrow {}^{4}I_{9/2} + {}^{4}I_{13/2}$. Proces CR1 je například výhodný při potřebě zvyšování intenzity ,,červené" UCPL (Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$; $\lambda_{em} \approx 650$ nm) na úkor ,,zelené" UCPL ($\lambda_{em} \approx 550$ nm) [51, 53, 58, 71, 76, 77].

Obr. 12. Princip mechanismu procesů CR pro dvojici iontů Er^{3+} s použitím zdroje excitačního záření o $\lambda_{exc} = 980$ nm.

Příkladem dvojice iontů různého druhu, mezi nimiž dochází k procesu CR, může být dvojice Ho³⁺-Ce³⁺ s přítomností senzibilizujících iontů Yb³⁺, jak uvádí Obr. 13. Proces GSA účinně populuje hladinu Yb³⁺: ${}^{2}F_{5/2}$. Absorbovaná energie je přenesena procesem ET1 na sousední ion Ho³⁺, což vede k excitaci Ho³⁺: ${}^{5}I_{8} \rightarrow {}^{5}I_{6}$. Absorpcí druhého fotonu iontem Yb³⁺ s následným procesem ET2 dojde k excitaci Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}F_{4}/{}^{5}S_{2}$. Termálně spřažené hladiny Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2}$ následně interagují se sousedním iontem Ce³⁺ v základním energetickém stavu. Probíhá proces CR: ${}^{5}F_{4}/{}^{5}S_{2}$ (Ho³⁺) + ${}^{2}F_{5/2}$ (Ce³⁺) $\rightarrow {}^{5}F_{5}$ (Ho³⁺) + ${}^{2}F_{7/2}$ (Ce³⁺). Využití iontů Ce³⁺ jako třetího dopantu vedle iontů Yb³⁺ a Ho³⁺ se tak využívá opět ke zvyšování intenzity "červené" UCPL (Ho³⁺: ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$; $\lambda_{em} \approx 650$ nm) na úkor "zelené" UCPL (Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$; $\lambda_{em} \approx 550$ nm) [78].

Obr. 13. Princip mechanismu procesu CR pro ionty Ho³⁺ a Ce³⁺ s přítomností iontu senzibilizátoru Yb³⁺ s použitím zdroje excitačního záření o $\lambda_{exc} = 980$ nm.

Obecně se předpokládá, že při procesech CR dochází mezi dvojicemi iontů Ln^{3+} k dipóldipólové interakci, způsobené překročením určité mezní koncentrace (meziiontové vzdálenosti Ln^{3+}). Pravděpodobnost procesů CR pro Ln^{3+} podle Dexterovy teorie energetického přenosu odpovídá výrazu $1/R_{Ln^{3+}\leftrightarrow Ln^{3+}}^{6}$, kde $R_{Ln^{3+}\leftrightarrow Ln^{3+}}$ je průměrná meziiontová vzdálenost Ln^{3+} . Tu lze pro krystalické látky určit ze vztahu (19):

$$R_{Ln^{3+}\leftrightarrow Ln^{3+}} \approx 2\left(\frac{3V}{4\pi c_{Ln^{3+}} N_{Ln^{3+}}}\right)^{\frac{1}{3}}$$
(19)

kde V značí objem základní buňky, $c_{Ln^{3+}}$ je procentuální obsah Ln³⁺ a $N_{Ln^{3+}}$ je počet dostupných míst (pozic), která mohou Ln³⁺ v základní buňce obsazovat. Procesy energetického přenosu mezi Ln³⁺, mezi něž patří i procesy CR, jsou v krystalických látkách považovány za zanedbatelné při $R_{Ln^{3+}\leftrightarrow Ln^{3+}} > 15$ Å (kdy pravděpodobnosti těchto procesů < 1 s⁻¹) [71, 79– 81].

2.5.2.2 Zpětný energetický přenos

Zpětný energetický přenos (EBT, z anglického "energy back transfer") je nezářivý rekombinační proces, kterým je přenesena energie z iontů aktivátoru zpět na ionty senzibilizátoru. Pravděpodobnost procesu EBT roste s klesající meziiontovou vzdáleností iontů

senzibilizátoru a aktivátoru a zároveň s rostoucím poměrem obsahu iontů senzibilizátoru vůči iontům aktivátoru. Princip procesu EBT pro dvojici $Er^{3+}-Yb^{3+}$ je zobrazen na Obr. 14. Mechanismus GSA účinně populuje hladinu Yb^{3+} : ${}^{2}F_{5/2}$. Absorbovaná energie z iontu senzibilizátoru Yb^{3+} je přenesena procesem ET1 na sousední ion aktivátoru, což v kombinaci s procesem GSA v rámci iontu Er^{3+} vede k populaci hladiny Er^{3+} : ${}^{4}I_{11/2}$. Absorpcí druhého fotonu iontem Yb^{3+} a následným procesem ET2 v kombinaci s procesem ESA1 v rámci iontu Er^{3+} dochází k populaci hladin Er^{3+} : ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$. Následný proces MPR vede k populaci hladiny Er^{3+} : ${}^{4}S_{3/2}$, která interaguje se sousedním iontem Yb^{3+} v základním energetickém stavu procesem EBT: ${}^{4}S_{3/2}$ (Er^{3+}) + ${}^{2}F_{7/2}$ (Yb^{3+}) $\rightarrow {}^{4}I_{13/2}$ (Er^{3+}) + ${}^{2}F_{5/2}$ (Yb^{3+}). Takto dochází k depopulaci energetických hladin Er^{3+} zodpovědných za "zelenou" UCPL ($\lambda_{em} \approx 550$ nm). Absorpce dalšího fotonu iontem Yb^{3+} navíc vede k dalšímu přenosu energie procesem ET3, který v kombinaci s procesem ESA2 v rámci iontu Er^{3+} excituje Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}F_{9/2}$. To vede ke zvýšení intenzity "červené" UCPL (Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$; $\lambda_{em} \approx 650$ nm), které je výraznější ve srovnání s přítomností samotných procesů CR v rámci iontů Er^{3+} . Proces EBT rovněž výrazně zkracuje celkové doby života hladin Er^{3+} : ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$ [72, 79, 80, 82, 83].

Obr. 14. Princip mechanismu procesu EBT pro ionty Er^{3+} a Yb^{3+} s použitím zdroje excitačního záření o $\lambda_{exc} = 980$ nm.

Obr. 15 zobrazuje princip procesu EBT pro dvojici Ho^{3+} -Yb³⁺. Stejně jako v předchozím případě, i zde je populována hladina Yb³⁺: ${}^{2}F_{5/2}$ mechanismem GSA, přičemž následný přenos energie na sousední ion Ho³⁺ procesem ET1 vede k populaci hladiny Ho³⁺: ${}^{5}I_{6}$. Absorpcí

druhého fotonu iontem Yb³⁺ a následným procesem ET2 dojde k populaci hladin Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2}$. Následně dojde k procesu EBT: ${}^{5}F_{4}/{}^{5}S_{2}$ (Ho³⁺) + ${}^{2}F_{7/2}$ (Yb³⁺) $\rightarrow {}^{5}I_{6}$ (Ho³⁺) + ${}^{2}F_{5/2}$ (Yb³⁺). Dochází tedy k depopulaci energetických hladin Ho³⁺ zodpovědných za "zelenou" UCPL (Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$; $\lambda_{em} \approx 550$ nm), což se projeví snížením intenzity emisních spekter daného přechodu a zkrácením celkové doby života hladin Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2}$. Populace hladiny Ho³⁺: ${}^{5}I_{6}$ se projeví zvýšením intenzity emisních spekter daných přechodem Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ ($\lambda_{em} \approx 1200$ nm) a prodloužením celkové doby života hladiny Ho³⁺: ${}^{5}I_{6}$ [84–86].

Obr. 15. Princip mechanismu procesu EBT pro ionty Ho^{3+} a Yb^{3+} s použitím zdroje excitačního záření o $\lambda_{exc} = 980$ nm.

2.5.2.3 Zářivé procesy do nižších hladin

Zářivé procesy do nižších hladin označují zářivé rekombinace z vyšších energetických hladin do níže položených hladin, mimo rekombinace do základní hladiny. Výhodou těchto procesů je možnost generování zářivých rekombinací daných přechody mezi hladinami s malým rozdílem energie, které se v emisních spektrech mohou nacházet v blízké či střední infračervené oblasti. Pro umožnění takovýchto zářivých rekombinačních procesů je kromě účinné excitace Ln^{3+} důležitá také nízká hodnota $\hbar\omega_{max}$ dopovaného hostitelského materiálu kvůli potlačení nezářivých rekombinačních procesů. Případ zářivé rekombinace do nižší hladiny pro ion Er^{3+} ilustruje Obr. 16 a). Absorpcí fotonu s $\lambda_{exc} = 1550$ nm dojde k mechanismu GSA, který populuje hladinu Er^{3+} : ${}^{4}I_{13/2}$. Následně může dojít k procesu MPR

na hladinu Er^{3+} : ${}^{4}I_{11/2}$, přičemž následná zářivá rekombinace Er^{3+} : ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$ poskytuje emisní spektrum při $\lambda_{em} \approx 2700$ nm. Může však také dojít k absorpci třetího fotonu hladinou Er^{3+} : ${}^{4}I_{9/2}$, což povede k populaci hladin Er^{3+} : ${}^{2}H_{11/2}/{}^{4}S_{3/2}$ mechanismem ESA2. Následný proces MPR populuje hladinu Er^{3+} : ${}^{4}F_{9/2}$. Zářivá rekombinace Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{13/2}$ se v emisním spektru nachází při $\lambda_{em} \approx 1150$ nm. Obr. 16 b) ilustruje zářivou rekombinaci do nižší hladiny pro dvojici Ho³⁺-Yb³⁺ s použitím $\lambda_{exc} = 980$ nm. Mechanismus GSA populuje hladinu Yb³⁺: ${}^{2}F_{5/2}$ a následný proces ET1 populuje hladinu sousedního Ho³⁺: ${}^{5}I_{6}$. Z této hladiny může dojít k zářivé rekombinaci Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ ($\lambda_{em} \approx 2850$ nm). Druhou možností je absorpce druhého fotonu iontem Yb³⁺ a proces ET2 populující hladiny Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2}$. Zářivý přechod Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{7}$ se v emisním spektru nachází při $\lambda_{em} \approx 750$ nm. Kromě výše zmíněných zářivých přechodů do nižších hladin byly u iontu Er^{3+} a u dvojice iontů Ho³⁺-Yb³⁺ zaznamenány i další zářivé přechody. Jedná se např. o Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{11/2}$ ($\lambda_{em} \approx 2000$ nm) nebo Ho³⁺: ${}^{5}F_{5} \rightarrow {}^{5}I_{4}$ ($\lambda_{em} \approx 4100$ nm). Největší praktický význam ze zářivých přechodů do nižších hladin má již zmíněný zářivý přechod Er^{3+} : ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$, jehož se využívá ke generování laserového záření v Er^{3+} -dopovaném Y₃Al₅O₁₂ např. pro medicinální aplikace [53, 73, 87–89].

Obr. 16. Princip mechanismu zářivé rekombinace do nižší hladiny pro ion Er^{3+} (a) a pro dvojici iontů Ho³⁺ a Yb³⁺ (b) s použitím zdroje excitačního záření o $\lambda_{\text{exc}} = 1550 \text{ nm}$ (a) a $\lambda_{\text{exc}} = 980 \text{ nm}$ (b).

2.5.2.4 Koncentrační zhášení

Pojem koncentrační zhášení označuje obecně snížení intenzity fotoluminiscence při překročení určité kritické koncentrace iontů aktivátoru. Je způsobené migrací excitační energie mezi ionty aktivátoru, což indukuje kaskádu procesů CR. Dále může být způsobeno vznikem defektů, které pak zachycují energii. Pro Ln³⁺, u kterých jsou při procesech přenosu energie uvažovány zejména dipól-dipólové interakce, je kritická vzdálenost pro luminiscenční zhášení definována vztahem (20):

$$R_0 = (C_{DA} \tau_r)^{\frac{1}{6}}$$
(20)

Ve vztahu (20) C_{DA} označuje mikroparametr energetického přenosu a τ_r je zářivá doba života luminiscence. Obecně v pevných látkách se spinově povolenými elektronovými přechody obvykle dochází ke koncentračnímu zhášení při koncentracích iontů aktivátoru mezi ≈ 0.1 at. % až ≈ 1 at. %, ale není to pravidlem [79, 90].

2.5.2.5 Zhášení upkonverzní fotoluminiscence dané přítomností nečistot

Nanokrystalické materiály jsou poměrně náchylné ke kontaminaci látkami, které nesou náboj. Omezíme-li se pouze na kontaminaci povrchu nanokrystalů, tak největší význam představují hydroxylové skupiny, které jsou adsorbovány povrchem nanokrystalů z okolního prostředí (např. vlivem použitých rozpouštědel, či vzdušné vlhkosti). Fundamentální frekvence vibrací OH^- jednotek je při vlnočtu ≈ 3460 cm⁻¹, což je v rezonanci např. s rozdílem energetických hladin Er^{3+} : ${}^{4}I_{11/2}$ a ${}^{4}I_{13/2}$ ($\approx 3600 \text{ cm}^{-1}$). Přítomnost hydroxylových skupin na povrchu nanokrystalů obsahujících Er³⁺ tak bude snižovat celkovou dobu života hladiny Er^{3+} : ${}^{4}I_{11/2}$ a bude snižovat pravděpodobnost zářivého přechodu Er^{3+} : ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$ $(\lambda_{em} \approx 2700 \text{ nm})$ ve prospěch nezářivého energetického přenosu, jak ilustruje Obr. 17. Dále dochází k depopulaci energetických hladin Er^{3+} : ${}^{2}H_{11/2}/{}^{4}S_{3/2}$ zodpovědných za "zelenou" UCPL, jelikož rozdíl energetických hladin Er^{3+} : ${}^{4}S_{3/2}$ a ${}^{4}F_{9/2}$ (\approx 3140 cm⁻¹) je rovněž blízký fundamentální frekvenci OH⁻ jednotek (viz Obr. 17). První overton vibrace OH⁻ jednotek při vlnočtu ≈ 6920 cm⁻¹ je v rezonanci s rozdílem energetických hladin Er³⁺: ${}^{4}I_{13/2}$ a ${}^{4}I_{15/2}$ ($\approx 6450 \text{ cm}^{-1}$). Přítomnost hydroxylových skupin tak rovněž povede ke snížení celkové doby života hladiny Er^{3+} : ${}^{4}I_{13/2}$ a ke snížení pravděpodobnosti zářivého přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow$ ${}^{4}I_{15/2}$ ($\lambda_{em} \approx 1550$ nm) ve prospěch nezářivého energetického přenosu [75, 91–93].

Obr. 17. Princip mechanismu depopulace hladin Er^{3+} : ${}^{4}S_{3/2}$ a ${}^{4}I_{11/2}$ energetickým přenosem na OH⁻ při použití zdroje excitačního záření o $\lambda_{\text{exc}} = 980$ nm.

2.6 Fotoluminiscenční spektroskopie

Princip fotoluminiscenčního spektroskopu lze popsat na základě jeho schématu na Obr. 18. Z excitačního zdroje, kterým je obvykle laser, či UV lampa, je veden svazek elektromagnetického záření skrze soustavu optických filtrů. Pásmový (anglicky označovaný jako "band-pass") filtr a šedý (neutrální) filtr slouží k redukování určitých vlnových délek excitačního záření a k úpravě jeho intenzity. Záření následně dopadá na vzorek, z něhož je emitované záření vedeno soustavou optických čoček přes další pásmový (zde anglicky označovaný jako "long-pass") filtr. Účelem "long-pass" filtru je zejména redukce vyšších harmonických frekvencí z laserových zdrojů a eliminace nežádoucího rozptýleného excitačního záření. Emitované záření je dále vedeno přes monochromátor a soustavu optických čoček na detektor. Pomocí monochromátoru dochází k rozkladu polychromatického záření na záření monochromatické, které je tvořeno pásmem jednotlivých vlnových délek. Detektorem emitovaného záření může být fotonásobič, nebo fotodioda. Fotonásobiče patří mezi nejčastěji používané typy detektorů zejména díky jejich vysoké citlivosti a rychlé odezvě. Fotonásobiče mohou pracovat v analogovém módu, nebo v digitálním módu (jako čítače fotonů). K zesílení optického signálu se ještě využívá "lock-in" zesilovače, do kterého je excitační záření vedeno optickým přerušovačem (anglicky označovaný jako "chopper"). Pro stanovení celkové doby života luminiscence se využívá pulsů excitačního záření, které mají kratší dobu trvání (délku pulsu) než je nejkratší doba života daného luminiscenčního centra. V případě, kdy délka pulsu

není dostatečně krátká v porovnání s nejkratší stanovenou hodnotou τ , tak je třeba provést dekonvoluci změřené křivky doznívání luminiscence s křivkou excitačního pulsu. Pro studium kinetiky doznívání luminiscence se používají dva typy instrumentace – stroboskopická metoda (založená na opakovaném snímání intenzity po excitačních pulsech) a metoda s použitím vysoko-frekvenčního digitálního osciloskopu. S použitím dostatečně intenzivních a zároveň krátkých pulsů lze stroboskopickou metodou stanovit hodnoty τ v řádech jednotek ns, metodou s vysoko-frekvenčním digitálním osciloskopem ještě hodnoty τ v řádech stovek ps [50, 52].

Obr. 18. Schéma fotoluminiscenčního spektroskopu.

3 CÍLE DISERTAČNÍ PRÁCE

Cíle předkládané disertační práce lze shrnout do následujících bodů:

- Příprava jednofázových nanokrystalických granátů o složení Yb₃Ga₅O₁₂ dopovaných ionty Er³⁺, či Ho³⁺, s koncentrací dopantů 0; 0,01; 0,1; 0,5; 1 a 2 at. %. Je využito sol-gel spalovací metody syntézy s použitím kyseliny citronové jakožto chelatačního činidla.
- Studium struktury, chemického složení, morfologie a optických vlastností připravených materiálů.
- Detailní studium fotoluminiscenčních vlastností připravených materiálů. Díky relativně vysokému obsahu Yb³⁺ jakožto senzibilizátoru je využito excitace fotoluminiscence při λ_{exc} ≈ 977, či ≈ 980 nm, odpovídající elektronovému přechodu Yb³⁺: ²F_{7/2} → ²F_{5/2}, s následným energetickým přenosem Yb³⁺ → Er³⁺/Ho³⁺. Pro toto studium je využito 3 technik fotoluminiscenční spektroskopie v ustáleném stavu, časově rozlišené a fotoluminiscenční spektroskopie s různým excitačním výkonem.
- Navržení mechanismů fotoluminiscence pro dvojice iontů Yb³⁺-Er³⁺ a Yb³⁺-Ho³⁺ ve studovaných materiálech na základě vyhodnocených dat a dostupné literatury.
- Zhodnocení dosažených výsledků.

4 EXPERIMENTÁLNÍ ČÁST

4.1 Příprava nanokrystalických granátů Yb₃Ga₅O₁₂ dopovaných ionty Er³⁺/Ho³⁺

V rámci předkládané disertační práce byly připraveny vzorky nanokrystalického nedopovaného a Er³⁺/Ho³⁺-dopovaného Yb₃Ga₅O₁₂ s koncentrací dopantů 0,01; 0,1; 0,5; 1 a 2 at. %. Byly tedy připraveny vzorky s chemickým vzorcem Yb₃Ga₅O₁₂, Yb_{14,99}Er_{0.01}Ga₂₅O₆₀, Yb_{14.9}Er_{0.1}Ga₂₅O₆₀, Yb_{14.5}Er_{0.5}Ga₂₅O₆₀, $Yb_{14}Er_{1}Ga_{25}O_{60}$, Yb13Er2Ga25O60, Yb14,99H00,01Ga25O60, Yb_{14,9}Ho_{0,1}Ga₂₅O₆₀, Yb_{14,5}Ho_{0,5}Ga₂₅O₆₀, Yb14Ho1Ga25O60 a Yb13Ho2Ga25O60. Vzorky byly připraveny sol-gel spalovací metodou s použitím kyseliny citronové jakožto chelatačního činidla. Použitými chemikáliemi byly Ga (HiChem, čistota 5N), Yb₂O₃ (HiChem, čistota 3N), Er₂O₃ (HiChem, čistota 4N), Ho₂O₃ (HiChem, čistota 3N), HNO₃ (Lach-Ner, 65 hm. %, polovodičová čistota), vodný roztok amoniaku (Lach-Ner, 24 hm. %, čistota p.a.), monohydrát kyseliny citronové (PENTA, čistota 2N5) a deionizovaná voda (konduktivita $< 0,1 \ \mu\text{S} \cdot \text{cm}^{-1}$). Chemikálie Ga, Yb₂O₃ a Er₂O₃/Ho₂O₃ byly naváženy vždy na 1 g výsledného produktu. Vlastní syntéza zahrnovala rozpuštění 4,73 mmol Ga s odpovídajícím množstvím Er₂O₃, nebo Ho₂O₃ v 8 ml HNO₃. Roztok byl dále naředěn pozvolným přidáním deionizované vody na objem 50 ml. Do takto naředěného roztoku bylo přidáno odpovídající množství Yb₂O₃. Při zapnutém míchání roztoku magnetickým míchadlem a při teplotě 90 °C došlo k rozpuštění Yb₂O₃ v řádu jednotek hodin (v samotné HNO₃ nedocházelo k rozpuštění Yb₂O₃). Homogenní roztok s rozpuštěnými dusičnany kovů byl následně bez míchání zahříván při teplotě 90 °C po dobu 3 dnů za účelem odstranění přebytečné kyseliny. Vysušený prášek dusičnanů kovů byl rozpuštěn v 50 ml deionizované vody a ke vzniklému roztoku bylo za intenzivního míchání přidáno množství monohydrátu kyseliny citronové v poměru 2,5:1 (mol/mol) vůči množství kationtů kovů. Za stálého míchání roztoku bylo upraveno pH roztoku na pH \approx 8 (při teplotě \approx 25 °C) přídavkem vodného roztoku amoniaku po kapkách. Roztok byl dále za stálého míchání zahříván při teplotě 90 °C za účelem vzniku homogenního gelu. Vysušený gel byl následně v korundovém kelímku umístěn do kelímkové pece. Teplota pece byla nastavena na 800 °C, přičemž při teplotě ≈ 400 °C došlo k samovznícení gelu a tedy k počátku rozkladu organické složky gelu s přítomným NH4NO3. Před samovznícením činila rychlost ohřevu pece ≈ 0.6 °C·s⁻¹. Žíhání při teplotě 800 °C trvalo 2 h. Meziprodukt byl následně přemístěn do pece předehřáté na 1000 °C po dobu 30 min za účelem úplného odstranění organické složky a růstu krystalitů granátové fáze. Produktem byl bílý, až mírně růžový prášek (v závislosti na koncentraci dopantu).

