© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.



A Scalable and Adaptive Convolutional Neural
Network Accelerator

Jan Pidanic
Department of Electrical Engineering
University of Pardubice
Pardubice, Czech Republic
jan.pidanic @upce.cz

Rishav Karki
Department of Electronics and Electrical Engineering
Indian Institute of Technology Guwahati
Guwahati, India
k.rishav@iitg.ernet.in

Gaurav Trivedi
Department of Electronics and Electrical Engineering
Indian Institute of Technology Guwahati
Guwahati, India
trivedi @iitg.ac.in

Abstract—Machine learning has become ubiquitous and pen-
etrated every field of technology, medicine, and finance. Convo-
lutional Neural Network (CNN) is one of the most commonly
used class of machine learning algorithms that is being used
in video and image processing, big data processing, natural
language processing, robotics, and a variety of pattern matching
and recognition tasks. Depending on the end application, CNNs
are being employed on different scales ranging from tiny motion
sensors and smartphones to automobiles and server farms.

Although existing CNN accelerators are adaptive for different
types of CNN models, they are generally suited for a particular
scale of operation. In this paper, we describe a scalable and
adaptive CNN accelerator. The same hardware-cum-software
stack can be configured by a system-level parameter to be
synthesized for different scales of operation. This makes the
accelerator highly portable across systems of different scales.
Furthermore, one single synthesized hardware can run inference
for multiple CNN models because of the flexible software stack
and hardware control unit making the system highly adaptive.
We demonstrate the working of the system at different scales by
implementing it on the Xilinx Virtex 7 FPGA and by running
multiple CNN models at each scale.

Keywords—Convolutional Neural Networks, Hardware Accel-
erator, Scalable, Adaptive, FPGA

I. INTRODUCTION

Numerous Artificial Intelligence (AI) applications have
emerged in various sectors like automotive, healthcare,
robotics, and personal electronics in the past few years.
Machine Learning algorithms are increasingly replacing the
traditional algorithms with hard-coded features designed by
domain experts across various sectors. Among Machine Iearn-
ing algorithms, Convolutional Neural Networks (CNN), which

Arpan Vyas
Department of Electronics and Electrical Engineering
Indian Institute of Technology Guwahati
Guwahati, India
v.arpan @iitg.ernet.in

Prateek Vij
Department of Computer Science and Engineering
Indian Institute of Technology Guwahati
Guwabhati, India
v.prateek @iitg.ernet.in

Zdenek Nemec
Department of Electrical Engineering
University of Pardubice
Pardubice, Czech Republic
zdenck.nemec@upce.cz

are brain-inspired algorithms, currently represent one of the
most promising approaches for computer vision tasks. CNNs
are applied in various domains like image understanding
[1], speech recognition [2], and robotics [3]. In many of
these domains, state-of-the-art CNN's have achieved far greater
accuracy in performing various computer vision tasks than
traditional algorithms [4]. However, this superior accuracy also
incurs much computational complexity. With the advent of
the Internet of Things (IoT), computing at the edge has also
become necessary for many applications where security, low
latency, and low power consumption are essential require-
ments. General Purpose compute engines, such as Graphics
Processing Units (GPUs) consume a lot of power and hence
are not suitable for edge applications. As a result, there is an
interest in developing energy-efficient, specialized accelerators
for CNNGs.

Due to their reconfigurability and power efficiency, FPGAs
are a viable hardware platform for accelerating compute-
intensive operations used in CNNs. They consist of many
configurable logic blocks, and programmable interconnects,
enabling customizable accelerator architectures in hardware.
This paper proposes a scalable and adaptive CNN inference
accelerator, customizable for both server and edge computing,
that can be quickly deployed for various workloads. The
accelerator has been emulated on a Xilinx Virtex 7 FPGA.

The rest of the paper is organized as follows: Section II
provides a brief review of existing neural network accelerators.
In section III, we explore this paper’s background, where
we describe the central concepts in this work - Deep Neural



Networks and CNNs. Section IV describes the system archi-
tecture of our proposed implementation. Section V describes
our experimental setup involving emulation of the design on
the Xilinx Virtex 7 FPGA. Section VI presents the results and
observations. Finally, Section VII concludes the paper.