4.2 Charakterizace připravených materiálů

Struktura a fázová čistota připravených materiálů byla studována rentgenovou difrakční (XRD) analýzou. Měření probíhala s použitím difraktometru D8 ADVANCE (Bruker) v Bragg-Brentanově uspořádání s použitím záření anody Cu $K\alpha$ ($\lambda = 1,5406$ Å). Měření probíhala v úhlovém rozsahu 2θ : 5–90° s krokem $\approx 0,009^{\circ}$. Měřící čas na jeden krok činil 0,1 s a integrační čas činil 15,6 s (s použitím polovodičového detektoru LinxEye, který obsahuje 156 polí). Měření každého vzorku bylo opakováno 10×. Difraktogramy byly analyzovány pomocí softwaru EVA, verze 19 (Diffracplus Basic Evaluating Package, Bruker AXS GmbH, z roku 2013). Střední velikost krystalitů (D) připravených nanokrystalických granátů byla vypočtena ze Scherrerovy rovnice (21):

$$D = \frac{\kappa \lambda}{\beta_{hkl} \cos \theta_{hkl}} \tag{21}$$

ve které *K* je Scherrerova konstanta (obvykle K = 1), λ je vlnová délka rentgenového záření, β_{hkl} je rozšíření difrakční čáry a θ_{hkl} je difrakční úhel. Velikost mřížkových parametrů (*a*) byla určena ze vztahu (22):

$$a = \frac{d_{hkl}}{\sqrt{h^2 + k^2 + l^2}}$$
(22)

kde d_{hkl} označuje mezirovinnou vzdálenost a h, k a l značí indexy osnovy rovin, na níž dochází k difrakci rentgenového záření [94, 95].

Struktura připravených materiálů byla následně detailněji studována infračervenou spektroskopií s Fourierovou transformací – technikou zeslabené totální reflexe (ATR). Měření byla provedena pomocí přístroje VERTEX 70v (Bruker) opatřeného diamantovým ATR nástavcem. Měření probíhala v rozsahu vlnočtů 800–50 cm⁻¹ s krokem ≈ 1 cm⁻¹.

Chemické složení bylo stanoveno pomocí energiově-disperzní rentgenové spektroskopie (EDX) s použitím přístroje AZtec X-Max 20 (Oxford Instruments) zabudovaném ve skenovacím elektronovém mikroskopu (SEM) LYRA 3 (TESCAN). Chemické složení bylo určeno jako průměrná hodnota z pěti měřených bodů pro každý vzorek při aplikovaném urychlovacím napětí 20 kV. Před měřením chemického složení byly vzorky stlačené a udusané do podoby kompaktní vrstvy a byla na ně nanesena tenká vrstva uhlíku. Úprava vzorků pro studium jejich morfologie pomocí SEM zahrnovala jemné roznesení vzorků na terč, s následným nanesením tenké vrstvy zlata.

Difúzní reflektivita nanokrystalických oxidů byla změřena pomocí UV-Vis-NIR spektrofotometru JASCO V-570 vybaveného integrační sférou. Měření probíhala v rozsahu vlnových délek 200–1800 nm s krokem 1 nm a s použitím polytetrafluorethylenu jako standardu. Ze spektra difúzní reflektivity nedopovaného vzorku Yb₃Ga₅O₁₂ byla následně určena optická šířka zakázaného pásu (E_g^{opt}) extrapolací lineární části závislosti výrazu $[F(R) hv]^2$ na hv na základě Kubelkovy-Munkovy teorie (23, 24):

$$F(R) = \frac{(1-R)^2}{2R}$$
(23)

$$[F(R) h\nu]^2 = A (h\nu - E_g^{opt})$$
(24)

kde F(R) je Kubelkova-Munkova funkce, která je definována poměrem absorpčního a rozptylového koeficientu. *R* je změřená difúzní reflektivita, *hv* je energie fotonu a *A* je absorpční konstanta [96–98].

Fotoluminiscenční vlastnosti nanokrystalických oxidů byly studovány s využitím dvou typů fotoluminiscenčních spektroskopů. Stokesova emisní spektra v ustáleném stavu a křivky doznívání Stokesovy fotoluminiscence pro nedopovaný vzorek Yb₃Ga₅O₁₂ a pro Er³⁺-dopované vzorky Yb₃Ga₅O₁₂ byly studovány společně s anti-Stokesovými emisními spektry v ustáleném stavu a s křivkami doznívání anti-Stokesovy fotoluminiscence pro Er³⁺- a Ho³⁺-dopované vzorky Yb₃Ga₅O₁₂ fotoluminiscenčním spektroskopem FLS1000 (Edinburgh Instruments). K excitaci byl v těchto případech použit diodový laser MDL-III-980 (CNI Optoelectronics Technology) s plochou svazku 0,4 cm² a s $\lambda_{exc} \approx 977$ nm operující v kontinuálním (pro měření v ustáleném stavu) či v pulsním režimu (pro měření křivek doznívání fotoluminiscence). Detekce luminiscenčního signálu probíhala pomocí fotonásobiče na bázi termoelektricky chlazeného Si, či na bázi InGaAs chlazeného kapalným dusíkem. Stokesova emisní spektra v ustáleném stavu pro nedopovaný vzorek Yb₃Ga₅O₁₂ byla změřena v rozsahu 1000-1200 nm s krokem 0,2 nm a dále ještě v rozsahu 1250–1700 nm s krokem 1 nm vždy při P = 100 mW (odpovídající excitační intenzitě $I_{exc} = 0.25 \text{ W} \cdot \text{cm}^{-2}$). Stokesova emisní spektra v ustáleném stavu pro Er³⁺-dopované vzorky Yb₃Ga₅O₁₂ byla měřena v rozsahu 1400–1700 nm s krokem 0,2 nm při P = 100 mW ($I_{exc} = 0,25 \text{ W} \cdot \text{cm}^{-2}$). Anti-Stokesova emisní spektra v ustáleném stavu pro Er³⁺-dopované vzorky Yb₃Ga₅O₁₂ byla měřena v rozsahu 350–750 nm s krokem 0,2 nm a při P = 100 mW ($I_{exc} = 0.25 \text{ W} \cdot \text{cm}^{-2}$). Anti-Stokesova emisní spektra v ustáleném stavu pro Ho³⁺-dopované vzorky Yb₃Ga₅O₁₂ byla měřena v rozsahu 350–800 nm s krokem 0,2 nm a při $P = 955 \text{ mW} (I_{exc} = 2,39 \text{ W} \cdot \text{cm}^{-2})$. Dále byla měřena anti-Stokesova emisní spektra v ustáleném

stavu pro Er^{3+} - a Ho³⁺- dopované vzorky Yb₃Ga₅O₁₂ v těchto výše uvedených rozsazích λ při různém $P \approx 24-955 \text{ mW}$ ($I_{exc} = 0,06-2,39 \text{ W} \cdot \text{cm}^{-2}$) a s krokem 0,25–0,5 nm. Křivky doznívání fotoluminiscence byly získány vícekanálovým škálováním a doby života luminiscence byly získány dekonvolucí křivek doznívání fotoluminiscence pomocí funkce odezvy přístroje (IRF) a součtu exponenciálních funkcí. Křivky doznívání Stokesovy fotoluminiscence pro nedopovaný vzorek Yb3Ga5O12 a pro Er3+-dopované vzorky Yb3Ga5O12 byly změřeny při $\lambda_{em} \approx 1417 \text{ nm}$ (pro nedopovaný vzorek Yb₃Ga₅O₁₂) a při $\lambda_{em} \approx 1533 \text{ nm}$ (pro Er³⁺-dopované vzorky Yb₃Ga₅O₁₂) při délce excitačního pulsu \approx 350 µs s rozlišením 25 µs/kanál při P = 100 mW ($I_{exc} = 0.25 \text{ W} \cdot \text{cm}^{-2}$). Dále byly změřeny křivky doznívání Stokesovy fotoluminiscence pro všechny studované vzorky při $\lambda_{em}\approx 1024$ nm při délce excitačního pulsu $\approx 10 \ \mu s$ (pro nedopovaný a Er³⁺-dopované vzorky Yb₃Ga₅O₁₂) a $\approx 20 \ \mu s$ (pro Ho³⁺-dopované vzorky Yb₃Ga₅O₁₂) s rozlišením 0,1 μ s/kanál při P = 100 mW ($I_{exc} = 0,25 \text{ W} \cdot \text{cm}^{-2}$). Křivky doznívání anti-Stokesovy fotoluminiscence pro Er3+-dopované vzorky Yb3Ga5O12 byly změřeny při $\lambda_{em} \approx 656$ nm při délce excitačního pulsu ≈ 10 µs s rozlišením 0,4 µs/kanál při P = 100 mW ($I_{exc} = 0.25 \text{ W} \cdot \text{cm}^{-2}$). Křivky doznívání anti-Stokesovy fotoluminiscence pro Ho³⁺-dopované vzorky Yb₃Ga₅O₁₂ byly změřeny při $\lambda_{em} \approx 540$ nm při délce excitačního pulsu ≈ 20 μs s rozlišením 0,5 μs/kanál při P = 955 mW ($I_{exc} = 2,39$ W·cm⁻²). Data byla analyzována softwarem Fluoracle (Edinburgh Instruments), pomocí něhož byly určeny parametry diagramu chromatičnosti CIE 1931 (x, y) z anti-Stokesových emisních spekter v ustáleném stavu vzorků Er^{3+}/Ho^{3+} -dopovaného Yb₃Ga₅O₁₂. Následně byla vypočtena kolorimetrická čistota (*CP*) všech dopovaných vzorků podle vztahu (25):

$$CP = \frac{\sqrt{(x-x_i)^2 + (y-y_i)^2}}{\sqrt{(x_d - x_i)^2 + (y_d - y_i)^2}} \ 100$$
(25)

kde x a y označuje parametry vzorků z diagramu chromatičnosti, x_i a y_i označuje parametry bílého světla s hodnotami $x_i = y_i = 0,3333$, a x_d a y_d označuje parametry dominantní vlnové délky z diagramu chromatičnosti pro dané vzorky [99, 100].

Stokesova emisní spektra v ustáleném stavu a křivky doznívání Stokesovy fotoluminiscence pro Ho³⁺-dopované vzorky Yb₃Ga₅O₁₂ byly studovány fotoluminiscenčním spektroskopem vybaveným SDL-1 monochromátorem. K excitaci byl v těchto případech použit polovodičový laser POL 4300 s plochou svazku 0,002 cm² a s $\lambda_{exc} \approx 980$ nm operující v kontinuálním (pro měření v ustáleném stavu) či v pulsním režimu (pro měření křivek doznívání fotoluminiscence). Luminiscenční signál zde byl detekován termoelektricky chlazeným InGaAs detektorem. Stokesova emisní spektra v ustáleném stavu pro Ho³⁺- dopované vzorky Yb₃Ga₅O₁₂ byla změřena v rozsahu 1050–1350 nm a 1800–2300 nm s krokem 0,5–1 nm vždy při P = 19,6 mW (odpovídající $I_{exc} = 10$ W·cm⁻²). Křivky doznívání fotoluminiscence byly změřeny pomocí digitálního osciloskopu a doby života luminiscence byly získány fitováním dat jednoduchou exponenciální funkcí a sumou dvou exponenciálních funkcí podle rovnic (11–13). Křivky doznívání Stokesovy fotoluminiscence pro Ho³⁺-dopované vzorky Yb₃Ga₅O₁₂ byly změřeny při $\lambda_{em} \approx 1209$ nm a při $\lambda_{em} \approx 2087$ nm při délce excitačního pulsu ≈ 30 µs při P = 23,6 mW ($I_{exc} = 12$ W·cm⁻²). Dále byla změřena Stokesova emisní spektra v ustáleném stavu v rozsahu 1050–1350 nm s krokem 1 nm a křivky doznívání Stokesovy fotoluminiscence při $\lambda_{em} \approx 1209$ nm při délce excitačního pulsu ≈ 30 µs pro vzorek Yb₁₄Ho₁Ga₂₅O₆₀ při různém $P \approx 1,32–132$ mW ($I_{exc} = 0,7–67,2$ W·cm⁻²). Intenzita všech emisních spekter v ustáleném stavu pro vzorky s různou koncentrací Er³⁺/Ho³⁺ byla numericky integrována s použitím Simpsonova pravidla (26):

$$\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{3} \left(f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + \dots + 4f(x_{n-1}) + f(x_{n}) \right)$$
(26)
kde $\Delta x = \frac{b-a}{n}, x_{0} = a \text{ a } x_{n} = b \ [101].$

Nedopovaný vzorek Yb₃Ga₅O₁₂ byl nakonec charakterizován z hlediska elektrických vlastností pomocí impedanční spektroskopie. Pro toto měření byl původně práškový vzorek lisován za studena do podoby tablety válcového tvaru o průměru 6 mm při lisovacím tlaku ≈ 694 MPa. Tableta byla následně sintrována při teplotě 1500 °C po dobu 12 h s rychlostí ohřevu z pokojové teploty 5 °C·min⁻¹. Konečný průměr tablety po sintrování činil 5,20 mm s tloušťkou 1,14 mm. Tableta byla následně leštěna z obou stran na brusném papíru z SiC o zrnitosti P1200. Na protilehlé strany slinuté tablety byla následně nanesena platinová elektrodová pasta a došlo k žíhání při teplotě 900 °C po dobu 2 h s rychlostí ohřevu z pokojové teploty 10 °C·min⁻¹. Vlastní měření probíhalo na přístroji ModuLab XM (Solartron Analytical) ve frekvenčním rozsahu 300–10⁶ Hz se vzorkem umístěným v trubkové peci při teplotách 750; 800; 840; 872; 900; 930; a 958 °C. Data byla korigována na permitivitu eletrického obvodu bez vzorku a na rozměry vzorku. Z teplotní závislosti objemové elektrické vodivosti σ byla určena aktivační energie iontové vodivosti E_A ze směrnice lineární závislosti výrazu log₁₀ σ na 1000·T⁻¹ podle Arrheniovy rovnice (27):

$$\sigma = A_{pr} \exp\left(\frac{-E_A}{RT}\right)$$
(27)

kde *A_{pr}* je preexponenciální faktor, R je plynová konstanta a T je teplota [47]. Všechna měření, kromě impedanční spektroskopie, probíhala při pokojové teplotě.

5 VÝSLEDKY A DISKUZE

5.1 Struktura, morfologie a chemické složení nanokrystalických granátů Yb₃Ga₅O₁₂ dopovaných ionty Er³⁺/Ho³⁺

Difraktogramy nanokrystalických vzorků Yb_{15-x}Er_xGa₂₅O₆₀ (x = 0; 0,01; 0,1; 0,5; 1 a 2) jsou zobrazeny na Obr. 19 a). Difraktogramy nanokrystalických vzorků Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0; 0,01; 0,1; 0,5; 1 a 2) pak zobrazuje Obr. 19 b). Difraktogramy všech připravených vzorků potvrzují, že tyto vzorky jsou jednofázové kubické granáty odpovídající struktuře Yb₃Ga₅O₁₂ č. 01-073-1373 z PDF-4+ databáze s prostorovou grupou $Ia\overline{3}d$.

Obr. 19. Difraktogramy nanokrystalických granátů $Yb_{15-x}Er_xGa_{25}O_{60}$ (a) a $Yb_{15-x}Ho_xGa_{25}O_{60}$ (b). Spodní linie odpovídá standardu kubického $Yb_3Ga_5O_{12}$ č. 01-073-1373 z databáze PDF-4+.

Střední velikost krystalitů a mřížkový parametr uvádí Tab. 3 pro vzorky řady $Yb_{15-x}Er_xGa_{25}O_{60}$ a Tab. 4 pro vzorky řady $Yb_{15-x}Ho_xGa_{25}O_{60}$ (x = 0; 0,01; 0,1; 0,5; 1 a 2). Střední velikost krystalitů připravených vzorků se pohybuje v rozmezí ≈ 27 až ≈ 37 nm. Mřížkový parametr pro vzorky obou koncentračních řad vykazuje odlišný trend s rostoucí koncentrací dopantu, jak graficky znázorňuje Obr. 20. Ani u jedné koncentrační řady vzorků nebyl pozorován efekt postupně rostoucího mřížkového parametru s rostoucím obsahem

dopantu Er^{3+}/Ho^{3+} ve struktuře granátu, který by byl očekáván podle lanthanoidové kontrakce diskutované v kapitole 2.3.1. To může být způsobeno relativně krátkou dobou (30 min), po kterou byly vzorky žíhány při nejvyšší teplotě (1000 °C). Lanthanoidovou kontrakci lze však přisoudit jako příčinu nejvyšších stanovených hodnot mřížkového parametru pro vzorky s nejvyšším obsahem dopantu (Yb₁₃Er₂Ga₂₅O₆₀ a Yb₁₃Ho₂Ga₂₅O₆₀).

<i>x</i> (at. %)	<i>D</i> (nm)	<i>a</i> (Å)
0	36,9±0,2	12,2007±0,0004
0,01	32,0±0,2	12,2030±0,0004
0,1	36,5±0,2	12,2062±0,0004
0,5	30,9±0,2	12,2046±0,0004
1	28,6±0,2	12,2049±0,0004
2	29,7±0,2	$12,2098\pm0,0004$

Tab. 3. Střední velikost krystalitů (*D*) a mřížkový parametr (*a*) nanokrystalických granátů $Yb_{15-x}Er_xGa_{25}O_{60}$ (x = 0; 0,01; 0,1; 0,5; 1 a 2).

Tab. 4. Střední velikost krystalitů (*D*) a mřížkový parametr (*a*) nanokrystalických granátů $Yb_{15-x}Ho_xGa_{25}O_{60}$ (*x* = 0,01; 0,1; 0,5; 1 a 2).

<i>x</i> (at. %)	<i>D</i> (nm)	a (Å)
0,01	32,5±0,2	12,2052±0,0004
0,1	34,3±0,2	12,1994±0,0004
0,5	27,3±0,2	12,1968±0,0004
1	30,1±0,2	12,2072±0,0004
2	29,5±0,2	12,2085±0,0004

Obr. 20. Závislost velikosti mřížkového parametru (*a*) na koncentraci dopantu (*x*) v nanokrystalických granátech $Yb_{15-x}Er_xGa_{25}O_{60}$ a $Yb_{15-x}Ho_xGa_{25}O_{60}$ (*x* = 0; 0,01; 0,1; 0,5; 1 a 2).

Tab. 5 uvádí hodnoty průměrné meziiontové vzdálenosti iontů Er^{3+} a Ho^{3+} v nanokrystalických granátech $Yb_{15-x}Er_xGa_{25}O_{60}$ a $Yb_{15-x}Ho_xGa_{25}O_{60}$, vypočtené na základě vztahu (19) a za předpokladu, že dopanty Er^{3+}/Ho^{3+} nahrazují ionty Yb^{3+} v dodekaedrických pozicích studovaného granátu. Hodnoty $R_{Er^{3+}\leftrightarrow Er^{3+}}$ a $R_{Ho^{3+}\leftrightarrow Ho^{3+}}$ jsou v rámci studovaných koncentrací obou dopantů téměř identické a budou později diskutovány pro vysvětlení fotoluminiscenčního mechanismu obou typů vzorků.

<i>x</i> (at. %)	$R_{Er^{3+}\leftrightarrow Er^{3+}}$ v Yb _{15-x} Er _x Ga ₂₅ O ₆₀ (Å)	$\begin{array}{c} R_{Ho^{3+}\leftrightarrow Ho^{3+}} \mathrm{v} \\ \mathrm{Yb}_{15-x}\mathrm{Ho}_{x}\mathrm{Ga}_{25}\mathrm{O}_{60}\ (\mathrm{\AA}) \end{array}$
0,01	24,4	24,4
0,1	11,3	11,3
0,5	6,6	6,6
1	5,2	5,3
2	4,2	4,2

Tab. 5. Průměrné meziiontové vzdálenosti iontů $\text{Er}^{3+}(R_{Er^{3+}\leftrightarrow Er^{3+}})$ v $\text{Yb}_{15-x}\text{Er}_x\text{Ga}_{25}\text{O}_{60}$ a $\text{Ho}^{3+}(R_{Ho^{3+}\leftrightarrow Ho^{3+}})$ v $\text{Yb}_{15-x}\text{Ho}_x\text{Ga}_{25}\text{O}_{60}$ nanokrystalických granátech.

Infračervená ATR spektra nanokrystalických granátů $Yb_{15-x}Er_xGa_{25}O_{60}$ zobrazuje Obr. 21 a). Infračervená ATR spektra nanokrystalických granátů $Yb_{15-x}Ho_xGa_{25}O_{60}$ pak

zobrazuje Obr. 21 b). Spektra všech studovaných granátů jsou vzájemně velice podobná a obsahují absorpční pásy odpovídající pro každý vzorek přibližně stejným vlnočtům. Přiřazení absorpčních pásů jednotlivým strukturním jednotkám je provedeno na základě výsledků prezentovaných v literatuře [102–106] a je následující. Pásy při ≈ 705 a ≈ 660 cm⁻¹, přítomné jako ramena pásu, společně s pásy při ≈ 635 a ≈ 595 cm⁻¹, lze přiřadit antisymetrickým valenčním v_3 vibracím tetraedrů GaO₄. Pás při ≈ 480 cm⁻¹ lze přiřadit kombinacím antisymetrických valenčních v_3 vibrací tetraedrů GaO₄ a oktaedrů GaO₆. Pás při ≈ 450 cm⁻¹, přítomný jako rameno pásu, odpovídá antisymetrickým valenčním v3 vibracím oktaedrů GaO₆. Následující dva nejintenzivnější pásy při ≈ 365 a ≈ 305 cm⁻¹, společně s pásy při ≈ 255 $a \approx 220 \text{ cm}^{-1}$, odpovídají kombinacím čtyř příspěvků – rotacím tetraedrů GaO₄, antisymetrickým kývavým v4 vibracím tetraedrů GaO4, translacím oktaedrů GaO6 a antisymetrickým kývavým v_4 vibracím oktaedrů GaO₆. Pásy při ≈ 200 a ≈ 140 cm⁻¹ lze přiřadit translacím dodeka
edrů YbO8. Poslední dva přítomné pásy při ≈ 110
a $\approx 105~{\rm cm}^{-1}$ odpovídají kombinaci translací tetraedrů GaO4, oktaedrů GaO6 a dodekaedrů YbO8. V ATR spektrech studovaných granátů nebyly zaznamenány žádné absorpční pásy, které by odpovídaly přítomnosti izolovaných strukturních jednotek obsahujících Er3+/Ho3+. Na základě toho a na základě blízkého iontového poloměru kationtů $\text{Er}^{3+}/\text{Ho}^{3+}$ a Yb^{3+} ($r_{Er}^{Z=8}$ = 1,004 Å; $r_{Ho^{3+}}^{Z=8} = 1,015$ Å; $r_{Yb^{3+}}^{Z=8} = 0,985$ Å) se předpokládá, že kationty Er^{3+}/Ho^{3+} nahrazují v dodekaedrických pozicích kationty Yb³⁺ ze stejné skupiny periodické soustavy. Pro porovnání, iontový poloměr kationtu Ga³⁺ v oktaedrické či tetraedrické pozici je výrazně nižší $(r_{Ga^{3+}}^{Z=6} = 0,620 \text{ Å}; r_{Ga^{3+}}^{Z=4} = 0,470 \text{ Å})$ [48]. Hodnota $\hbar\omega_{max}$ pro studované granáty činí $\approx 705 \text{ cm}^{-1}$.

Obr. 21. ATR spektra nanokrystalických granátů $Yb_{15-x}Er_xGa_{25}O_{60}$ (a) a $Yb_{15-x}Ho_xGa_{25}O_{60}$ (b). Spektra jsou pro přehled normalizována na nejintenzivnější pás při ≈ 365 cm⁻¹.

Snímky ze SEM zobrazuje Obr. 22 pro vzorky řady Yb_{15-x}Er_xGa₂₅O₆₀ a Obr. 23 pro vzorky řady Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0; 0,01; 0,1; 0,5; 1 a 2). Ze snímků všech připravených vzorků je patrné, že tyto vzorky jsou tvořeny vysoce porézními agregáty, což je typické pro nanokrystalické materiály připravované sol-gel spalovacími metodami, jak bylo uvedeno v kapitole 2.2.1.1 [38]. U vzorku Yb_{14,5}Ho_{0,5}Ga₂₅O₆₀ (Obr. 23 c)) je navíc patrná méně vyvinutá mikrostruktura v porovnání s ostatními vzorky. Toto potvrzuje i nejmenší stanovená hodnota střední velikosti krystalitů ($D = 27,3\pm0,2$ nm) a mřížkového parametru ($a = 12,1968\pm0,0004$ Å) pro tento vzorek v porovnání s ostatními vzorky (viz Tab. 3, Tab. 4 a Obr. 20).

Chemické složení stanovené pomocí EDX uvádí společně s teoretickým složením Tab. 6 pro vzorky řady Yb_{15-x}Er_xGa₂₅O₆₀ a Tab. 7 pro vzorky řady Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0; 0,01; 0,1; 0,5; 1 a 2). Dopanty Er³⁺/Ho³⁺ nebyly stanoveny ve vzorcích Yb_{14,99}Er_{0,01}Ga₂₅O₆₀, Yb_{14,99}Ho_{0,01}Ga₂₅O₆₀, a Yb_{14,9}Ho_{0,1}Ga₂₅O₆₀ kvůli jejich nízkému obsahu (pod detekčním limitem použité techniky EDX). Vzhledem k chybě ve stanoveném složení pomocí EDX ($\approx \pm 1$ at. %) a vzhledem k tomu, že studované materiály jsou oxidy, lze konstatovat, že byla dosažena dobrá shoda stanoveného a teoretického chemického složení všech vzorků.

Obr. 22. Snímky ze SEM vzorků Yb₃Ga₅O₁₂ (a), Yb_{14,99}Er_{0,01}Ga₂₅O₆₀ (b), Yb_{14,9}Er_{0,1}Ga₂₅O₆₀ (c), Yb_{14,5}Er_{0,5}Ga₂₅O₆₀ (d), Yb₁₄Er₁Ga₂₅O₆₀ (e) a Yb₁₃Er₂Ga₂₅O₆₀ (f). Měřítko je 1000 nm.

Obr. 23. Snímky ze SEM vzorků $Yb_{14,99}Ho_{0,01}Ga_{25}O_{60}$ (a), $Yb_{14,9}Ho_{0,1}Ga_{25}O_{60}$ (b), $Yb_{14,5}Ho_{0,5}Ga_{25}O_{60}$ (c), $Yb_{14}Ho_{1}Ga_{25}O_{60}$ (d) a $Yb_{13}Ho_{2}Ga_{25}O_{60}$ (e). Měřítko je 1000 nm.

x		Yb (at. %)	Er (at. %)	Ga (at. %)	O (at. %)
0	Teoretické složení	15	0	25	60
	Stanovené složení	15,8	_	24,7	59,5
0,01	Teoretické složení	14,99	0,01	25	60
	Stanovené složení	16,1	_	25,3	58,6
0,1	Teoretické složení	14,9	0,1	25	60
	Stanovené složení	14,9	_	25,0	60,1
0,5	Teoretické složení	14,5	0,5	25	60
	Stanovené složení	16,0	0,5	25,5	58,0
1	Teoretické složení	14,0	1,0	25	60
	Stanovené složení	15,8	1,1	25,5	57,6
2	Teoretické složení	13,0	2,0	25	60
	Stanovené složení	13,8	2,1	25,3	58,8

Tab. 6. Teoretické a experimentálně stanovené chemické složení nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀ (x = 0; 0,01; 0,1; 0,5; 1 a 2). Chyba ve stanoveném složení je $\approx \pm 1$ at. %.

Tab. 7. Teoretické a experimentálně stanovené chemické složení nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2). Chyba ve stanoveném složení je $\approx \pm 1$ at. %.

x		Yb (at. %)	Ho (at. %)	Ga (at. %)	O (at. %)
0,01	Teoretické složení	14,99	0,01	25	60
	Stanovené složení	15,8	_	24,6	59,6
0,1	Teoretické složení	14,9	0,1	25	60
	Stanovené složení	16,7	_	25,7	57,6
0,5	Teoretické složení	14,5	0,5	25	60
	Stanovené složení	16,6	0,6	24,4	58,4
1	Teoretické složení	14,0	1,0	25	60
	Stanovené složení	14,2	1,0	24,3	60,5
2	Teoretické složení	13,0	2,0	25	60
	Stanovené složení	13,3	2,0	24,6	60,1

5.2 Optické vlastnosti nanokrystalických granátů Yb₃Ga₅O₁₂ dopovaných ionty Er³⁺ a nedopovaného Yb₃Ga₅O₁₂

5.2.1 Difúzní reflektivita

Spektrum difúzní reflektivity vzorků Yb_{15-x}Er_xGa₂₅O₆₀ (x = 0; 0,01; 0,1; 0,5; 1 a 2) zobrazuje Obr. 24. Všechny vzorky vykazují vysokou optickou reflektivitu ve studované oblasti s absorpčními pásy danými 4f \leftrightarrow 4f elektronovými přechody přítomných Ln³⁺. Absorpční pásy dané přítomností iontů Er³⁺ pochází z přechodů GSA ze základní hladiny Er³⁺: ⁴*I*_{15/2} na excitované hladiny: ⁴*I*_{13/2} ($\lambda \approx 1500$ nm), ⁴*I*_{9/2} ($\lambda \approx 800$ nm), ⁴*F*_{9/2} ($\lambda \approx 655$ nm), ⁴*S*_{3/2} ($\lambda \approx 545$ nm), ²*H*_{11/2} ($\lambda \approx 520$ nm), ⁴*F*_{7/2} ($\lambda \approx 490$ nm), ⁴*F*_{5/2}/⁴*F*_{3/2} ($\lambda \approx 450$ nm), ²*G*_{9/2} ($\lambda \approx 410$ nm) a ⁴*G*_{11/2} ($\lambda \approx 375$ nm). Nejintenzivnější absorpční pás při $\lambda \approx 850$ –1050 nm je dán přítomností vysokého obsahu iontů Yb³⁺ a pochází z přechodu GSA Yb³⁺: ²*F*_{7/2} \rightarrow ²*F*_{5/2}. Tento pás ještě překrývá méně intenzivní absorpční pás přechodu GSA iontu Er³⁺: ⁴*I*_{15/2} \rightarrow ⁴*I*_{11/2} ($\lambda \approx 990$ nm). Silná absorpce v oblasti $\lambda < 300$ nm je dána fundamentální absorpcí hostitelského materiálu Yb₃Ga₅O₁₂.

Obr. 24. Spektrum difúzní reflektivity nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀. Vložený graf zobrazuje detail spektra v oblasti 340–700 nm.

Obr. 25 uvádí spektrum difúzní reflektivity po aplikaci Kubelkovy-Munkovy teorie pro nedopovaný vzorek Yb₃Ga₅O₁₂. Stanovená hodnota E_g^{opt} činí 5,70 eV, což řadí Yb₃Ga₅O₁₂ mezi materiály se širokým zakázaným pásem, které jsou jako luminofory velice vhodné. Pro srovnání, hodnota E_g^{opt} široce používaného granátu Y₃Al₅O₁₂ je vyšší ($E_g^{opt} \approx 8,1$ eV [107]), avšak pro Gd₃Ga₅O₁₂ je uvedena podobná hodnota ($E_g^{opt} = 5,66$ eV [108]) a pro Y₃In₂Ga₃O₁₂ je uvedena nižší hodnota ($E_g^{opt} = 4,98$ eV [98]). Rovněž některé binární oxidy mají nižší hodnotu E_g^{opt} , např. β -Ga₂O₃ ($E_g^{opt} \approx 4,8$ eV [109]), Yb₂O₃ ($E_g^{opt} \approx 5,2$ eV [110]), nebo ZnO ($E_g^{opt} \approx 3,6$ eV [111]).

Obr. 25. Transformované spektrum difúzní reflektivity podle Kubelkovy-Munkovy teorie pro nanokrystalický Yb₃Ga₅O₁₂ a stanovení E_g^{opt} .

5.2.2 Fotoluminiscenční vlastnosti

Stokesova emisní spektra vzorků $Yb_{15-x}Er_xGa_{25}O_{60}$ (x = 0,01; 0,1; 0,5; 1 a 2) v blízké infračervené oblasti, odpovídající elektronovému přechodu Er^{3+} : ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$, zobrazuje Obr. 26. Integrovaná fotoluminiscenční (PL) intenzita roste s rostoucím obsahem Er^{3+} až do koncentrace x = 0,5, jak je patrné z Obr. 27. Integrovaná PL intenzita vzorku $Yb_{14,5}Er_{0,5}Ga_{25}O_{60}$ je srovnatelná se vzorkem $Yb_{14}Er_{1}Ga_{25}O_{60}$ a pro vzorek $Yb_{13}Er_{2}Ga_{25}O_{60}$ je patrný výrazný pokles integrované PL intenzity, který lze přisoudit koncentračnímu zhášení [79, 90]. U nedopovaného vzorku Yb₃Ga₅O₁₂ bylo překvapivě zaznamenáno relativně málo intenzivní, avšak širokospektrální emisní spektrum v rozsahu $\approx 1250-1650$ nm, jak zobrazuje vložený graf v Obr. 26. Původ tohoto širokospektrálního emisního spektra není zcela jasný, avšak může být přisouzen přítomnosti defektů či nečistot [112], jejichž obsah je pod mezí detekce použité metody EDX. Z důvodu snahy objasnit původ tohoto emisního spektra byl vzorek Yb₃Ga₅O₁₂ charakterizován ve formě slinuté tablety pomocí impedanční spektroskopie (výsledky viz Příloha A níže).

Obr. 26. Stokesova emisní spektra nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀ odpovídající elektronovému přechodu Er³⁺: ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$. Měřeno při $\lambda_{exc} \approx 977$ nm a při P = 100 mW ($I_{exc} = 0,25$ W·cm⁻²). Vložený graf zobrazuje širokospektrální emisní spektrum nedopovaného Yb₃Ga₅O₁₂.

Obr. 27. Závislost integrované PL intenzity emisního spektra pocházejícího z elektronového přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ pro nanokrystalické granáty Yb_{15-x}Er_xGa₂₅O₆₀.

Stokesovo emisní spektrum nedopovaného vzorku Yb₃Ga₅O₁₂ v blízké infračervené oblasti pocházející z emisního přechodu Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ uvádí Obr. 28. Nejvyšší intenzita emisního pásu odpovídá $\lambda_{em} = 1024$ nm, přičemž při této vlnové délce byly změřeny křivky doznívání všech studovaných vzorků, jak bude níže uvedeno.

Obr. 28. Stokesovo emisní spektrum nanokrystalického granátu Yb₃Ga₅O₁₂ odpovídající elektronovému přechodu Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$. Měřeno při $\lambda_{exc} \approx 977$ nm a při P = 100 mW ($I_{exc} = 0,25$ W·cm⁻²).

Anti-Stokesova (upkonverzní) emisní spektra vzorků $Yb_{15-x}Er_xGa_{25}O_{60}$ (x = 0,01; 0,1; 0,5;1 a 2) ve viditelné oblasti zobrazuje Obr. 29. Jak je z těchto spekter patrné, dominantní emisní pásy se nachází v "červené" oblasti ($\lambda_{em} \approx 630-700$ nm) a pochází z elektronového přechodu Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$. Dále jsou po přiblížení (viz vložený graf v Obr. 29) patrné výrazně méně intenzivní emisní pásy, které se nachází v "zelené" oblasti ($\lambda_{em} \approx 490-570$ nm), pocházející z elektronového přechodu Er^{3+} : ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ a v "modré" oblasti ($\lambda_{\text{em}} \approx 410 \text{ nm}$), pocházející z elektronového přechodu Er^{3+} : ${}^{2}G_{9/2} \rightarrow {}^{4}I_{15/2}$. Poměr ploch UCPL emisních spekter "červené" oblasti vůči "zelené" oblasti má pro vzorek Yb_{14,99}Er_{0.01}Ga₂₅O₆₀ hodnotu ≈ 150 a s rostoucím obsahem Er^{3+} roste a dosahuje maxima pro vzorek Yb_{14.5}Er_{0.5}Ga₂₅O₆₀ (\approx 400), jak zobrazuje Obr. 30. Následuje pokles tohoto poměru s x > 0,5 ve vzorcích Yb_{15-x}Er_xGa₂₅O₆₀ na hodnotu ≈ 180 pro vzorek Yb₁₃Er₂Ga₂₅O₆₀. Poměr ploch UCPL emisních spekter "červené" oblasti vůči "zelené" oblasti je však pro všechny studované vzorky Yb_{15-x}Er_xGa₂₅O₆₀ velmi vysoký ve srovnání např. s nanočásticemi α -NaYF₄ dopovanými 1 at. % Er³⁺ a různou koncentrací Yb³⁺ [77], či ve srovnání s nanočásticemi YbOCl dopovanými různou koncentrací Er³⁺ [113]. Vložený graf v Obr. 30 zobrazuje průběh celkové integrované UCPL intenzity s rostoucím obsahem Er^{3+} . Maximum integrované UCPL intenzity je pro vzorek Yb14,5Er0,5Ga25O60, což odpovídá maximální hodnotě poměru "červené" vůči "zelené" integrované UCPL intenzitě. Následný pokles celkové integrované UCPL intenzity s x > 0.5 ve vzorcích Yb_{15-x}Er_xGa₂₅O₆₀ není tak výrazný jako pokles poměru "červené" vůči "zelené" integrované UCPL intenzitě, což je dáno tím, že UCPL intenzita emisních spekter v "zelené" oblasti s rostoucím x stále roste až do hodnoty x = 2. To svědčí o zcela odlišném mechanismu populace energetických hladin $\operatorname{Er}^{3+}: {}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$ a $\operatorname{Er}^{3+}: {}^{4}F_{9/2}$, který bude diskutován v další kapitole.

Obr. 29. Anti-Stokesova emisní spektra nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx 977$ nm a při P = 100 mW ($I_{exc} = 0.25$ W·cm⁻²). Vložený graf zobrazuje detail spekter v oblasti 375–575 nm.

Obr. 30. Závislost poměru "červené" vůči "zelené" integrované UCPL intenzitě UCPL emisního spektra pro nanokrystalické granáty $Yb_{15-x}Er_xGa_{25}O_{60}$. Vložený graf zobrazuje závislost celkové integrované UCPL intenzity.

Z UCPL emisních spekter všech studovaných vzorků Yb_{15-x}Er_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) z Obr. 29 lze předpokládat, že se jedná o UCPL v "tmavě červené" oblasti, což potvrzuje pozice parametrů (x, y) těchto vzorků v diagramu chromatičnosti CIE 1931 prezentovaného na Obr. 31. Parametry diagramu chromatičnosti CIE 1931 (x, y) z UCPL emisních spekter uvádí společně s vypočtenými hodnotami kolorimetrické čistoty (*CP*) Tab. 8. Všechny studované vzorky Yb_{15-x}Er_xGa₂₅O₆₀ vykazují velmi vysoké hodnoty *CP*, přičemž podle očekávání (podle nejvyšší hodnoty poměru "červené" vůči "zelené" integrované UCPL intenzitě) je nejvyšší hodnota *CP* pro vzorek Yb_{14,5}Er_{0,5}Ga₂₅O₆₀ (*CP* = 99,2 %). Hodnoty *CP* všech studovaných vzorků Yb_{15-x}Er_xGa₂₅O₆₀ jsou blízké standardu zdroje červeného záření a vzorky se tak z tohoto hlediska jeví jako velice vhodné pro zobrazování biologických struktur či jako jedna ze složek pro konstrukci bílých LED diod [113, 114].

Obr. 31. Diagram chromatičnosti CIE 1931 pro UCPL emisi nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀.

<i>x</i> (at. %)	Parametry vzorků z diagramu chromatičnosti CIE 1931 (<i>x</i> ; <i>y</i>)	CP (%)
0,01	0,6985; 0,2959	98,7
0,1	0,7079; 0,2880	98,8
0,5	0,7167; 0,2795	99,2
1	0,7150; 0,2812	98,8
2	0,7057; 0,2899	99,0

Tab. 8. Parametry diagramu chromatičnosti CIE 1931 (x; y) a vypočtené hodnoty kolorimetrické čistoty (*CP*) pro UCPL emisi nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀.

Křivky doznívání fotoluminiscence vzorků Yb_{15-x}Er_xGa₂₅O₆₀ zobrazuje pro elektronový přechod Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ Obr. 32, pro elektronový přechod Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ Obr. 33 a pro elektronový přechod Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ Obr. 34. Výsledné hodnoty dob života luminiscence pro jednotlivé elektronové přechody pak uvádí Tab. 9 a graficky zobrazují v závislosti na obsahu Er³⁺ vložené grafy v Obr. 32-34. Dekonvoluce křivek doznívání fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ (Obr. 32, Tab. 9) vzorků $Yb_{15-x}Er_xGa_{25}O_{60}$ (x = 0; 0,01; 0,1; 0,5; 1 a 2) prokázala přítomnost dvou složek doby života – krátké, označované $\tau_1({}^4I_{13/2})$ a dlouhé, označované $\tau_2({}^4I_{13/2})$. U nedopovaného vzorku Yb₃Ga₅O₁₂ byla zaznamenána pouze jedna složka τ , kterou lze přiřadit ke krátké složce $\tau_1({}^4I_{13/2})$ ve vzorcích $Yb_{15-x}Er_xGa_{25}O_{60}$ (x = 0,01; 0,1; 0,5; 1 a 2), vzhledem k její blízké hodnotě (≈ 0.945 ms). Krátká složka $\tau_1({}^4I_{13/2})$, jejíž hodnoty se u všech vzorků Yb_{15-x}Er_xGa₂₅O₆₀ příliš nemění, tak pravděpodobně pochází z neznámých opticky aktivních center, způsobujících pozorovanou širokospektrální emisi u vzorku Yb₃Ga₅O₁₂ (viz vložený graf v Obr. 26). Oproti tomu dlouhá složka $\tau_2({}^4I_{13/2})$ vykazuje hodnoty srovnatelné s hodnotami uváděnými i pro další nanokrystalické granáty dopované Er³⁺ [115] či kodopované Er³⁺ a Yb³⁺ [69] a pochází tedy z elektronového přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$. Hodnoty $\tau_{2}({}^{4}I_{13/2})$ se dále výrazně mění s měnící se koncentrací Er³⁺. Nejprve je pozorován nárůst $\tau_2({}^4I_{13/2})$ z hodnoty ≈ 10.35 ms (pro vzorek $Yb_{14,99}Er_{0,01}Ga_{25}O_{60}$) na hodnotu $\approx 11,34$ ms (pro vzorek $Yb_{14,9}Er_{0,1}Ga_{25}O_{60}$), který může být způsoben zachycováním záření hostitelským materiálem [116]. Následuje výrazný pokles až na hodnotu $\approx 2,69$ ms (pro vzorek Yb₁₃Er₂Ga₂₅O₆₀), který je dán jednak procesy energetického přenosu $Er^{3+} \leftrightarrow Er^{3+}$ a $Yb^{3+} \rightarrow Er^{3+}$ jak bude rozebráno dále, tak i koncentračním zhášením [79, 90] u vzorku s nejvyšším obsahem Er^{3+} (Yb₁₃Er₂Ga₂₅O₆₀).

Obr. 32. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ pro nanokrystalické granáty Yb_{15-x}Er_xGa₂₅O₆₀. Měřeno při $\lambda_{\text{exc}} \approx 977$ nm a při P = 100 mW ($I_{\text{exc}} = 0.25 \text{ W} \cdot \text{cm}^{-2}$). Vložený graf zobrazuje závislost hodnot $\tau_1({}^{4}I_{13/2})$ a $\tau_2({}^{4}I_{13/2})$ na atomární koncentraci dopantu.

Dekonvoluce křivek doznívání fotoluminiscence pocházející z elektronového přechodu $Yb^{3+}: {}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ (Obr. 33, Tab. 9) vzorků $Yb_{15-x}Er_xGa_{25}O_{60}$ (x = 0; 0,01; 0,1; 0,5; 1 a 2) prokázala přítomnost jedné složky doby života označované $\tau_{Yb}({}^{2}F_{5/2})$. Hodnoty $\tau_{Yb}({}^{2}F_{5/2})$ jsou velice nízké, přestože se jedná o Stokesův přechod z první excitované hladiny na základní hladinu. To je dané zejména velmi vysokou koncentrací Yb^{3+} ve všech studovaných vzorcích (viz Tab. 6), kdy ke koncentračnímu zhášení [79, 90] zářivého přechodu $Yb^{3+}: {}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ zde dochází ve všech těchto vzorcích. Postupný pokles hodnot $\tau_{Yb}({}^{2}F_{5/2})$ z \approx 19 µs (pro vzorek $Yb_{3}Ga_{5}O_{12}$) až na \approx 7 µs (pro vzorek $Yb_{13}Er_{2}Ga_{25}O_{60}$) lze přisoudit rostoucí účinnosti procesu energetického přenosu $Yb^{3+} \rightarrow Er^{3+}$ s rostoucí koncentrací Er^{3+} .

Obr. 33. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ pro nanokrystalické granáty Yb_{15-x}Er_xGa₂₅O₆₀. Měřeno při $\lambda_{\text{exc}} \approx 977 \text{ nm}$ a při P = 100 mW ($I_{\text{exc}} = 0,25 \text{ W} \cdot \text{cm}^{-2}$). Vložený graf zobrazuje závislost hodnot $\tau_{\text{Yb}}({}^{2}F_{5/2})$ na atomární koncentraci dopantu.

Dekonvoluce křivek doznívání fotoluminiscence pocházející z elektronového přechodu $\operatorname{Er}^{3+}: {}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (Obr. 34, Tab. 9) vzorků Yb_{15-x}Er_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) prokázala přítomnost dvou složek doby života pro vzorky Yb_{14,99}Er_{0,01}Ga₂₅O₆₀, Yb_{14,9}Er_{0,1}Ga₂₅O₆₀ a Yb_{14,5}Er_{0,5}Ga₂₅O₆₀ označovaných $\tau_3({}^{4}F_{9/2})$ a $\tau_4({}^{4}F_{9/2})$. Pro vzorky Yb₁₄Er₁Ga₂₅O₆₀ a Yb₁₃Er₂Ga₂₅O₆₀ byla zaznamenána přítomnost jedné složky doby života, která může být přiřazena ke složce $\tau_3({}^{4}F_{9/2})$ či $\tau_4({}^{4}F_{9/2})$ vzorků Yb_{14,99}Er_{0,01}Ga₂₅O₆₀, Yb_{14,9}Er_{0,1}Ga₂₅O₆₀ a Yb_{14,5}Er_{0,5}Ga₂₅O₆₀. Přítomnost pouze jedné složky doby života pro vzorky Yb₁₄Er₁Ga₂₅O₆₀ a Yb_{14,5}Er_{0,5}Ga₂₅O₆₀. Přítomnost pouze jedné složky doby života pro vzorky Yb₁₄Er₁Ga₂₅O₆₀ a Yb₁₃Er₂Ga₂₅O₆₀. Přítomnost pouze jedné složky doby života pro vzorky Yb₁₄Er₁Ga₂₅O₆₀ a Yb₁₃Er₂Ga₂₅O₆₀ lze zdůvodnit možným zkrácením druhé složky doby života pod detekční limit přístroje. S rostoucí koncentrací Er³⁺ od 0,01 at. % do 0,5 at. % je patrný pokles hodnot $\tau_3({}^{4}F_{9/2}), \tau_4({}^{4}F_{9/2})$ i vypočtené průměrné doby života $<\tau > ({}^{4}F_{9/2})$, který lze opět přisoudit rostoucí účinnosti procesu energetického přenosu Yb³⁺ \rightarrow Er³⁺.

Obr. 34. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ pro nanokrystalické granáty Yb_{15-x}Er_xGa₂₅O₆₀. Měřeno při $\lambda_{\text{exc}} \approx 977$ nm a při P = 100 mW ($I_{\text{exc}} = 0,25 \text{ W} \cdot \text{cm}^{-2}$). Vložený graf zobrazuje závislost hodnot $\tau_{3}({}^{4}F_{9/2})$, $\tau_{4}({}^{4}F_{9/2})$ a $\langle \tau \rangle ({}^{4}F_{9/2})$ na atomární koncentraci dopantu.

Tab. 9. Hodnoty dob života fotoluminiscence pocházející z elektronových přechodů $\operatorname{Er}^{3+}: {}^{4}I_{13/2} \to {}^{4}I_{15/2} \{ \tau_{1}({}^{4}I_{13/2}) \}$ a $\tau_{2}({}^{4}I_{13/2}) \}$, Yb³⁺: ${}^{2}F_{5/2} \to {}^{2}F_{7/2} \{ \tau_{Yb}({}^{2}F_{5/2}) \}$ a $\operatorname{Er}^{3+}: {}^{4}F_{9/2} \to {}^{4}I_{15/2} \{ \tau_{3}({}^{4}F_{9/2}) \}$ a $\tau_{4}({}^{4}F_{9/2}) \}$. $<\tau > ({}^{4}F_{9/2}) \}$ značí průměrnou dobu života fotoluminiscence pocházející z elektronového přechodu $\operatorname{Er}^{3+}: {}^{4}F_{9/2} \to {}^{4}I_{15/2}$ vypočtenou z hodnot $\tau_{3}({}^{4}F_{9/2})$ a $\tau_{4}({}^{4}F_{9/2})$ podle vztahu (13).

x (at %)	τ_1 (⁴ <i>I</i> _{13/2}) (ms)		$ au_{Yb} ({}^2F_{5/2}) $		τ_4 $({}^4F_{9/2})$ (us)	$< \tau >$ (⁴ F _{9/2})
0	0,945±0,03		19±1		(µs) _	(µ3) _
0,01	0,87±0,02	10,35±0,06	17±1	15±1	54±2	16±1
0,1	0,80±0,02	11,34±0,05	15±1	15±1	32±1	16±1
0,5	0,73±0,03	6,86±0,04	8±1	12±1	22±2	12±1
1	0,86±0,03	5,04±0,04	7±1	12±1	12±1	_
2	0,63±0,02	2,69±0,03	7±1	12±1	12±1	_

Obr. 35 zobrazuje dvojitou logaritmickou závislost "zelené" (Er³⁺: ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2} \rightarrow$ ${}^{4}I_{15/2}$) a "červené" (Er³⁺: ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$) intenzity UCPL na excitačním výkonu vzorků $Yb_{15-x}Er_xGa_{25}O_{60}$ (x = 0,01; 0,1; 0,5; 1 a 2). Směrnice lineární části závislosti v oblasti nízkých excitačních výkonů určuje počet absorbovaných fotonů n v UCPL procesu podle vztahu (18). Pro "červenou" UCPL se hodnota *n* u všech vzorků pohybuje v rozmezí ≈ 1.5 až ≈ 1.6 , což odpovídá dvou-fotonovému absorpčnímu procesu, potřebnému k populaci hladiny Er^{3+} : ${}^{4}F_{9/2}$. U "zelené" UCPL je patrný pokles hodnoty *n* z hodnoty $\approx 2,3$ (pro vzorek Yb_{14,99}Er_{0,01}Ga₂₅O₆₀) na $\approx 2,0$ (pro vzorek Yb_{14,9}Er_{0,1}Ga₂₅O₆₀). S $x \ge 0,1$ ve vzorcích Yb_{15-x}Er_xGa₂₅O₆₀ se hodnota n dále téměř nemění. Populace hladin $\text{Er}^{3+}: {}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$ tak odpovídá tří-fotonovému absorpčnímu procesu u vzorku Yb14,99Er0,01Ga25O60 a dvou-fotonovému absorpčnímu procesu u vzorků Yb_{15-x}Er_xGa₂₅O₆₀ s x > 0,01. To je v souladu s literaturou, kdy u "zelené" UCPL v nanokrystalických oxidech dopovaných pouze ionty Er³⁺ [117, 118] byl zaznamenán pouze dvou-fotonový absorpční proces, zatímco zabudování vysokých koncentrací iontů Yb³⁺ vedle Er³⁺ [117, 119] vedlo i k tří-fotonovému absorpčnímu procesu. Redukci směrnice v oblasti vysokých excitačních výkonů u "zelené" i "červené" UCPL lze přisoudit kompetici mezi příspěvky ESA a ETU, saturačním efektům či jevům termálního zhášení [51, 58-60].

Obr. 35. Dvojitá logaritmická závislost "zelené" (Er^{3+} : ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$) a "červené" (Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$) intenzity UCPL na excitačním výkonu *P* pro nanokrystalické granáty Yb_{15-x}Er_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2). Počet absorbovaných fotonů *n* je dán jako směrnice lineární části podle vztahu (18).

5.2.3 Mechanismus fotoluminiscence

Navržený mechanismus fotoluminiscence nanokrystalických granátů Yb_{15-x}Er_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) při použití $\lambda_{exc} \approx 977$ nm zobrazuje Obr. 36. Nejprve dochází souběžně

k procesu GSA u iontů Er^{3+} : ${}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}$ a Yb³⁺: ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$. Proces GSA (a následné procesy ESA) u iontů Er³⁺ jsou však zanedbatelné vzhledem k vysoké koncentraci iontů Yb³⁺ a zejména vzhledem k vysokému poměru iontů Yb³⁺/Er³⁺ ve všech studovaných vzorcích. Po procesu GSA u iontu Yb³⁺ následuje energetický přenos označený ETU0: Yb³⁺: ${}^{2}F_{5/2}$ + Er³⁺: ${}^{4}I_{15/2} \rightarrow$ Yb³⁺: ${}^{2}F_{7/2}$ + Er³⁺: ${}^{4}I_{11/2}$. Absorpcí druhého fotonu iontem Yb³⁺ dochází k energetickému přenosu označenému ETU1: Yb³⁺: ${}^{2}F_{5/2} + \text{Er}^{3+}$: ${}^{4}I_{11/2} \rightarrow \text{Yb}^{3+}$: ${}^{2}F_{7/2} + \text{Er}^{3+}$: ${}^{4}F_{7/2}$. Následuje zářivá rekombinace termálně spřažených hladin $\operatorname{Er}^{3+}: {}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, která však poskytuje velmi málo intenzivní "zelenou" UCPL (viz Obr. 29). Důvodem je velice účinná depopulace hladin Er^{3+} : ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$ nezářivými procesy CR a EBT, mající za výsledek emisi záření pozorovanou v "tmavě červené" oblasti (viz Obr. 31). Probíhá proces CR1 mezi dvojicí iontů Er^{3+} : ${}^{4}F_{7/2} + {}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2} + {}^{4}F_{9/2}$ [76, 77]. Proces CR2 mezi dvojicí iontů Er^{3+} je následující: ${}^{2}H_{11/2} + {}^{4}I_{15/2} \rightarrow {}^{4}I_{9/2} + {}^{4}I_{13/2}$ [71, 76]. Zatímco proces CR1 účinně populuje hladinu Er^{3+} : ${}^{4}F_{9/2}$ a zvyšuje tak intenzitu "červené" UCPL (dané zářivou rekombinací Er^{3+} : ${}^{4}F_{9/2} \rightarrow$ ${}^{4}I_{15/2}$), proces CR2 populuje hladiny Er³⁺: ${}^{4}I_{9/2}$ a ${}^{4}I_{13/2}$. Proces CR2 tak rovněž vysvětluje zvýšení hodnoty $\tau_2({}^4I_{13/2})$ u vzorku Yb_{14.9}Er_{0.1}Ga₂₅O₆₀ oproti vzorku Yb_{14.99}Er_{0.01}Ga₂₅O₆₀, jelikož k procesům CR dochází u vzorků $Yb_{15-x}Er_xGa_{25}O_{60}$ již při $x \ge 0,1$, u kterých průměrné meziiontové vzdálenosti $R_{Er^{3+}\leftrightarrow Er^{3+}}$ dosahují hodnot dostatečných pro tuto interakci (< 15 Å, viz Tab. 5) [81]. Proces EBT bude probíhat u všech studovaných vzorků, jelikož poměr Yb³⁺/Er³⁺ je ve všech vzorcích vysoký (1499 až 6,5). Proces EBT1 je následující: Er³⁺: ${}^{4}S_{3/2}$ + $Yb^{3+}: {}^{2}F_{7/2} \rightarrow Er^{3+}: {}^{4}I_{13/2} + Yb^{3+}: {}^{2}F_{5/2}$ [72, 79, 80, 82, 83]. Může rovněž docházet k procesu EBT2: Er^{3+} : ${}^{4}F_{7/2} + \text{Yb}^{3+}$: ${}^{2}F_{7/2} \rightarrow \text{Er}^{3+}$: ${}^{4}I_{11/2} + \text{Yb}^{3+}$: ${}^{2}F_{5/2}$ [119]. Z hladiny Er^{3+} : ${}^{4}I_{11/2}$ (populované procesem GSA/ETU0 či EBT2) rovněž dochází k procesu MPR na hladinu Er³⁺: ${}^{4}I_{13/2}$, jelikož zářivá rekombinace Er^{3+} : ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$ při $\lambda_{\mathrm{em}} \approx 2.7 \ \mu\mathrm{m}$ [120] nebyla ve studovaných vzorcích pozorována. To je dáno nízkým počtem fononů ($P = \frac{3600}{70\pi} \approx 5$), potřebných pro uskutečnění zářivého přechodu. Zářivý Stokesův přechod Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ při $\lambda_{em} \approx 1500$ nm byl však zaznamenán (viz Obr. 26). Z hladiny Er^{3+} : ${}^{4}I_{13/2}$ dále dochází interakcí se sousedními excitovanými ionty Yb³⁺ k excitaci na hladinu Er^{3+} : ${}^{4}F_{9/2}$ energetickým přenosem ETU2: Yb³⁺: ${}^{2}F_{5/2} + \text{Er}^{3+}$: ${}^{4}I_{13/2} \rightarrow \text{Yb}^{3+}$: ${}^{2}F_{7/2} + \text{Er}^{3+}$: ${}^{4}F_{9/2}$, čímž je opět populována hladina zodpovědná za "červenou" UCPL. Následuje energetický přenos ETU3: Yb³⁺: ${}^{2}F_{5/2}$ + $\mathrm{Er}^{3+}: {}^{4}F_{9/2} \rightarrow \mathrm{Yb}^{3+}: {}^{2}F_{7/2} + \mathrm{Er}^{3+}: {}^{2}G_{9/2}$, jehož přítomnost je prokázána přítomností zářivého přechodu Er^{3+} : ${}^{2}G_{9/2} \rightarrow {}^{4}I_{15/2}$ při $\lambda_{\text{em}} \approx 410$ nm (viz Obr. 29). Z hladiny Er^{3+} : ${}^{2}G_{9/2}$ dochází k MPR na hladiny Er^{3+} : ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$, což vysvětluje pozorovaný tří-fotonový absorpční proces pro populaci hladin Er^{3+} : ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$ u vzorku Yb_{14,99}Er_{0.01}Ga₂₅O₆₀. Pozorovaný

dvou-fotonový absorpční proces pro populaci hladin Er^{3+} : ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$ pro vzorky $\text{Yb}_{15-x}\text{Er}_x\text{Ga}_{25}\text{O}_{60}$ s x > 0,01 tak lze přisoudit snížení účinnosti procesu EBT s rostoucím x (s klesající koncentrací Yb^{3+}) [119] či přítomnosti procesu ET mezi dvojicí iontů Er^{3+} (${}^{4}I_{11/2} + {}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2} + {}^{4}F_{7/2}$) [66] anebo přítomnosti zmíněných procesů CR1 a CR2.

Obr. 36. Navržený mechanismus fotoluminiscence pro nanokrystalické granáty Yb_{15-x}Er_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) při $\lambda_{exc} \approx 977$ nm.

Pro prokázání výše zmíněných procesů CR a EBT byla ještě provedena doplňující měření vzorku Yb14.5Er0.5Ga25O60 se vzorky stejné struktury o složení Gd9.5Yb5Er0.5Ga25O60, Gd_{14,5}Er_{0,5}Ga₂₅O₆₀, Gd_{14,9}Er_{0,1}Ga₂₅O₆₀ a Gd_{14,99}Er_{0,01}Ga₂₅O₆₀, syntetizovaných obdobným způsobem jako vzorky Yb_{15-x}Er_xGa₂₅O₆₀. Byla provedena měření Stokesových emisních spekter ve viditelné a blízké infračervené oblasti pro vzorky Yb14,5Er0,5Ga25O60, Gd_{9.5}Yb₅Er_{0.5}Ga₂₅O₆₀ a Gd_{14.5}Er_{0.5}Ga₂₅O₆₀ s použitím Xe lampy jako excitačního zdroje s $\lambda_{exc} \approx 488$ nm (Obr. 37). Dále byly změřeny křivky doznívání fotoluminiscence pro elektronový přechod Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ vzorku $\text{Yb}_{14,5}\text{Er}_{0,5}\text{Ga}_{25}\text{O}_{60}$ se vzorky Gd9.5Yb5Er0.5Ga25O60, Gd14.5Er0.5Ga25O60, Gd14.9Er0.1Ga25O60 a Gd14.99Er0.01Ga25O60 s použitím Xe lampy ($\lambda_{exc} \approx 488$ nm) při délce excitačního pulsu ≈ 1 µs (Obr. 38). Difraktogramy nanokrystalických vzorků Gd_{9,5}Yb₅Er_{0,5}Ga₂₅O₆₀, Gd_{14,5}Er_{0,5}Ga₂₅O₆₀, Gd_{14,9}Er_{0,1}Ga₂₅O₆₀ a Gd_{14,99}Er_{0.01}Ga₂₅O₆₀ jsou pro úplnost zobrazeny na Obr. 39. Ze Stokesových emisních spekter Er^{3+} $(Yb_{14,5}Er_{0,5}Ga_{25}O_{60},$ vzorků se stejným obsahem Gd_{9,5}Yb₅Er_{0,5}Ga₂₅O₆₀ a Gd_{14,5}Er_{0,5}Ga₂₅O₆₀, viz Obr. 37) je patrné výrazné snížení intenzity emisních pásů

pocházejících z elektronových přechodů Er^{3+} při ≈ 530 , ≈ 550 , ≈ 660 , ≈ 850 , ≈ 990 a ≈ 1250 nm. Intenzita emisních pásů při ≈ 1500 nm, daných elektronovým přechodem Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$, je však pro zmíněné vzorky téměř identická. Oba dva pozorované efekty lze přisoudit přítomnosti procesů EBT1/EBT2, které jsou zodpovědné za depopulaci hladin Er^{3+} : ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2}$, ${}^{4}F_{9/2}$, ${}^{4}I_{9/2}$ a ${}^{4}I_{11/2}$, zatímco populace hladiny Er^{3+} : ${}^{4}I_{13/2}$ se prakticky nemění.

Obr. 37. Stokesova emisní spektra nanokrystalických granátů $Yb_{14,5}Er_{0,5}Ga_{25}O_{60}$, $Gd_{9,5}Yb_5Er_{0,5}Ga_{25}O_{60}$ a $Gd_{14,5}Er_{0,5}Ga_{25}O_{60}$ ve viditelné a blízké infračervené oblasti s uvedenými elektronovými přechody. Měřeno při $\lambda_{exc} \approx 488$ nm.

Přítomnost procesů EBT1/EBT2 je dále potvrzena analýzou křivek doznívání fotoluminiscence pro elektronový přechod $\text{Er}^{3+}: {}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ vzorků Yb_{14,5}Er_{0,5}Ga₂₅O₆₀, Gd_{9,5}Yb₅Er_{0,5}Ga₂₅O₆₀, Gd_{14,5}Er_{0,5}Ga₂₅O₆₀, Gd_{14,9}Er_{0,1}Ga₂₅O₆₀ a Gd_{14,99}Er_{0,01}Ga₂₅O₆₀ (viz Obr. 38). Pro fitování dat byla odvozena rovnice (28):

$$I_{PL}(t) = I_{PL}(0) + \left\{ N_{1,Er} + N_{2,Er} \left[1 - exp\left(\frac{-t}{\tau_R}\right) \right] \right\} exp\left(\frac{-t}{\tau_D}\right)$$
(28)

kde $I_{PL}(0)$ značí intenzitu fotoluminiscence v čase t = 0, $N_{I,Er}$ značí aktuální populaci hladiny $\operatorname{Er}^{3+}: {}^{4}I_{13/2}$, $N_{2,Er}$ značí zvyšování populace hladiny $\operatorname{Er}^{3+}: {}^{4}I_{13/2}$ z vyšších hladin, τ_{R} označuje dobu

"náběhu" populace hladiny Er^{3+} : ${}^{4}I_{13/2}$ z vyšších hladin danou zejména procesy MPR a τ_{D} označuje dobu života fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ při použití $\lambda_{exc} \approx 488$ nm. U vzorků $Gd_{15-x}Er_xGa_{25}O_{60}$ je patrný pokles hodnot obou komponent τ_{R} i τ_{D} od koncentrace x = 0,01 do x = 0,5, což potvrzuje přítomnost výše diskutovaných procesů CR a ET mezi ionty Er^{3+} i ve vzorcích $Yb_{15-x}Er_xGa_{25}O_{60}$. Zabudováním iontů Yb^{3+} do granátů $Gd_{15-x}Er_xGa_{25}O_{60}$ (vzorek $Gd_{9,5}Yb_5Er_{0,5}Ga_{25}O_{60}$) dochází k poklesu τ_{R} na hodnotu ≈ 0 ms, což vysvětluje zrychlení populace hladiny Er^{3+} : ${}^{4}I_{13/2}$ procesem EBT1 (či EBT2 následovaným procesem MPR). Rovněž dochází s postupným zabudováním iontů Yb^{3+} k poklesu hodnot τ_{D} z $\approx 7,05$ ms (pro vzorek $Gd_{14,5}Er_{0,5}Ga_{25}O_{60}$) až na $\approx 6,00$ ms (pro vzorek $Yb_{14,5}Er_{0,5}Ga_{25}O_{60}$, odpovídající úplnému nahrazení iontů Gd^{3+} ionty Yb^{3+}).

Obr. 38. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Er^{3+} : ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ pro nanokrystalické granáty Yb_{14,5}Er_{0,5}Ga₂₅O₆₀, Gd_{9,5}Yb₅Er_{0,5}Ga₂₅O₆₀, Gd_{14,5}Er_{0,5}Ga₂₅O₆₀, Gd_{14,5}Er_{0,5}Ga₂₅O₆₀, Gd_{14,9}Er_{0,1}Ga₂₅O₆₀ a Gd_{14,99}Er_{0,01}Ga₂₅O₆₀. Měřeno při $\lambda_{\text{exc}} \approx 488$ nm. Hodnoty τ_{R} a τ_{D} byly získány fitováním experimentálních dat s použitím rovnice (28).

Obr. 39. Difraktogramy nanokrystalických granátů $Gd_{9,5}Yb_5Er_{0,5}Ga_{25}O_{60}$, $Gd_{14,5}Er_{0,5}Ga_{25}O_{60}$, $Gd_{14,9}Er_{0,1}Ga_{25}O_{60}$ a $Gd_{14,99}Er_{0,01}Ga_{25}O_{60}$. Spodní linie odpovídá standardu kubického $Gd_3Ga_5O_{12}$ č. 00-013-0493 z databáze PDF-4+.

5.3 Optické vlastnosti nanokrystalických granátů Yb₃Ga₅O₁₂ dopovaných ionty Ho³⁺

5.3.1 Difúzní reflektivita

Spektrum difúzní reflektivity vzorků Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0; 0,01; 0,1; 0,5; 1 a 2) zobrazuje Obr. 40. Všechny vzorky Yb_{15-x}Ho_xGa₂₅O₆₀, stejně jako vzorky Yb_{15-x}Er_xGa₂₅O₆₀ (viz Obr. 24), vykazují vysokou optickou reflektivitu ve studované oblasti s absorpčními pásy danými 4f \leftrightarrow 4f elektronovými přechody přítomných Ln³⁺. Absorpční pásy dané přítomností iontů Ho³⁺ pochází z přechodů GSA ze základní hladiny Ho³⁺: ⁵*I*₈ na excitované hladiny: ⁵*I*₆ ($\lambda \approx 1130$ nm), ⁵*F*₅ ($\lambda \approx 640$ nm), ⁵*F*₄/⁵*S*₂ ($\lambda \approx 535$ nm), ⁵*F*₃/⁵*F*₂/³*K*₈ ($\lambda \approx 485$ nm), ⁵*F*₁/⁵*G*₆ ($\lambda \approx 450$ nm), ⁵*G*₅ ($\lambda \approx 415$ nm) a ³*H*₆/³*H*₅ ($\lambda \approx 365$ nm). Nejintenzivnější absorpční pás při $\lambda \approx 850$ –1050 nm je opět dán přítomností vysokého obsahu iontů Yb³⁺ a pochází opět z přechodu GSA Yb³⁺: ²*F*_{7/2} \rightarrow ²*F*_{5/2}. Oblast fundamentální absorpce hostitelského materiálu Yb₃Ga₅O₁₂ (při $\lambda < 300$ nm) se s rostoucí koncentrací Ho³⁺ ve studovaném koncentračním rozsahu téměř nemění.

Obr. 40. Spektrum difúzní reflektivity nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀. Vložený graf zobrazuje detail spektra v oblasti 340–700 nm.

5.3.2 Fotoluminiscenční vlastnosti

Stokesova emisní spektra vzorků Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) v blízké infračervené oblasti v rozsahu 1050–1350 nm, odpovídající elektronovému přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$, zobrazuje Obr. 41. Integrovaná PL intenzita nelineárně roste s rostoucím obsahem Ho³⁺ až do koncentrace x = 1, jak je patrné z vloženého grafu z Obr. 41. Vzorek Yb₁₃Ho₂Ga₂₅O₆₀ již vykazuje mírný pokles integrované PL intenzity, který může být přisouzen koncentračnímu zhášení [79, 90]. Integrovaná PL intenzita vzorku Yb₁₃Ho₂Ga₂₅O₆₀ je však stále relativně vysoká, srovnatelná se vzorkem Yb_{14,5}Ho_{0,5}Ga₂₅O₆₀. To svědčí o účinné populaci hladiny Ho³⁺: ${}^{5}I_{6}$ i při koncentraci x = 2, jak bude dále diskutováno.

Obr. 41. Stokesova emisní spektra nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀ odpovídající elektronovému přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$. Měřeno při $\lambda_{exc} \approx 980$ nm a při P = 19,6 mW ($I_{exc} = 10 \text{ W} \cdot \text{cm}^{-2}$). Vložený graf zobrazuje závislost integrované PL intenzity na koncentraci Ho³⁺.

Stokesova emisní spektra vzorků Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) v blízké infračervené oblasti v rozsahu 1800–2300 nm, odpovídající elektronovému přechodu Ho³⁺: ⁵I₇ \rightarrow ⁵I₈, zobrazuje Obr. 42. Integrovaná PL intenzita zde s rostoucím obsahem Ho³⁺ roste pouze do koncentrace x = 0,5, jak zobrazuje vložený graf v Obr. 42. Následuje výrazný pokles

integrované PL intenzity pro vzorky Yb_{15-x}Ho_xGa₂₅O₆₀ s x > 0,5, což poukazuje na odlišný mechanismus pro populaci a depopulaci hladin Ho³⁺: ⁵*I*₆ a ⁵*I*₇.

Obr. 42. Stokesova emisní spektra nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀ odpovídající elektronovému přechodu Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$. Měřeno při $\lambda_{exc} \approx 980$ nm a při P = 19,6 mW ($I_{exc} = 10$ W·cm⁻²). Vložený graf zobrazuje závislost integrované PL intenzity na koncentraci Ho³⁺.

Anti-Stokesova (upkonverzní) emisní spektra vzorků Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5;1 a 2) v rozsahu 450–800 nm zobrazuje Obr. 43. Spektra tvoří relativně intenzivní emisní pásy v "zelené" oblasti ($\lambda_{em} \approx 530-570$ nm), pocházející z elektronového přechodu Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$ a v "červené" oblasti ($\lambda_{em} \approx 630-700$ nm), pocházející z elektronového přechodu Ho³⁺: ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$. Dále jsou po přiblížení (viz vložený graf v Obr. 43) patrné méně intenzivní emisní pásy, které se nachází na rozhraní viditelné a blízké infračervené oblasti ($\lambda_{em} \approx 740-770$ nm) a které pocházejí z elektronového přechodu Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{7}$. Poměr ploch UCPL emisních spekter "červené" oblasti vůči "zelené" oblasti má pro vzorek Yb_{14,99}Ho_{0,01}Ga₂₅O₆₀ hodnotu $\approx 3,2$ a s rostoucím obsahem Ho³⁺ dále nelineárně klesá až na hodnotu $\approx 0,56$ (pro vzorek Yb₁₃Ho₂Ga₂₅O₆₀), jak uvádí Obr. 44. Obdobný trend klesajícího poměru ploch "červené" vůči "zelené" UCPL s rostoucí koncentrací Ho³⁺ byl pozorován např. u mikrokrystalů Lu₃NbO₇ dopovaných 20 at. % Yb³⁺ a různou koncentrací Ho³⁺ [121]. Vložený graf v Obr. 44 zobrazuje průběh celkové integrované UCPL intenzity s rostoucím obsahem Ho³⁺. Maximum celkové integrované UCPL intenzity je pro vzorek Yb_{14,9}Ho_{0,1}Ga₂₅O₆₀, přičemž následuje výrazný pokles celkové integrované UCPL intenzity s x > 0,1 ve vzorcích Yb_{15-x}Ho_xGa₂₅O₆₀. Celková integrovaná UCPL intenzita vzorků Yb₁₄Ho₁Ga₂₅O₆₀ a Yb₁₃Ho₂Ga₂₅O₆₀ je dokonce nižší než pro vzorek s nejnižší koncentrací Ho³⁺ (Yb_{14,99}Ho_{0,01}Ga₂₅O₆₀). Při koncentraci x > 0,1 ve vzorcích Yb_{15-x}Ho_xGa₂₅O₆₀ je tak výrazně depopulována hladina Ho³⁺: ⁵*F*₅ (viz Obr. 43), což má vliv na zmíněném průběhu celkové integrované UCPL intenzity. Mechanismus populace jednotlivých hladin Ho³⁺ bude diskutován v další kapitole.

Obr. 43. Anti-Stokesova emisní spektra nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx 977$ nm a při P = 955 mW ($I_{exc} = 2,39$ W·cm⁻²). Vložený graf zobrazuje detail spekter v oblasti 740–770 nm.

Obr. 44. Závislost poměru "červené" vůči "zelené" integrované UCPL intenzitě UCPL emisního spektra pro nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀. Vložený graf zobrazuje závislost celkové integrované UCPL intenzity.

Z UCPL emisních spekter všech studovaných vzorků Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5;1 a 2) z Obr. 43 a z relativně nízkých hodnot poměru ploch "červené" vůči "zelené" UCPL lze předpokládat, že s měnící se koncentrací Ho³⁺ se bude výrazněji měnit vnímaná barevná oblast UCPL. To dokazuje pozice parametrů (x, y) studovaných vzorků Yb_{15-x}Ho_xGa₂₅O₆₀ v diagramu chromatičnosti CIE 1931 prezentovaného na Obr. 45. S rostoucí koncentrací Ho³⁺ dochází k postupnému posunu ze "žluté" do "zelené" oblasti UCPL. Parametry diagramu chromatičnosti CIE 1931 (x, y) z UCPL emisních spekter uvádí společně s vypočtenými hodnotami kolorimetrické čistoty (*CP*) Tab. 10. Všechny studované vzorky Yb_{15-x}Ho_xGa₂₅O₆₀ mohou být vhodné jako zdroje žluté emise, zatímco vzorky Yb_{14,5}Ho_{0,5}Ga₂₅O₆₀, Yb₁₄Ho₁Ga₂₅O₆₀ a Yb₁₃Ho₂Ga₂₅O₆₀ mohou být vhodné jako zdroje zelené emise, např. jako jedna ze složek (vedle zdrojů červené a modré emise) pro již zmiňovanou konstrukci bílých LED diod [122].

Obr. 45. Diagram chromatičnosti CIE 1931 pro UCPL emisi nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀.

<i>x</i> (at. %)	Parametry vzorků z diagramu chromatičnosti CIE 1931 (x; y)	CP (%)
0,01	0,4465; 0,5414	97,0
0,1	0,4320; 0,5562	97,2
0,5	0,3709; 0,6157	97,3
1	0,3287; 0,6566	96,8
2	0,3155; 0,6679	96,5

Tab. 10. Parametry diagramu chromatičnosti CIE 1931 (x; y) a vypočtené hodnoty kolorimetrické čistoty (*CP*) pro UCPL emisi nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀.

Křivky doznívání fotoluminiscence vzorků Yb_{15-x}Ho_xGa₂₅O₆₀ zobrazuje pro elektronový přechod Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ Obr. 46, pro elektronový přechod Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ Obr. 47, pro elektronový přechod Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ Obr. 48 a pro elektronový přechod Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$ Obr. 49. Výsledné hodnoty dob života luminiscence pro jednotlivé elektronové přechody jsou uvedeny v Tab. 11 a graficky zobrazeny v závislosti na obsahu Ho³⁺ ve vložených grafech v Obr. 46–49. Data doznívání fotoluminiscence pocházející z elektronového přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ (Obr. 46, Tab. 11) vzorků Yb_{15–x}Ho_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) byla fitována s použitím jednoduché exponenciály podle rovnice (11). Byla tedy prokázána přítomnost jedné složky doby života, označované $\tau({}^{5}I_{6})$. S rostoucím obsahem Ho³⁺ ve vzorcích Yb_{15–x}Ho_xGa₂₅O₆₀ je pozorován postupný mírný nárůst hodnot $\tau({}^{5}I_{6})$ z hodnoty \approx 245 µs (pro vzorek Yb_{14,99}Ho_{0,01}Ga₂₅O₆₀) na hodnotu \approx 272 µs (pro vzorek Yb₁₃Ho₂Ga₂₅O₆₀). Skutečnost, že se u hodnoty $\tau({}^{5}I_{6})$ vzorku Yb₁₃Ho₂Ga₂₅O₆₀ neprojevilo koncentrační zhášení [79, 90], pozorované u Stokesova emisního spektra pocházejícího z elektronového přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ (viz Obr. 41), vede k závěru, že hladina Ho³⁺: ${}^{5}I_{6}$ je s rostoucí koncentrací Ho³⁺ velice účinně populována zejména procesy CR [85, 123, 124].

Obr. 46. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ pro nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx 980$ nm a při P = 23,6 mW ($I_{exc} = 12 \text{ W} \cdot \text{cm}^{-2}$). Vložený graf zobrazuje závislost hodnot $\tau({}^{5}I_{6})$ na atomární koncentraci dopantu.

Data doznívání fotoluminiscence pocházející z elektronového přechodu Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ (Obr. 47, Tab. 11) vzorků Yb_{15-x}Ho_xGa₂₅O₆₀ (*x* = 0,01; 0,1; 0,5; 1 a 2) byla fitována s použitím dvojité exponenciály podle rovnice (12). Byla tak odhalena přítomnost dvou složek doby života – krátké, označované $\tau_1({}^{5}I_7)$ a dlouhé, označované $\tau_2({}^{5}I_7)$. Hodnoty obou složek dob života $\tau_1({}^{5}I_7)$ a $\tau_2({}^{5}I_7)$ vykazují stejný trend s rostoucím obsahem Ho³⁺ ve vzorcích Yb_{15-x}Ho_xGa₂₅O₆₀. Přítomnost dvou složek dob života s obdobným trendem při rostoucí koncentraci iontu aktivátoru lze obecně u nanokrystalických vzorků přisoudit rozdílné pravděpodobnosti procesu MPR pro ionty aktivátorů situované na povrchu (či v jeho blízkosti) a pro ionty aktivátorů zabudované uvnitř nanokrystalů [125]. Vypočtená průměrná doba života $\langle \tau \rangle ({}^{5}I_7)$ tak vykazuje stejný trend s rostoucím obsahem Ho³⁺ jako hodnoty $\tau_1({}^{5}I_7)$ a $\tau_2({}^{5}I_7)$. Nejprve dochází k nárůstu $\langle \tau \rangle ({}^{5}I_7)$ z hodnoty \approx 16,90 ms (pro vzorek Yb_{14,99}Ho_{0,01}Ga₂₅O₆₀) na hodnotu \approx 17,84 ms (pro vzorek Yb_{14,9}Ho_{0,1}Ga₂₅O₆₀), který může být dán efektem zachycování záření hostitelským materiálem [116]. Následuje výrazný pokles $\langle \tau \rangle ({}^{5}I_7)$ až na hodnotu \approx 2,44 ms (pro vzorek Yb₁₃Ho₂Ga₂₅O₆₀), který je dán jednak procesy CR [85, 123, 124] jak bude diskutováno níže, tak i koncentračním zhášením [79, 90] u vzorku s nejvyšším obsahem Ho³⁺ (Yb₁₃Ho₂Ga₂₅O₆₀).

Obr. 47. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ pro nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx 980$ nm a při P = 23,6 mW ($I_{exc} = 12$ W·cm⁻²). Vložený graf zobrazuje závislost hodnot $\tau_{1}({}^{5}I_{7})$, $\tau_{2}({}^{5}I_{7})$ a $<\tau > (5I_{7})$ na atomární koncentraci dopantu.

U elektronového přechodu Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ byla změřena data doznívání fotoluminiscence pouze u vzorků Yb_{14,99}Ho_{0,01}Ga₂₅O₆₀ a Yb_{14,9}Ho_{0,1}Ga₂₅O₆₀ (viz Obr. 48, Tab. 11). Data doznívání fotoluminiscence u vzorků Yb_{14,5}Ho_{0,5}Ga₂₅O₆₀, Yb₁₄Ho₁Ga₂₅O₆₀ a Yb₁₃Ho₂Ga₂₅O₆₀ nebyla zaznamenána (nachází se pod mezí detekce použité instrumentální metody). Změřená data byla fitována s použitím jednoduché exponenciály podle rovnice (11). Byla tedy prokázána přítomnost jedné složky doby života, označované $\tau_{Yb}({}^{2}F_{5/2})$. Stanovené hodnoty $\tau_{Yb}({}^{2}F_{5/2})$ obou vzorků jsou velice nízké ($\approx 10 \ \mu$ s) a jsou tak srovnatelné s hodnotami $\tau_{Yb}({}^{2}F_{5/2})$ u vzorků Yb_{15-x}Er_xGa₂₅O₆₀. To potvrzuje přítomnost koncentračního zhášení [79, 90] zářivého přechodu Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ a vysokou účinnost procesu energetického přenosu Yb³⁺ \rightarrow Ho³⁺ ve všech studovaných vzorcích.

Obr. 48. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ pro nanokrystalické granáty Yb_{14,99}Ho_{0,01}Ga₂₅O₆₀ a Yb_{14,9}Ho_{0,1}Ga₂₅O₆₀. Měřeno při $\lambda_{exc} \approx 977$ nm a při P = 100 mW ($I_{exc} = 0,25$ W·cm⁻²). Vložený graf zobrazuje závislost hodnot $\tau({}^{2}F_{5/2})$ na atomární koncentraci dopantu.

Dekonvoluce křivek doznívání fotoluminiscence pocházející z elektronového přechodu $\text{Ho}^{3+}: {}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$ (Obr. 49, Tab. 11) vzorků $\text{Yb}_{15-x}\text{Ho}_{x}\text{Ga}_{25}\text{O}_{60}$ (x = 0,01; 0,1; 0,5; 1 a 2) prokázala přítomnost dvou složek doby života pro vzorky $\text{Yb}_{14,99}\text{Ho}_{0,01}\text{Ga}_{25}\text{O}_{60}$

a Yb_{14,9}Ho_{0,1}Ga₂₅O₆₀ označovaných $\tau_3({}^5F_4/{}^5S_2)$ a $\tau_4({}^5F_4/{}^5S_2)$. Pro vzorky Yb_{14,5}Ho_{0,5}Ga₂₅O₆₀, Yb₁₄Ho₁Ga₂₅O₆₀ a Yb₁₃Ho₂Ga₂₅O₆₀ byla zaznamenána přítomnost jedné složky doby života, která je přiřazena k dlouhé složce $\tau_4({}^5F_4/{}^5S_2)$. Zatímco hodnoty krátké složky $\tau_3({}^5F_4/{}^5S_2)$ ve vzorcích Yb_{15-x}Ho_xGa₂₅O₆₀ s x > 0,1 klesají pod mez detekce použité metody, tak u hodnot dlouhé složky $\tau_4({}^5F_4/{}^5S_2)$ je pozorován postupný nárůst s rostoucí koncentrací Ho³⁺. Tento jev je poměrně nezvyklý a bude patrně způsoben současným vlivem více procesů. Za postupný nárůst hodnot $\tau_4({}^5F_4/{}^5S_2)$ s rostoucí koncentrací Ho³⁺ (a zároveň s klesající koncentrací Yb³⁺) může být odpovědný proces EBT depopulující hladiny Ho³⁺: ${}^5F_4/{}^5S_2$, jelikož účinnost tohoto procesu s klesající koncentrací Yb³⁺ klesá [83–86].

Obr. 49. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$ pro nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀. Měřeno při $\lambda_{exc} \approx 977$ nm a při P = 955 mW ($I_{exc} = 2,39 \text{ W} \cdot \text{cm}^{-2}$). Vložený graf zobrazuje závislost hodnot $\tau_{3}({}^{5}F_{4}/{}^{5}S_{2})$ a $\tau_{4}({}^{5}F_{4}/{}^{5}S_{2})$ na atomární koncentraci dopantu.

Tab. 11. Hodnoty dob života fotoluminiscence pocházející z elektronových přechodů Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8} \{\tau({}^{5}I_{6})\}, \text{Ho}^{3+}: {}^{5}I_{7} \rightarrow {}^{5}I_{8} \{\tau_{1}({}^{5}I_{7}) \text{ a } \tau_{2}({}^{5}I_{7})\}, \text{Yb}^{3+}: {}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2} \{\tau_{Yb}({}^{2}F_{5/2})\} \text{ a Ho}^{3+}: {}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8} \{\tau_{3}({}^{5}F_{4}/{}^{5}S_{2}) \text{ a } \tau_{4}({}^{5}F_{4}/{}^{5}S_{2})\}. <\tau >({}^{5}I_{7})$ značí průměrnou dobu života fotoluminiscence pocházející z elektronového přechodu Ho³⁺: {}^{5}I_{7} \rightarrow {}^{5}I_{8} vypočtenou z hodnot $\tau_{1}({}^{5}I_{7}) \text{ a } \tau_{2}({}^{5}I_{7})$ podle vztahu (13).

x (at. %)	$ au^{ au}_{(^5I_6)}$ (μ s)			$< \tau >$ (⁵ I_7) (ms)	$ au_{ m Yb}\ (^2F_{ m 5/2})\ (\mu { m s})$		$ \frac{ au_4}{({}^5F_4/{}^5S_2)}$ (µs)
0,01	245±1	6,38±0,04	18,11±0,02	16,90±0,1	10±1	12±1	43±1
0,1	255±1	6,91±0,02	19,26±0,01	17,84±0,1	10±1	14±1	52±1
0,5	257±1	3,33±0,01	10,30±0,01	9,08±0,1	—	—	53±1
1	270±1	1,96±0,01	5,85±0,01	5,04±0,1	—	—	58±1
2	272±1	1,21±0,01	3,13±0,01	2,44±0,1	_	_	60±1

(Ho³⁺: Obr. 50 zobrazuje dvojitou logaritmickou závislost "zelené" ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$), "červené" (Ho³⁺: ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$) a "755 nm" (Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{7}$) intenzity UCPL na excitačním výkonu vzorků $Yb_{15-x}Ho_xGa_{25}O_{60}$ (x = 0,01; 0,1; 0,5; 1 a 2). Pro "zelenou" UCPL se hodnota směrnice lineární části *n* pohybuje v rozmezí \approx 1,9 až \approx 2,0. Pro "červenou" UCPL se hodnota *n* pohybuje mezi \approx 1,7 až 1,9. Pro "755 nm" UCPL je hodnota *n* mezi \approx 1,6 až 1,8. Z uvedeného vyplývá, že všechny tři pozorované upkonverzní přechody odpovídají dvoufotonovému absorpčnímu procesu, potřebnému pro populaci hladin Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2}$ a ${}^{5}F_{5}$. Dvoufotonový absorpční proces pro populaci hladin Ho^{3+} : ${}^{5}F_{4}/{}^{5}S_{2}$ a ${}^{5}F_{5}$ byl rovněž zaznamenán u nanokrystalických či mikrokrystalických oxidů kodopovaných ionty Ho³⁺ a Yb³⁺ [85, 126, 127]. Redukci směrnice n v oblasti vysokých excitačních výkonů u "zelené", "červené" i u "755 nm" UCPL lze opět přisoudit kompetici mezi příspěvky ESA a ETU, saturačním efektům či jevům termálního zhášení [51, 58-60].

Obr. 50. Dvojitá logaritmická závislost "zelené" (Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$), "červené" (Ho³⁺: ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$) a "755 nm" (Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{7}$) intenzity UCPL na excitačním výkonu *P* pro nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀ (*x* = 0,01; 0,1; 0,5; 1 a 2). Počet absorbovaných fotonů *n* je dán jako směrnice lineární části podle vztahu (18).

Obr. 51 zobrazuje Stokesova emisní spektra vzorku Yb₁₄Ho₁Ga₂₅O₆₀ v rozsahu 1050– 1350 nm, odpovídající elektronovému přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$, změřená při 7 různých hodnotách excitační intenzity (*I*_{exc}). Integrovaná PL intenzita nelineárně roste s rostoucí hodnotou *I*_{exc}, jak ukazuje vložený graf v Obr. 51. To svědčí o významném vlivu procesu ET Yb³⁺ \rightarrow Ho³⁺ a procesů CR mezi ionty Ho³⁺, jak bude dále diskutováno.

Obr. 51. Stokesova emisní spektra nanokrystalického granátu Yb₁₄Ho₁Ga₂₅O₆₀ odpovídající elektronovému přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ při různé excitační intenzitě (I_{exc}). Měřeno při $\lambda_{exc} \approx 980$ nm. Vložený graf zobrazuje závislost integrované PL intenzity na I_{exc} .

Obr. 52 zobrazuje pro úplnost křivky doznívání fotoluminiscence vzorku Yb₁₄Ho₁Ga₂₅O₆₀ pro elektronový přechod Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ změřené při 7 hodnotách I_{exc} (stejných jako v Obr. 51). Jak je patrné, vliv měnící se I_{exc} na výslednou hodnotu $\tau({}^{5}I_{6})$, získanou fitováním dat jednoduchou exponenciálou podle rovnice (11), je nízký. Hodnota $\tau({}^{5}I_{6})$ postupně klesá z hodnoty ≈ 274 µs (při $I_{exc} = 0,7$ W·cm⁻²) na ≈ 267 µs (při $I_{exc} = 67,2$ W·cm⁻²).

Obr. 52. Normalizované křivky doznívání fotoluminiscence pocházející z elektronového přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ pro nanokrystalický granát Yb₁₄Ho₁Ga₂₅O₆₀ při různé excitační intenzitě (I_{exc}). Měřeno při $\lambda_{exc} \approx 980$ nm. Hodnoty $\tau({}^{5}I_{6})$ činí: 274±1 µs při $I_{exc} = 0,7$ W·cm⁻² (a), 272±1 µs při $I_{exc} = 1,5$ W·cm⁻² (b), 271±1 µs při $I_{exc} = 4,7$ W·cm⁻² (c), 270±1 µs při $I_{exc} = 15,3$ W·cm⁻² (d), 268±1 µs při $I_{exc} = 31,6$ W·cm⁻² (e), 267±1 µs při $I_{exc} = 46,9$ W·cm⁻² (f) a 267±1 µs při $I_{exc} = 67,2$ W·cm⁻² (g).

5.3.3 Mechanismus fotoluminiscence

Navržený mechanismus fotoluminiscence nanokrystalických granátů Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) při použití $\lambda_{exe} \approx 980$ nm zobrazuje Obr. 53. Nejprve dochází k procesu GSA, a to pouze u iontů Yb³⁺: ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$. U iontů Ho³⁺ při použité λ_{exe} nedochází k procesu GSA [85, 124]. Následně dochází k energetickému přenosu označenému ETU0: Yb³⁺: ${}^{2}F_{5/2}$ + Ho³⁺: ${}^{5}I_{8} \rightarrow$ Yb³⁺: ${}^{2}F_{7/2}$ + Ho³⁺: ${}^{5}I_{6}$. Po absorpci druhého fotonu iontem Yb³⁺ dochází k energetickému přenosu označenému ETU1: Yb³⁺: ${}^{2}F_{5/2}$ + Ho³⁺: ${}^{5}I_{6} \rightarrow$ Yb³⁺: ${}^{2}F_{7/2}$ + Ho³⁺:

všech vzorcích) i k procesu ESA: Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}F_{4}/{}^{5}S_{2}$. Z termálně spřažených hladin Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2}$ dochází k zářivé rekombinaci na základní hladinu (Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$), poskytující "zelenou" UCPL, a rovněž k zářivé rekombinaci na první excitovanou hladinu (Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{7}$), poskytující "755 nm" UCPL (viz Obr. 43). Hladina Ho³⁺: ${}^{5}I_{7}$ je dále populována procesem MPR z hladiny Ho³⁺: ${}^{5}I_{6}$, jelikož zářivý přechod: Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ při $\lambda_{em} \approx 2,85 \ \mu m$ [87] nebyl ve studovaných vzorcích zaznamenán. To je opět způsobeno nízkým počtem fononů $(P = \frac{3500}{705} \approx 5)$, daného elektronového přechodu. Z hladiny Ho³⁺: ⁵I₇ dále dochází interakcí se sousedními excitovanými ionty Yb³⁺ k excitaci na hladinu Ho³⁺: ${}^{5}F_{5}$ energetickým přenosem ETU2: $Yb^{3+}: {}^{2}F_{5/2} + Ho^{3+}: {}^{5}I_{7} \rightarrow Yb^{3+}: {}^{2}F_{7/2} + Ho^{3+}: {}^{5}F_{5}$ s přispěním procesu ESA: $Ho^{3+}: {}^{5}I_{7} \rightarrow Yb^{3+}: {}^{5}I_{7} \rightarrow Yb^{3+}:$ ${}^{5}F_{5}$. Hladina Ho³⁺: ${}^{5}F_{5}$ je rovněž populována procesem MPR z hladin Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2}$ [85] a zářivá rekombinace Ho³⁺: ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ poskytuje "červenou" UCPL (viz Obr. 43). Zaznamenané zářivé Stokesovy přechody Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ (při $\lambda_{em} \approx 1200$ nm, viz Obr. 41) a Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ (při $\lambda_{em} \approx 2000$ nm, viz Obr. 42) vykazují rozdílný průběh integrované PL intenzity na koncentraci Ho³⁺. Také byl zaznamenán zcela odlišný trend v hodnotách $\tau({}^{5}I_{6})$ a $<\tau>({}^{5}I_{7})$ s rostoucím obsahem Ho³⁺. Klesající hodnoty $<\tau > ({}^{5}I_{7})$ ve vzorcích Yb_{15-x}Ho_xGa₂₅O₆₀ už při x > 0,1 lze zdůvodnit přítomností procesů CR. Mezi dvojicí iontů Ho³⁺ dochází k procesu CR1: Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2} + {}^{5}I_{7} \rightarrow {}^{5}F_{5} + {}^{5}I_{6}$ [85, 124]. Proces CR2 probíhá mezi dvojicí iontů Ho³⁺ následovně: ${}^{5}I_{7}$ $+ {}^{5}I_{7} \rightarrow {}^{5}I_{8} + {}^{5}I_{6}$ [123]. K procesům CR bude u vzorků Yb_{15-x}Ho_xGa₂₅O₆₀, stejně jako u vzorků Yb_{15-x}Er_xGa₂₅O₆₀, docházet při $x \ge 0,1$, jelikož průměrné meziiontové vzdálenosti $R_{Ho^{3+} \leftrightarrow Ho^{3+}}$ zde rovněž dosahují hodnot dostatečných pro tuto interakci (< 15 Å, viz Tab. 5) [81]. Zmíněné procesy CR v kombinaci s přispěním velice účinného procesu ETU0 (potvrzeného velice nízkými hodnotami $\tau_{Yb}({}^{2}F_{5/2})$) a s přispěním procesu EBT vysvětlují stále mírně rostoucí hodnoty $\tau({}^{5}I_{6})$ s rostoucím obsahem Ho³⁺. Proces EBT probíhá následovně: Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2}$ + $Yb^{3+}: {}^{2}F_{7/2} \rightarrow Ho^{3+}: {}^{5}I_{6} + Yb^{3+}: {}^{2}F_{5/2}$ [84–86]. Přítomnost tohoto procesu EBT lze rovněž zdůvodnit mírným zvyšováním hodnot $\tau_4({}^5F_4/{}^5S_2)$ s rostoucí koncentrací Ho³⁺, jelikož současně dochází ke snižování koncentrace Yb³⁺, což vede ke snížení účinnosti procesu EBT, jak bylo uvedeno v předchozí kapitole [83-86].

Obr. 53. Navržený mechanismus fotoluminiscence pro nanokrystalické granáty Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) při $\lambda_{exe} \approx 980$ nm.

6 ZÁVĚR

V rámci předkládané disertační práce byly sol-gel spalovací metodou, s použitím kyseliny citronové jako chelatačního činidla, připraveny nanokrystalické oxidy o složení $Yb_{15-x}Er_xGa_{25}O_{60}$ a $Yb_{15-x}Ho_xGa_{25}O_{60}$ s koncentrací jednotlivých dopantů: x = 0; 0,01; 0,1; 0,5;1 a 2 (at. %). Rentgenovou difrakční analýzou byl potvrzen jednofázový charakter všech připravených vzorků odpovídající struktuře kubické granátové fáze Yb₃Ga₅O₁₂. Přítomnost strukturních jednotek dodekaedrů YbO8, oktaedrů GaO6 a tetraedrů GaO4 byla prokázána pomocí infračervené spektroskopie s technikou zeslabené totální reflexe. Zabudováním dopantu Er³⁺/Ho³⁺ do struktury Yb₃Ga₅O₁₂ nedochází ani u vzorků s nejvyšším obsahem dopantů ke změně maximální fononové energie, jejíž hodnota je ≈ 705 cm⁻¹. Střední velikost krystalitů, určená z rozšíření difrakčních linií, je v rozmezí $\approx 27-37$ nm. Jedná se tedy o nanokrystalické vzorky, což potvrdila i jejich mikrostruktura pozorovaná pomocí skenovacího elektronového mikroskopu. Zachování očekávaného chemického složení nanokrystalických granátů bylo prokázáno energiově-disperzní rentgenovou spektroskopií. Z difúzně-reflektančních spekter byla u všech studovaných nanokrystalických granátů zaznamenána vysoká optická reflektivita od viditelné až po část blízké infračervené oblasti s dobře definovanými absorpčními pásy danými 4f ↔ 4f elektronovými přechody iontů Er³⁺/Ho³⁺ a Yb³⁺. Přítomnost vysoké koncentrace iontů Yb³⁺ ve všech studovaných granátech (13–15 at. %) vede ke vzniku intenzivního absorpčního pásu, daného elektronovým přechodem Yb³⁺: ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$. Tento absorpční pás, pozorovaný v difúzně-reflektančních spektrech při $\lambda \approx 850-1050$ nm, spolu s relativně vysokou hodnotou optické šířky zakázaného pásu (5,70 eV) nedopovaného vzorku, napovídá o slibných fotoluminiscenčních vlastnostech u nanokrystalického Yb₃Ga₅O₁₂ dopovaného ionty $\mathrm{Er}^{3+}/\mathrm{Ho}^{3+}$ s použitím $\lambda_{exc} \approx 980$ nm.

Ve vzorcích Yb_{15-x}Er_xGa₂₅O₆₀ kde x = 0,01; 0,1; 0,5; 1 a 2 byla zaznamenána intenzivní Stokesova emisní spektra při $\lambda_{em} \approx 1450-1650$ nm, pocházející z elektronového přechodu Er³⁺: ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$. Maximum fotoluminiscenční intenzity v této oblasti bylo pozorováno u vzorků Yb_{14,5}Er_{0,5}Ga₂₅O₆₀ a Yb₁₄Er₁Ga₂₅O₆₀, přičemž u vzorku Yb₁₃Er₂Ga₂₅O₆₀ již dochází ke koncentračnímu zhášení. Ve viditelné oblasti byla dále zaznamenána anti-Stokesova emisní spektra s dominantními emisními pásy v "červené" oblasti ($\lambda_{em} \approx 630-700$ nm), která pocházejí z elektronového přechodu Er³⁺: ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$. Emisní pásy v "zelené" oblasti ($\lambda_{em} \approx 490-$ 570 nm), pocházející z elektronového přechodu Er³⁺: ${}^{4}F_{7/2}/{}^{2}H_{11/2}/{}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, byly oproti emisním pásům v "červené" oblasti méně intenzivní. Poměr ploch emisních spekter v "červené" oblasti vůči "zelené" oblasti se ve studovaných vzorcích pohyboval v rozmezí ≈ 150 až ≈ 420 s maximální fotoluminiscenční intenzitou u vzorku Yb_{14,5}Er_{0,5}Ga₂₅O₆₀. Výsledkem takto vysokého poměru ploch emisních pásů je emise viditelného záření pozorovaná v "tmavě červené" oblasti pro všechny Er³⁺-dopované vzorky Yb₃Ga₅O₁₂. Analýzou křivek doznívání fotoluminiscence pocházející z elektronových přechodů Er³⁺: ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$, Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ a Er³⁺: ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ a analýzou závislosti intenzity anti-Stokesových emisních pásů na excitačním výkonu byl navržen fotoluminisceční mechanismus. Ve studovaných vzorcích Yb_{15-x}Er_xGa₂₅O₆₀ s *x* = 0,01; 0,1; 0,5; 1 a 2 má na dosažení pozorovaných fotoluminiscenčních vlastností dominantní vliv energetický přenos Yb³⁺ \rightarrow Er³⁺ a zpětný energetický přenos Er³⁺ \rightarrow Yb³⁺. Ve vzorcích Yb_{15-x}Er_xGa₂₅O₆₀ s *x* > 0,01 probíhají navíc křížové relaxace Er³⁺ \leftrightarrow Er³⁺: ${}^{4}I_{13/2} \rightarrow {}^{4}I_{13/2} \rightarrow {}^{4}I_{13/2} + Yb^{3+}$: ${}^{2}F_{7/2} \rightarrow {}^{2}F_{7/2}$ (EBT1) anebo: Er³⁺: ${}^{4}F_{7/2} + Yb^{3+}$: ${}^{2}F_{7/2} \rightarrow {}^{2}F_{7/2} + {}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2} + {}^{4}F_{9/2}$ (CR1) v kombinaci s procesem: ${}^{2}H_{11/2} + {}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ (CR2).

Ve vzorcích Yb_{15-x}Ho_xGa₂₅O₆₀ kde x = 0,01; 0,1; 0,5; 1 a 2 byla zaznamenána intenzivní Stokesova emisní spektra při $\lambda_{em} \approx 1100-1300$ nm, pocházející z elektronového přechodu Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$, a dále při $\lambda_{em} \approx 1800-2200$ nm, pocházející z elektronového přechodu Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$. Maximum fotoluminiscenční intenzity pro elektronový přechod Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ bylo u vzorku Yb₁₄Ho₁Ga₂₅O₆₀, zatímco pro elektronový přechod Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ tomu bylo u vzorku Yb_{14,5}Ho_{0,5}Ga₂₅O₆₀. Anti-Stokesova emisní spektra ve viditelné oblasti obsahují emisní pásy dané elektronovými přechody tří druhů. Emisní pásy v "zelené" oblasti ($\lambda_{em} \approx 530-570$ nm) pocházejí z elektronového přechodu $\text{Ho}^{3+}: {}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$. Emisní pásy v "červené" oblasti $(\lambda_{em} \approx 630-700 \text{ nm})$ pocházejí z elektronového přechodu Ho³⁺: ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$. Emisní pásy na rozhraní viditelné a blízké infračervené oblasti ($\lambda_{em} \approx 740-770$ nm) pocházejí z elektronového přechodu $\text{Ho}^{3+}: {}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{7}$. U studovaných vzorků $\text{Yb}_{15-x}\text{Ho}_{x}\text{Ga}_{25}\text{O}_{60}$ nebylo pozorováno výrazné snížení intenzity emisních pásů jednoho druhu. Poměr ploch emisních spekter v "červené" oblasti vůči "zelené" oblasti se v těchto vzorcích pohyboval v rozmezí ≈ 0.6 až \approx 3,2 s maximální fotoluminiscenční intenzitou u vzorku Yb_{14,9}Ho_{0,1}Ga₂₅O₆₀. Vnímanou barevnou oblast viditelné anti-Stokesovy emise tak lze v Ho3+-dopovaném Yb3Ga5O12 "ladit" změnou koncentrace dopantu. Analýzou křivek doznívání fotoluminiscence pocházející z elektronových přechodů Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$, Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$, Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ a Ho³⁺: ${}^{5}F_{4}/{}^{5}S_{2}$ \rightarrow ⁵*I*₈, a analýzou závislosti intenzity anti-Stokesových emisních pásů na excitačním výkonu byl navržen fotoluminisceční mechanismus. Ve všech studovaných vzorcích Yb_{15-x}Ho_xGa₂₅O₆₀ (x = 0,01; 0,1; 0,5; 1 a 2) jsou pozorované fotoluminiscenční vlastnosti způsobeny zejména

přítomností energetického přenosu Yb³⁺ \rightarrow Ho³⁺ a zpětného energetického přenosu Ho³⁺ \rightarrow Yb³⁺. Ve vzorcích Yb_{15-x}Ho_xGa₂₅O₆₀ s x > 0,01 navíc dochází ke křížovým relaxacím Ho³⁺ \leftrightarrow Ho³⁺. Zpětný energetický přenos Ho³⁺ \rightarrow Yb³⁺ je následující: Ho³⁺: ⁵F₄/⁵S₂ + Yb³⁺: ²F_{7/2} \rightarrow Ho³⁺: ⁵I₆ + Yb³⁺: ²F_{5/2}. Křížové relaxace Ho³⁺ \leftrightarrow Ho³⁺ jsou následující: Ho³⁺: ⁵F₄/⁵S₂ + ⁵I₇ \rightarrow ⁵F₅ + ⁵I₆ (CR1) v kombinaci s procesem: ⁵I₇ + ⁵I₇ \rightarrow ⁵I₈ + ⁵I₆ (CR2).

U nedopovaného vzorku Yb₃Ga₅O₁₂ bylo zaznamenáno méně intenzivní, avšak širokospektrální ($\lambda_{em} \approx 1250-1650$ nm) emisní spektrum. Jelikož provedené metody charakterizace struktury a chemického složení neprokázaly přítomnost dalších fází či prvků, byla z původně práškového vzorku připravena tableta slinováním. Tableta se zachovalou strukturou i chemickým složením po slinování byla charakterizována impedanční spektroskopií. Na základě prokázané iontové vodivosti v teplotním rozmezí 750–958 °C a údajích v literatuře se jako nejpravděpodobnější vysvětlení původu širokospektrální emise jeví přítomnost kyslíkových vakancí ve struktuře studovaného granátu.

Pozornost předkládané disertační práce byla věnována vlivu koncentrace dopantu na výsledné fotoluminiscenční vlastnosti nanokrystalického oxidu granátové struktury Yb₃Ga₅O₁₂ dopovaného Er³⁺, či Ho³⁺. Výsledky studia naznačují, že nanokrystalický Er³⁺/Ho³⁺-dopovaný Yb₃Ga₅O₁₂ se jeví jako vhodný materiál k potenciálnímu využití například pro zobrazování biologických struktur, monitorování znečištění atmosféry, či pro detektory anebo zesilovače infračerveného záření. Další směry studia fotoluminiscenčních vlastností mohu být věnovány použití dalších typů dopantů v Yb₃Ga₅O₁₂, které dosud nebyly v literutaře publikovány, například Tm³⁺, Dy³⁺, Eu³⁺, či Tb³⁺. Nespornou výhodou hostitelské matrice Yb₃Ga₅O₁₂ oproti hojně studovanému Yb₂O₃ je i dlouhodobě nižší cena gallia ve srovnání s ytterbiem. Fázová stabilita Yb₃Ga₅O₁₂ je přitom zachována minimálně do teploty 1500 °C.

7 POUŽITÁ LITERATURA

[1] G.-M. Chow, N.I. Noskova, Nanostructured Materials: Science & Technology. American Society for Engineering Education, Washington DC (1998), ISBN 0-7923-5071-5.

[2] G. Wang, Q. Peng, Y. Li, Lanthanide-Doped Nanocrystals: Synthesis, Optical-Magnetic Properties, and Applications, Acc. Chem. Res. 44 (2011) 322–332, <u>https://doi.org/10.1021/ar100129p</u>.

[3] E.S. Grew, A.J. Locock, S.J. Mills, I.O. Galuskina, E.V. Galuskin, U. Hålenius, Nomenclature of the garnet supergroup, Am. Mineral. 98 (2013) 785–811, https://doi.org/10.2138/am.2013.4201.

[4] J.E. Geusic, H.M. Marcos, L.G. Van Uitert, Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets, Appl. Phys. Lett. 4 (1964) 182–184, https://doi.org/10.1063/1.1753928.

[5] L. Mezeix, D.J. Green, Comparison of the mechanical properties of single crystal and polycrystalline yttrium aluminum garnet, Int. J. Appl. Ceram. Technol. 3 (2006) 166–176, https://doi.org/10.1111/j.1744-7402.2006.02068.x.

[6] J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, J. Guo, Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics, Opt. Mater. 31 (2008) 6–17, https://doi.org/10.1016/j.optmat.2007.12.014.

[7] Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, C. Tu, Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG laser, IEEE Photon. Technol. Lett. 26 (2014) 667–670, <u>https://doi.org/10.1109/LPT.2014.2302837</u>.

[8] G.A. Novak, G.V. Gibbs, The Crystal Chemistry of the Silicate Garnets, Am. Mineral. 56 (1971) 791–825.

[9] A. Bosenick, M.T. Dove, C.A. Geiger, Simulation studies on the pyrope-grossular garnet solid solution, Phys. Chem. Miner. 27 (2000) 398–418, https://doi.org/10.1007/s002690000088.

[10] V. Monteseguro, P. Rodríguez-Hernández, V. Lavín, F.J. Manjón, A. Muñoz, Electronic and elastic properties of yttrium gallium garnet under pressure from ab initio studies, J. Appl. Phys. 113 (2013) 183505, <u>https://doi.org/10.1063/1.4804133</u>.

[11] V.M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften 14 (1926)477–485.

[12] Z. Song, D. Zhou, Q. Liu, Tolerance factor and phase stability of the garnet structure, Acta Cryst. C 75 (2019) 1353–1358, <u>https://doi.org/10.1107/S2053229619011975</u>.

[13] A. de Pablos-Martín, A. Durán, M.J. Pascual, Nanocrystallisation in oxyfluoride systems: mechanisms of crystallisation and photonic properties, Int. Mater. Rev. 57 (2012) 165–186, https://doi.org/10.1179/1743280411Y.0000000004.

[14] Z. Xia, A. Meijerink, Ce³⁺-Doped garnet phosphors: composition modification, luminescence properties and applications, Chem. Soc. Rev. 46 (2017) 275–299, <u>https://doi.org/10.1039/c6cs00551a</u>.

[15] F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Electrochemical Stability of Li₁₀GeP₂S₁₂ and Li₇La₃Zr₂O₁₂ Solid Electrolytes, Adv. Energy Mater. 6 (2016) 1501590, <u>https://doi.org/10.1002/aenm.201501590</u>.

[16] M. Klank, O. Hagedorn, M. Shamonin, H. Dötsch, Sensitive magneto-optical sensors for visualization of magnetic fields using garnet films of specific orientations, J. Appl. Phys. 92 (2002) 6484–6488, <u>https://doi.org/10.1063/1.1516839</u>.

[17] J. Xu, D. Murata, J. Ueda, S. Tanabe, Near-infrared long persistent luminescence of Er³⁺ in garnet for the third bio-imaging window, J. Mater. Chem. C 4 (2016) 11096–11103, https://doi.org/10.1039/c6tc04027f.

[18] M. Guillot, H. Le Gall, J. Ostorero, M. Artinian, A. Marchand, Faraday rotation in singlecrystal ytterbium gallium garnet, J. Appl. Phys. 61 (1987) 3265–3267, <u>https://doi.org/10.1063/1.338876</u>.

[19] G.Y. Guseynov, R.Z. Levitin, K.M. Mukimov, V. Nekvasil, A.I. Popov, N.F. Vedernikov, A.K. Zvezdin, Magnetic linear birefringence in paramagnetic rare-earth garnets YbAG, YbGG, and GdGG in high magnetic fields and at low temperatures, Czech. J. Phys. B 37 (1987) 98–107, <u>https://doi.org/10.1007/BF01597884</u>.

[20] K. Królas, M. Rams, A. Forget, J. Wojtkowska, Paramagnetic fluctuations in Yb₃Ga₅O₁₂ investigated with ¹⁷²Yb PAC probe, Hyperfine Interact. 120 (1999) 231–235, <u>https://doi.org/10.1023/A:1017071206102</u>.

[21] P. Dalmas de Réotier, A. Yaouanc, P.C.M. Gubbens, C.T. Kaiser, C. Baines, P.J.C. King, Absence of magnetic order in Yb₃Ga₅O₁₂: relation between phase transition and entropy in geometrically frustrated materials, Phys. Rev. Lett. 91 (2003) 167201, https://doi.org/10.1103/PhysRevLett.91.167201.

[22] Z.S. Siranov, B.Y. Sokolov, Magnetic linear birefringence in Yb₃Ga₅O₁₂ gallate garnet,
 Opt. Spectrosc. 99 (2005) 594–596, <u>https://doi.org/10.1134/1.2113376</u>.

[23] D.A.P. Brasiliano, J.-M. Duval, C. Marin, E. Bichaud, J.-P. Brison, M. Zhitomirsky, Nicolas Luchier, YbGG material for Adiabatic Demagnetization in the 100 mK–3 K range, Cryogenics 105 (2020) 103002, <u>https://doi.org/10.1016/j.cryogenics.2019.103002</u>.

[24] J.A. Hodges, P. Bonville, M. Rams, K. Królas, Low temperature spin fluctuations in geometrically frustrated Yb₃Ga₅O₁₂, J. Phys. Condens. Matter. 15 (2003) 4631, <u>https://doi.org/10.1088/0953-8984/15/26/313</u>.

[25] P. Dalmas de Réotier, A. Yaouanc, P.C.M. Gubbens, S. Sakarya, E. Jimenez, P. Bonville, J.A. Hodges, Thermal Behaviour of the μ SR Relaxation Rate at High Temperature in Insulators, Hyperfine Interact. 158 (2004) 131–136, <u>https://doi.org/10.1007/3-540-30924-1_21</u>.

[26] J.C. Kim, M.-H. Kim, S. Nahm, J.-H. Paik, J.-H. Kim, H.-J. Lee, Microwave dielectric properties of Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) ceramics and effect of TiO₂ on the microwave dielectric properties of Sm₃Ga₅O₁₂ ceramics, J. Eur. Ceram. Soc. 27 (2007) 2865–2870, <u>https://doi.org/10.1016/j.jeurceramsoc.2006.11.066</u>.

[27] A. Shibuya, T. Shibuya, T. Manako, Thermal radiation properties of porous rare-earth garnet ceramics, J. Ceram. Soc. Jpn. 126 (2018) 447–451, <u>http://doi.org/10.2109/jcersj2.18021</u>.
[28] T. Shibuya, M. Sumino, S. Kagami, T. Manako, A. Shibuya, Porosity optimization of rare-earth oxide emitters for thermophotovoltaics, Appl. Phys. Lett. 113 (2018) 243903 <u>https://doi.org/10.1063/1.5047264</u>.

[29] V. Singh, G. Sivaramaiah, J.L. Rao, N. Singh, M.S. Pathak, H.D. Jirimali, P.K. Singh,
A.K. Srivastava, S.J. Dhoble, M. Mohapatra, Cr³⁺-Doped Yb₃Ga₅O₁₂ Nanophosphor:
Synthesis, Optical, EPR, Studies, J. Electron. Mater. 45 (2016) 4076–4082,
https://doi.org/10.1007/s11664-016-4575-5.

[30] A. Dulda, 805 nm Mediated Upconversion Luminescence Properties of Yb₃Ga₅O₁₂:Ln (Er³⁺/Nd³⁺) Nanoparticles, NANO: Brief Reports and Reviews 11 (2016) 1650098, https://doi.org/10.1142/S1793292016500983.

[31] V. Buissette, D. Giaume, T. Gacoin, J.-P. Boilot, Aqueous routes to lanthanide-doped oxide nanophosphors, J. Mater. Chem. 16 (2006) 529–539, <u>https://doi.org/10.1039/B508656F</u>.

[32] F.T. Aquino, J.L. Ferrari, L.J.Q. Maia, S.J.L. Ribeiro, A. Ferrier, P. Goldner, R.R. Gonçalves, Near infrared emission and multicolor tunability of enhanced upconversion emission from $\text{Er}^{3+}-\text{Yb}^{3+}$ co-doped Nb₂O₅ nanocrystals embedded in silica-based nanocomposite and planar waveguides for photonics, J. Lumin. 170 (2016) 431–443, https://doi.org/10.1016/j.jlumin.2015.08.077. [33] X.-H. Zhang, J. Chen, Y. Wu, Z. Xie, J. Kang, L. Zheng, A simple route to fabricate high sensibility gas sensors based on erbium doped ZnO nanocrystals, Colloids Surf. A: Physicochem. Eng. Asp. 384 (2011) 580–584, <u>https://doi.org/10.1016/j.colsurfa.2011.05.013</u>.

[34] A. Li, D. Xu, H. Lin, S. Yang, Y. Shao, Y. Zhang, NaGd(MoO₄)₂ nanocrystals with diverse morphologies: controlled synthesis, growth mechanism, photoluminescence and thermometric properties, Sci. Rep. 6 (2016) 31366, <u>https://doi.org/10.1038/srep31366</u>.

[35] Z. Liu, Z. Li, J. Liu, S. Gu, Q. Yuan, J. Ren, X. Qu, Long-circulating Er³⁺-doped Yb₂O₃ up-conversion nanoparticle as an in vivo X-Ray CT imaging contrast agent, Biomaterials 33 (2012) 6748–6757, <u>https://doi.org/10.1016/j.biomaterials.2012.06.033</u>.

[36] M.F. Torresan, A. Wolosiuk, Critical Aspects on the Chemical Stability of NaYF₄-Based Upconverting Nanoparticles for Biomedical Applications, ACS Appl. Bio Mater. 4 (2021) 1191–1210, <u>https://doi.org/10.1021/acsabm.0c01562</u>.

[37] N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan, M. Maqbool, Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review, Adv. Colloid Interface Sci. 300 (2022) 102597, <u>https://doi.org/10.1016/j.cis.2021.102597</u>.

[38] A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of 'sol–gel' chemistry as a technique for materials synthesis, Mater. Horiz. 3 (2016) 91–112, <u>https://doi.org/10.1039/c5mh00260e</u>.

[39] D. Ouyang, Z. Huang, W.C.H. Choy, Solution-Processed Metal Oxide Nanocrystals as Carrier Transport Layers in Organic and Perovskite Solar Cells, Adv. Funct. Mater. 29 (2019) 1804660, <u>https://doi.org/10.1002/adfm.201804660</u>.

[40] M.J. Akhtar, M. Younas, Structural and transport properties of nanocrystalline MnFe₂O₄ synthesized by co-precipitation method, Solid State Sci. 14 (2012) 1536–1542, <u>https://doi.org/10.1016/j.solidstatesciences.2012.08.026</u>.

[41] J. Lu, Y. Hakuta, H. Hayashi, T. Ohashi, T. Nagase, Y. Hoshi, K. Sato, M. Nishioka, T. Inoue, S. Hamakawa, Preparation of $Ca_{0.8}Sr_{0.2}Ti_{1-x}Fe_xO_{3-\delta}$ (x = 0.1-0.3) nanoparticles using a flow supercritical reaction system, J. Supercrit. Fluids 46 (2008) 77–82, <u>https://doi.org/10.1016/j.supflu.2008.02.010</u>.
[42] N.G. Connelly, T. Damhus, R.M. Hartshorn, A.T. Hutton, Nomenclature of inorganic chemistry: IUPAC recommendations 2005. Royal Society of Chemistry, Cambridge (2005), ISBN 0-85404-438-8.

[43] J.-C.G. Bünzli, Benefiting from the Unique Properties of Lanthanide Ions, Acc. Chem.
 Res. 39 (2006) 53–61, <u>https://doi.org/10.1021/ar0400894</u>.

[44] A. de Bettencourt-Dias, Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials. Wiley, Chichester (2014), ISBN 978-1-119-95083-7.

[45] M.P. Hehlen, M.G. Brik, K.W. Krämer, 50th anniversary of the Judd–Ofelt theory: An experimentalist's view of the formalism and its application, J. Lumin. 136 (2013) 221–239, https://doi.org/10.1016/j.jlumin.2012.10.035.

[46] P. Pyykkö, Relativistic Effects in Structural Chemistry, Chem. Rev. 88 (1988) 563–594, https://doi.org/10.1021/cr00085a006.

[47] A.R. West, Solid State Chemistry and its Applications. Wiley, Chichester (2014), ISBN 978-1-119-94294-8.

[48] G.S. Rohrer, Structure and Bonding in Crystalline Materials. Cambridge University Press, Cambridge (2001), ISBN 0-521-66379-2.

[49] B. Di Bartolo, O. Forte, Advances in Spectroscopy for Lasers and Sensing. Springer, Dordrecht (2006), ISBN 1-4020-4788-6.

[50] J. Singh, Optical Properties of Condensed Matter and Applications. Wiley, Hoboken (2006), ISBN 0-470-02192-6.

[51] C.R. Ronda, Luminescence From Theory to Applications. Wiley, Weinheim (2008), ISBN 978-3-527-31402-7.

[52] I. Pelant, J. Valenta, Luminiscenční spektroskopie. Academia, Praha (2006), ISBN 80-200-1447-0.

[53] A. Shalav, B.S. Richards, M.A. Green, Luminescent layers for enhanced silicon solar cell performance: Up-conversion, Sol. Energy Mater. Sol. Cells 91 (2007) 829–842, <u>https://doi.org/10.1016/j.solmat.2007.02.007</u>.

[54] B. Denker, E. Shklovsky, Handbook of solid-state lasers. Woodhead Publishing, Oxford (2013), ISBN 978-0-85709-272-4.

[55] V.S. Chirvony, K.S. Sekerbayev, H.P. Adl, I. Suárez, Y.T. Taurbayev, A.F. Gualdrón-Reyes, I. Mora-Seró, J.P. Martínez-Pastor, Interpretation of the photoluminescence decay kinetics in metal halide perovskite nanocrystals and thin polycrystalline films, J. Lumin. 221 (2020) 117092, <u>https://doi.org/10.1016/j.jlumin.2020.117092</u>.

[56] F. Carl, L. Birk, B. Grauel, M. Pons, C. Würth, U. Resch-Genger, M. Haase, LiYF₄:Yb/LiYF₄ and LiYF₄:Yb,Er/LiYF₄ core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals, Nano Res. 14 (2021) 797–806, <u>https://doi.org/10.1007/s12274-020-3116-y</u>.

[57] R. Chen, Apparent stretched-exponential luminescence decay in crystalline solids,
J. Lumin. 102–103 (2003) 510–518, <u>https://doi.org/10.1016/S0022-2313(02)00601-4</u>.

[58] H. Yersin, Transition Metal and Rare Earth Compounds. Springer, Berlin (2001), ISBN 978-3-540-67976-9.

[59] L. Strizik, V. Prokop, J. Hrabovsky, T. Wagner, T. Aoki, Quadrature frequency resolved spectroscopy of upconversion photoluminescence in GeGaS:Er³⁺: I. Determination of energy transfer upconversion parameter, J. Mater. Sci.: Mater. Electron. 28 (2017) 7053–7063, https://doi.org/10.1007/s10854-016-6306-3.

[60] X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, L. Fan, Size-Dependent Upconversion Luminescence in Er³⁺/Yb³⁺-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects, J. Phys. Chem. C 111 (2007) 13611–13617, https://doi.org/10.1021/jp070122e.

[61] I.K. Battisha, Visible Up-Conversion Luminescence in Ho³⁺: BaTiO₃ Nano-Crystals Prepared by Sol Gel Technique, J. Sol-Gel Sci. Technol. 30 (2004) 163–172, https://doi.org/10.1023/B:JSST.0000039501.22116.86.

[62] J.C. Boyer, F. Vetrone, J.A. Capobianco, A. Speghini, M. Zambelli, M. Bettinelli, Investigation of the upconversion processes in nanocrystalline Gd₃Ga₅O₁₂:Ho³⁺, J. Lumin. 106 (2004) 263–268, <u>https://doi.org/10.1016/j.jlumin.2003.11.001</u>.

[63] G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals. Wiley, New York (1968).

[64] L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B.M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W.J. Park, J. Heo, Green, red and

near-infrared photon up-conversion in Ga–Ge–Sb–S:Er³⁺ amorphous chalcogenides, J. Lumin. 147 (2014) 209–215, <u>https://doi.org/10.1016/j.jlumin.2013.11.021</u>.

[65] M. Tsuda, K. Soga, H. Inoue, S. Inoue, A. Makishima, Upconversion mechanism in Er³⁺doped fluorozirconate glasses under 800 nm excitation, J. Appl. Phys. 85 (1999) 29–37, <u>https://doi.org/10.1063/1.369445</u>.

[66] A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, Upconversion in Er³⁺:ZrO₂ Nanocrystals,
J. Phys. Chem. B 106 (2002) 1909–1912, <u>https://doi.org/10.1021/jp013576z</u>.

[67] H. Shen, K. Feng, G. Lu, Y. Sakka, B. Lu, Comparative Investigation on Upconversion Luminescence Properties of Lu₂O₃:Er/Yb and Lu₂O₂S:Er/Yb Phosphors, Phys. Status Solidi A 218 (2021) 2100014, <u>https://doi.org/10.1002/pssa.202100014</u>.

[68] P. Villanueva-Delgado, K.W. Krämer, R. Valiente, Simulating Energy Transfer and Upconversion in β -NaYF₄: Yb³⁺, Tm³⁺, J. Phys. Chem. C 119 (2015) 23648–23657, <u>https://doi.org/10.1021/acs.jpcc.5b06770</u>.

[69] H. Desirena, L.A. Diaz-Torres, R.A. Rodríguez, O. Meza, P. Salas, C. Angeles-Chávez,
E.H. Tobar, J. Castañeda-Contreras, E. De la Rosa, Photoluminescence characterization of porous YAG: Yb³⁺-Er³⁺ nanoparticles, J. Lumin. 153 (2014) 21–28, https://doi.org/10.1016/j.jlumin.2014.03.012.

[70] T. Liu, Y. Song, S. Wang, Y. Li, Z. Yin, J. Qiu, Z. Yang, Z. Song, Two distinct simultaneous NIR looping behaviours of Er³⁺ singly doped BiOBr: The underlying nature of the Er³⁺ ion photon avalanche emission induced by a layered structure, J. Alloys Compd. 779 (2019) 440–449, <u>https://doi.org/10.1016/j.jallcom.2018.10.250</u>.

 [71] A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V.I. Zhekov, T.M. Murina, A.M. Prokhorov, Many-body energy-transfer processes between Er³⁺ ions in yttrium aluminum garnet, Phys. Rev. B 41 (1990) 10923–10932, <u>https://doi.org/10.1103/PhysRevB.41.10923</u>.

[72] F.E. Auzel, Materials and devices using double-pumped-phosphors with energy transfer, Proceedings of the IEEE 61 (1973) 758–786, <u>https://doi.org/10.1109/PROC.1973.9155</u>.

[73] S.A. Pollack, D.B. Chang, N.L. Moise, Upconversion-pumped infrared erbium laser,J. Appl. Phys. 60 (1986) 4077–4086, <u>https://doi.org/10.1063/1.337486</u>.

[74] L. Esterowitz, J. Noonan, J. Bahler, ENHANCEMENT IN A Ho³⁺–Yb³⁺ QUANTUM COUNTER BY ENERGY TRANSFER, Appl. Phys. Lett. 10 (1967) 126–127, https://doi.org/10.1063/1.1754876.

[75] Y. Feng, Z. Li, Q. Li, J. Yuan, L. Tu, L. Ning, H. Zhang, Internal OH⁻ induced cascade quenching of upconversion luminescence in NaYF₄:Yb/Er nanocrystals, Light Sci. Appl. 10 (2021) 1–10, <u>https://doi.org/10.1038/s41377-021-00550-5</u>.

[76] J.P. Wittke, I. Ladany, P.N. Yocom, Y₂O₃ : Yb : Er-New Red-Emitting Infrared-Excited Phosphor, J. Appl. Phys. 43 (1972) 595–600, <u>https://doi.org/10.1063/1.1661163</u>.

[77] J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, H. Zhang, Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF₄:Yb³⁺, Er³⁺ Nanocrystals/Submicroplates at Low Doping Level, J. Phys. Chem. B 112 (2008) 15666–15672, <u>https://doi.org/10.1021/jp805567k</u>.

[78] G. Chen, H. Liu, G. Somesfalean, H. Liang, Z. Zhang, Upconversion emission tuning from green to red in Yb³⁺/Ho³⁺-codoped NaYF₄ nanocrystals by tridoping with Ce³⁺ ions, Nanotechnology 20 (2009) 385704, <u>https://doi.org/10.1088/0957-4484/20/38/385704</u>.

[79] D.L. Dexter, J.H. Schulman, Theory of Concentration Quenching in Inorganic Phosphors,
J. Chem. Phys. 22 (1954) 1063–1070, <u>https://doi.org/10.1063/1.1740265</u>.

[80] J. Liu, H. Deng, Z. Huang, Y. Zhang, D. Chen, Y. Shao, Phonon-assisted energy back transfer-induced multicolor upconversion emission of Gd_2O_3 :Yb³⁺/Er³⁺ nanoparticles under near-infrared excitation, Phys. Chem. Chem. Phys. 17 (2015) 15412–15418, https://doi.org/10.1039/c5cp01632k.

[81] A. Shyichuk, S.S. Câmara, I.T. Weber, A.N. Carneiro Neto, L.A.O. Nunes, S. Lis, R.L. Longo, O.L. Malta, Energy transfer upconversion dynamics in YVO₄:Yb³⁺,Er³⁺, J. Lumin. 170 (2016) 560–570, <u>https://doi.org/10.1016/j.jlumin.2015.07.005</u>.

[82] J. Chen, J.J. Guo, Y.H. Chen, X.S. Peng, G.A. Ashraf, H. Guo, Up-conversion properties of Ba₃Lu₂Zn₅O₁₁:Yb³⁺,Er³⁺ phosphors for optical thermometer based on FIR technique, J. Lumin. 238 (2021) 118294, <u>https://doi.org/10.1016/j.jlumin.2021.118294</u>.

[83] A. Li, D. Xu, Y. Zhang, H. Lin, S. Yang, Z. Chen, Y. Shao, Upconversion Luminescence and Energy-Transfer Mechanism of NaGd(MoO₄)₂: Yb³⁺/Er³⁺ Microcrystals, J. Am. Ceram. Soc. 99 (2016) 1657–1663, <u>https://doi.org/10.1111/jace.14141</u>. [84] X.X. Zhang, P. Hong, M. Bass, B.H.T. Chai, Ho³⁺ to Yb³⁺ back transfer and thermal quenching of upconversion green emission in fluoride crystals, Appl. Phys. Lett. 63 (1993) 2606–2608, <u>https://doi.org/10.1063/1.110445</u>.

[85] N.M. Sangeetha, F.C.J.M. van Veggel, Lanthanum Silicate and Lanthanum Zirconate Nanoparticles Co-Doped with Ho³⁺ and Yb³⁺: Matrix-Dependent Red and Green Upconversion Emissions, J. Phys. Chem. C 113 (2009) 14702–14707, <u>https://doi.org/10.1021/jp904516s</u>.

[86] X. Wei, Y. Li, X. Cheng, Y. Chen, M. Yin, Strong dependence of upconversion luminescence on doping concentration in holmium and ytterbium co-doped Y₂O₃ phosphor, J. Rare Earths 29 (2011) 536–539, <u>https://doi.org/10.1016/S1002-0721(10)60493-0</u>.

[87] B. Ding, X. Zhou, J. Zhang, H. Xia, H. Song, B. Chen, Ho³⁺ doped Na₅Y₉F₃₂ single crystals doubly sensitized by Er³⁺ and Yb³⁺ for efficient 2.0 μm emission, J. Lumin. 223 (2020) 117254, https://doi.org/10.1016/j.jlumin.2020.117254.

[88] G. Hou, C. Zhang, W. Fu, G. Li, J. Xia, Y. Ping, Broadband mid-infrared 2.0 μm and 4.1 μm emission in Ho³⁺/Yb³⁺ co-doped tellurite-germanate glasses, J. Lumin. 217 (2020) 116769, <u>https://doi.org/10.1016/j.jlumin.2019.116769</u>.

[89] R. Švejkar, J. Šulc, H. Jelínková, Er-doped crystalline active media for ~ 3 μ m diodepumped lasers, Prog. Quantum Electron. 74 (2020) 100276, <u>https://doi.org/10.1016/j.pquantelec.2020.100276</u>.

[90] A.D. Sontakke, K. Biswas, A.K. Mandal, K. Annapurna, Concentration quenched luminescence and energy transfer analysis of Nd³⁺ ion doped Ba-Al-metaphosphate laser glasses, Appl. Phys. B 101 (2010) 235–244, <u>https://doi.org/10.1007/s00340-010-4010-1</u>.

[91] F. Chen, T. Wei, X. Jing, Y. Tian, J. Zhang, S. Xu, Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er³⁺ doped oxyfluoride tellurite glass, Sci. Rep. 5 (2015) 10676, <u>https://doi.org/10.1038/srep10676</u>.

[92] T. Deng, S. Yan, J. Hu, Effect of Calcination Temperature on Up-Conversion Photoluminescence of the GdAlO₃: Er³⁺,Yb³⁺ Phosphor, ECS J. Solid State Sci. Technol. 4 (2015) 48–53, <u>https://doi.org/10.1149/2.0101503jss</u>.

[93] E.F. Chillcee, I.O. Mazali, O.L. Alves, L.C. Barbosa, Optical and physical properties of Er³⁺-doped oxy-fluoride tellurite glasses, Opt. Mater. 33 (2011) 389–396, https://doi.org/10.1016/j.optmat.2010.09.027. [94] P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch Physikalische Klasse 1918 (1918) 98–100.

[95] P. Šulcová, L. Beneš, Experimentální metody v anorganické technologii. Univerzita Pardubice, Pardubice (2008), ISBN 978-80-7395-058-3.

[96] P. Kubelka, F. Munk, A Contribution to the Optics of Pigments, Z. Technol. Phys. 12 (1931) 593–599.

[97] P. Makuła, M. Pacia, W. Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra, J. Phys. Chem. Lett. 9 (2018) 6814–6817, <u>https://doi.org/10.1021/acs.jpclett.8b02892</u>.

[98] C. Li, J. Zhong, Highly Efficient Broadband Near-Infrared Luminescence with Zero-Thermal-Quenching in Garnet Y₃In₂Ga₃O₁₂:Cr³⁺ Phosphors, Chem. Mater. 34 (2022) 8418– 8426, <u>https://doi.org/10.1021/acs.chemmater.2c02174</u>.

[99] J. Zheng, J. Feng, Q. Cheng, Z. Guo, L. Cai, C. Chen, A novel high color purity yellow luminescent material NaBaBO₃:Sm³⁺, Funct. Mater. Lett. 8 (2015) 1550042, https://doi.org/10.1142/S1793604715500423.

[100] Y. Wei, L. Cao, L. Lv, G. Li, J. Hao, J. Gao, C. Su, C.C. Lin, H.S. Jang, P. Dang, J. Lin, Highly Efficient Blue Emission and Superior Thermal Stability of BaAl₁₂O₁₉:Eu²⁺ Phosphors Based on Highly Symmetric Crystal Structure, Chem. Mater. 30 (2018) 2389–2399, <u>https://doi.org/10.1021/acs.chemmater.8b00464</u>.

[101] P.J. Davis, P. Rabinowitz, Methods of Numerical Integration. Academic Press, Cambridge (1984), ISBN 978-0-12-206360-2.

[102] N.T. McDevitt, Infrared Lattice Spectra of Rare-Earth Aluminum, Gallium, and Iron Garnets, J. Opt. Soc. Am. 59 (1969) 1240–1244, <u>https://doi.org/10.1364/JOSA.59.001240</u>.

[103] S.M. Elhamali, N.B. Ibrahim, S. Radiman, Structural, optical and magnetic properties of YIG and TbErIG nanofilms prepared using a sol-gel method, Mater. Res. Bull. 112 (2019) 66–76, <u>https://doi.org/10.1016/j.materresbull.2018.12.005</u>.

[104] V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C.K. Jayasankar,
F. Piccinelli, M. Bettinelli, A. Speghini, Nanocrystalline lanthanide-doped Lu₃Ga₅O₁₂ garnets:

interesting materials for light-emitting devices, Nanotechnology 21 (2010) 175703, http://dx.doi.org/10.1088/0957-4484/21/17/175703.

[105] M.C. Saine, E. Husson, H. Brusset, A. Cerez, Etude vibrationnelle d'aluminates et de gallates de terres rares—III. Aluminates et gallates de structure grenat, Spectrochim. Acta A 38 (1982) 25–29, <u>https://doi.org/10.1016/0584-8539(82)80173-6</u>.

[106] A.M. Hofmeister, K.R. Campbell, Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets, J. Appl. Phys. 72 (1992) 638–646, <u>https://doi.org/10.1063/1.351846</u>.

[107] R.W. Stites, K.M. O'Hara, The Verdet constant of undoped Y₃Al₅O₁₂ in the near infrared, Opt. Commun. 285 (2012) 3997–4000, <u>https://doi.org/10.1016/j.optcom.2012.06.008</u>.

[108] K. Ghimire, H.F. Haneef, R.W. Collins, N.J. Podraza, Optical properties of single-crystal Gd₃Ga₅O₁₂ from the infrared to ultraviolet, Phys. Status Solidi B 252 (2015) 2191–2198, <u>https://doi.org/10.1002/pssb.201552115</u>.

[109] L. Chen, K. He, G. Bai, H. Xie, X. Yang, S. Xu, Non-contact luminescence thermometer based on upconversion emissions from Er³⁺-doped beta-Ga₂O₃ with wide bandgap, J. Alloys Compd. 846 (2020) 156425, <u>https://doi.org/10.1016/j.jallcom.2020.156425</u>.

[110] S. Chaudhary, S. Kumar, G.R. Chaudhary, Tuning of structural, optical and toxicological properties of Gd³⁺ doped Yb₂O₃ nanoparticles, Ceram. Int. 45 (2019) 19307–19315, <u>https://doi.org/10.1016/j.ceramint.2019.06.181</u>.

[111] M.K. Debanath, S. Karmakar, Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method, Mater. Lett. 111 (2013) 116–119, <u>https://doi.org/10.1016/j.matlet.2013.08.069</u>.

[112] D. Pacheco, B. Di Bartolo, Energy transfer and fluorescence characteristics of erbiumdoped ytterbium aluminum garnet, J. Lumin. 14 (1976) 19–39, <u>https://doi.org/10.1016/S0022-</u> 2313(76)90112-5.

[113] M. Shen, Z. Cheng, Y. Li, T. Liu, Y. Peng, Y. Zhang, The single-band red upconversion emission of Er³⁺ in YbOCl layered structure, J. Mater. Sci.: Mater. Electron. 32 (2021) 7026–7033, <u>https://doi.org/10.1007/s10854-021-05413-8</u>.

[114] Z. Zhang, L. Sun, B. Devakumar, J. Liang, S. Wang, Q. Sun, S.J. Dhoble, X. Huang, Novel highly luminescent double-perovskite Ca₂GdSbO₆:Eu³⁺ red phosphors with high color purity for white LEDs: Synthesis, crystal structure, and photoluminescence properties, J. Lumin. 221 (2020) 117105, <u>https://doi.org/10.1016/j.jlumin.2020.117105</u>.

[115] V. Venkatramu, S.F. León-Luis, U.R. Rodríguez-Mendoza, V. Monteseguro,
F.J. Manjón, A.D. Lozano-Gorrín, R. Valiente, D. Navarro-Urrios, C.K. Jayasankar, A. Muñoz,
V. Lavín, Synthesis, structure and luminescence of Er³⁺-doped Y₃Ga₅O₁₂ nano-garnets,
J. Mater. Chem. 22 (2012) 13788–13799, <u>https://doi.org/10.1039/C2JM31386C</u>.

[116] F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, Radiation trapping and selfquenching analysis in Yb³⁺, Er^{3+} , and Ho³⁺ doped Y₂O₃, Opt. Mater. 24 (2003) 103–109, <u>https://doi.org/10.1016/S0925-3467(03)00112-5</u>.

[117] G. Chen, G. Somesfalean, Y. Liu, Z. Zhang, Q. Sun, F. Wang, Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO₂ nanocrystals, Phys. Rev. B 75 (2007) 195204, <u>https://doi.org/10.1103/PhysRevB.75.195204</u>.

[118] V. Tamilmani, A. Kumari, V.K. Rai, B.U. Nair, K.J. Sreeram, Bright Green Frequency Upconversion in Catechin Based Yb³⁺/Er³⁺ Codoped LaVO₄ Nanorods upon 980 nm Excitation, J. Phys. Chem. C 121 (2017) 4505–4516, <u>https://doi.org/10.1021/acs.jpcc.6b08510</u>.

[119] F. Vetrone, J.C. Boyer, J.A. Capobianco, Significance of Yb^{3+} concentration on the upconversion mechanisms in codoped Y_2O_3 : Er^{3+} , Yb^{3+} nanocrystals, J. Appl. Phys. 96 (2004) 661–667, <u>https://doi.org/10.1063/1.1739523</u>.

[120] Y. Tian, R. Xu, L. Hu, J. Zhang, 2.7 μm fluorescence radiative dynamics and energy transfer between Er³⁺ and Tm³⁺ ions in fluoride glass under 800 nm and 980 nm excitation, J. Quant. Spectrosc. Radiat. Transf. 113 (2012) 87–95, <u>https://doi.org/10.1016/j.jqsrt.2011.09.016</u>.

[121] J. Liao, L. Kong, M. Wang, Y. Sun, G. Gong, Tunable upconversion luminescence and optical temperature sensing based on non-thermal coupled levels of Lu₃NbO₇:Yb³⁺/Ho³⁺ phosphors, Opt. Mater. 98 (2019) 109452, <u>https://doi.org/10.1016/j.optmat.2019.109452</u>.

[122] V. Kumar, G. Wang, Tuning green-to-red ratio of Ho³⁺/Yb³⁺ activated GdPO₄ upconversion luminescence through Eu³⁺ doping, J. Lumin. 199 (2018) 188–193, <u>https://doi.org/10.1016/j.jlumin.2018.03.037</u>.

[123] R. Cao, Y. Lu, Y. Tian, F. Huang, Y. Guo, S. Xu, J. Zhang, 2 μm emission properties and nonresonant energy transfer of Er³⁺ and Ho³⁺ codoped silicate glasses, Sci. Rep. 6 (2016) 37873, https://doi.org/10.1038/srep37873.

[124] X. Chai, J. Li, X. Wang, Y. Li, X. Yao, Upconversion luminescence and temperaturesensing properties of Ho³⁺/Yb³⁺-codoped ZnWO₄ phosphors based on fluorescence intensity ratios, RSC Adv. 7 (2017) 40046–40052, <u>https://doi.org/10.1039/C7RA05846B</u>.

[125] J.W. Stouwdam, F.C.J.M. van Veggel, Near-infrared Emission of Redispersible Er^{3+} , Nd³⁺, and Ho³⁺ Doped LaF₃ Nanoparticles, Nano Lett. 2 (2002) 733–737, <u>https://doi.org/10.1021/nl025562q</u>.

[126] J.C. Boyer, F. Vetrone, J.A. Capobianco, A. Speghini, M. Bettinelli, Yb³⁺ ion as a sensitizer for the upconversion luminescence in nanocrystalline Gd₃Ga₅O₁₂:Ho³⁺, Chem. Phys. Lett. 390 (2004) 403–407, <u>https://doi.org/10.1016/j.cplett.2004.04.047</u>.

[127] J. Li, J. Zhang, Z. Hao, X. Zhang, J. Zhao, Y. Luo, Spectroscopic Properties and Upconversion Studies in Ho³⁺/Yb³⁺ Co-doped Calcium Scandate with Spectrally Pure Green emission, ChemPhysChem 14 (2013) 4114–4120, <u>https://doi.org/10.1002/cphc.201300842</u>.

[128] J. Pan, J. Öijerholm, A.B. Belonoshko, A. Rosengren, C. Leygraf, Self-diffusion activation energies in α -Al₂O₃ below 1000°C – measurements and molecular dynamics calculation, Philos. Mag. Lett. 84 (2004) 781–789, https://doi.org/10.1080/09500830500071051.

[129] V.V. Kharton, A.L. Shaula, E.N. Naumovich, N.P. Vyshatko, I.P. Marozau, A.P. Viskup,
F.M.B. Marques, Ionic Transport in Gd₃Fe₅O₁₂-and Y₃Fe₅O₁₂-Based Garnets, J. Electrochem.
Soc. 150 (2003) 33–42, <u>https://doi.org/10.1149/1.1574810</u>.

[130] M. Malki, C.M. Hoo, M.L. Mecartney, H. Schneider, Electrical Conductivity of Mullite Ceramics, J. Am. Ceram. Soc. 97 (2014) 1923–1930, <u>https://doi.org/10.1111/jace.12867</u>.

8 PŘÍLOHA A – CHARAKTERIZACE NEDOPOVANÉHO VZORKU IMPEDANČNÍ SPEKTROSKOPIÍ

Difraktogram tablety o složení Yb₃Ga₅O₁₂, získané sintrováním při teplotě 1500 °C, zobrazuje Obr. 54 a). Difraktogram potvrzuje přítomnost jednofázového kubického granátu o struktuře Yb₃Ga₅O₁₂. Střední velikost krystalitů, které tvoří získanou tabletu, činí \approx 92 nm. Mřížkový parametr činí 12,2014±0,0004 Å a oproti nanokrystalickému prášku (12,2007±0,0004 Å, viz Tab. 3) tak po sintrování mírně vzrostl. Obr. 54 b) pak zobrazuje morfologii povrchu ze SEM po leštění tablety. Jak je patrné, leštěné plochy nejsou přítomné v celém snímku a tableta je stále relativně porézní, což potvrzuje i vypočtená hodnota dosažení \approx 85 % teoretické hustoty. Metodou EDX bylo dále stanoveno zachování chemického složení tablety (15,6 at. % Yb; 25,5 at. % Ga a 58,9 at. % O).

Obr. 54. Difraktogram slinuté tablety $Yb_3Ga_5O_{12}$ (a) a snímek ze SEM povrchu tablety $Yb_3Ga_5O_{12}$ (po leštění) s měřítkem 5000 nm (b).

Data z impedanční spektroskopie pro tabletu Yb₃Ga₅O₁₂, změřená při různé teplotě, jsou graficky zobrazena v Obr. 55–57. Frekvenční závislost kapacitance (Obr. 55) i admitance (Obr. 56), znázorněné jako dvojité logaritmické závislosti, svědčí o tom, že připravená tableta je z hlediska elektrických vlastností izolant [47]. Z Nyquistova diagramu (závislost imaginární složky impedance na reálné složce impedance, viz Obr. 57) byly odečteny hodnoty objemové elektrické vodivosti σ jako lokální minima jednotlivých půlkruhů (vzdálenost půlkruhu na vodorovné ose). Odečtené hodnoty σ zároveň odpovídají hodnotám admitance při frekvenci ≈ 400 Hz z Obr. 56. Sestrojený graf Arrheniova typu závislosti výrazu log σ na 1000/T (Obr. 58) prokázal lineární vztah, což nasvědčuje iontové vodivosti ve studovaném vzorku [47, 128–130]. Stanovená hodnota aktivační energie iontové vodivosti (E_A) činí 2,04 eV. To opět potvrzuje, že studovaný vzorek je izolant, jelikož např. pro typický izolant α -Al₂O₃ byla v rozmezí teplot 650–1000 °C stanovena hodnota E_A v rozmezí 1,6 až 2,4 eV (pro velikosti zrn polykrystalického vzorku v rozmezí 15 až 0,5 µm) [128]. Původ iontové vodivosti lze přisoudit zejména přítomnosti kyslíkových vakancí, což zmiňuje v teplotním rozsahu 900–1000 °C pro granáty na bázi Gd₃Fe₅O₁₂ a Y₃Fe₅O₁₂ literatura [129] či v teplotním rozsahu > 800 °C pro materiály mullitové struktury na bázi 3Al₂O₃·2SiO₂ literatura [130].

Obr. 55. Frekvenční průběh kapacitance tablety Yb₃Ga₅O₁₂ při různé teplotě.

Obr. 56. Frekvenční průběh admitance tablety Yb₃Ga₅O₁₂ při různé teplotě.

Obr. 57. Závislost imaginární složky impedance na reálné složce impedance tablety Yb₃Ga₅O₁₂ při různé teplotě.

Obr. 58. Závislost výrazu log σ na 1000/T a určení aktivační energie iontové vodivosti (E_A) na základě vztahu (27).

9 PŘÍLOHA B – SEZNAM PUBLIKOVANÝCH PRACÍ A PŘÍSPĚVKŮ NA KONFERENCÍCH

SEZNAM PUBLIKACÍ

[1] T. Netolicky, L. Benes, K. Melanova, S. Slang, J. Oswald, T. Wagner, Near-infrared emission in Ho³⁺-doped Yb₃Ga₅O₁₂ garnet nanocrystals, J. Lumin. 251 (2022) 119230, <u>https://doi.org/10.1016/j.jlumin.2022.119230</u>.

[2] T. Netolicky, L. Strizik, L. Benes, K. Melanova, S. Slang, T. Wagner, Deep red upconversion photoluminescence in Er^{3+} -doped Yb₃Ga₅O₁₂ nanocrystalline garnet, J. Am. Ceram. Soc. 105 (2022) 3391–3402, <u>https://doi.org/10.1111/jace.18313</u>.

SEZNAM PŘÍSPĚVKŮ NA MEZINÁRODNÍCH A NÁRODNÍCH KONFERENCÍCH

[1] T. Netolicky, L. Benes, K. Melanova, S. Slang, J. Oswald, T. Wagner, Near-infrared emission and upconversion in nanocrystalline Er³⁺/Ho³⁺-doped Yb₃Ga₅O₁₂ garnet, seminář Anorganické nekovové materiály Praha (2023).

[2] T. Netolicky, L. Benes, K. Melanova, S. Slang, J. Oswald, T. Wagner, Near-infrared emission and upconversion in nanocrystalline Er³⁺/Ho³⁺-doped Yb₃Ga₅O₁₂ garnet, NANOCON Brno (2022) – Cena Dr. Tasila Prnky za nejlepší přednášku autora do 33 let.

[3] T. Netolicky, L. Strizik, T. Wagner, L. Benes, K. Melanova, S. Slang, Upconversion photoluminescence of nanocrystalline rare-earth ion doped $Yb_3Ga_5O_{12}$ (RE = Er^{3+} , Ho^{3+}), NANOCON Brno (2021).

[4] T. Netolicky, L. Strizik, T. Wagner, L. Benes, K. Melanova, S. Slang, Sol-gel synthesis and upconversion properties of nanocrystalline Er³⁺-doped Yb₃Ga₅O₁₂, 14th International Conference on Solid State Chemistry Trenčín (2021).

[5] T. Netolicky, T. Wagner, L. Strizik, K. Melanova, S. Slang, Red upconversion emission of nanocrystalline Er³⁺-doped Yb₃Ga₅O₁₂ prepared by sol-gel combustion synthesis, seminář Anorganické nekovové materiály Praha (2021).

ODBORNÁ STÁŽ

The University of Sheffield, Department of Materials Science and Engineering, Velká Británie, téma: Syntéza a studium struktury nanokrystalických keramických oxidů, 2 měsíce (2. 5. – 1. 7. 2022).