II. RELATED WORK

Due to the high computational complexity of CNNs, typ-
ically running into multiple Giga Operations Per Second
(GOPS), traditional CPUs are not the best candidates for
implementation. GPUs with a high degree of parallelism and
specialized libraries like OpenCL are widely used in both
training and classification. Specialized hardware built using
FPGAs and ASICs are able to improve speed and power
efficiency by roughly an order of magnitude as compared
to GPUs. A lot of specialized accelerators using FPGAs and
ASICs have come up in recent years.

Among the FPGA and ASIC based designs, one class of
accelerators are adaptive and can run multiple CNN models
on the same hardware, whereas the other class of acceler-
ators are highly customized for a specific CNN model to
provide improved inference speed. Eyeriss [5] based on ASIC
optimizes for energy efficiency of the system by reducing
overall data movement. This can be achieved via. data reuse
and exploiting data statistics by using model compression
and skipping insignificant computations. EyerissV2 [6] is a
transformed model to handle compact and sparse networks
making it suitable for edge devices. Angel-Eye [7] provides a
design flow which can map an adaptive CNN accelerator onto
embedded FPGAs and leverages its software backend to run
multiple CNN models. ALAMO [8] is an RTL compiler which
generates a customized hardware accelerator for a specified
CNN model. HACO [9], tailored for VGG16, co-optimizes the
hardware and algorithm by employing selective layer pruning
which is state-of-the-art in terms of inference time. Table I
compares these works with our implementation.

III. BACKGROUND
A. Deep Neural Networks

Artificial Neural networks are machine learning models that
are inspired by the biological network of neurons in our brain.
Analogous to a biological neuron, an artificial neuron is the
basic building block of artificial neural networks. A Deep Neu-
ral Network (DNN) consists of multiple hidden layers, which
consist of multiple artificial neurons. Each neuron receives
multiple input signals z;, from other neurons, and each input
signal z; is multiplied by weights wj. These weighted input
responses are summed up, along with a fixed bias term wy,.
This operation’s output is then fed to an activation function,
such as sigmoid, tanh, or Rel.u, which introduces non-linearity
in the network [10].

Finally, a loss function L is computed, which measures the
gap between desired outputs and the neural network outputs.
The weights w; and wy are parameters that can be updated
during the training process, aiming to minimize the loss
function. This training process requires large data sets and

significant computational resources, and hence, it is usually
performed in the cloud. Once the weights have been learned,
inputs can be processed with these weights, and this process
is known as inference.

B. Convolutional Neural Networks

Convolutional Neural Networks are a common form of
DNNs. Unlike, fully connected networks, in CNNs, only a
small neighborhood of input activations, called the receptive
field, contributes to the output activation. The weights, stored
in a weight matrix, are shared for every output, and this weight
matrix, called the filter, is slid across the input activations. This
effectively results in a 2-D convolution of the filter with the
receptive field generating a single output activation.

A layer’s input activations are arranged as a set of channels
in a CNN, where each channel is a 2-D input feature map.
There are multiple 2-D filters, and ¢ach input feature map is
convolved with a distinct filter. The 2-D convolution results at
each point, are added, along with a bias term to generate the
output feature map. Each stack of 2-D filters is collectively
referred to as a single 3-D filter. Multiple 3-D filters can
be convolved with the input feature maps, and each 3-D
convolution generates a distinct output feature map [11].

IV. SYSTEM ARCHITECTURE

The system is divided into two parts, a reconfigurable
hardware accelerator, Fig. 2, and its software stack, Fig. 1. The
software stack parses the trained model and converts it into a
hardware readable format in the form of program instructions
and memory dumps. The hardware accelerator executes the
program instructions and computes the inference output layer
by layer. The final output is stored back into the memory at a
predefined location.

The hardware is described in Verilog HDL and is pa-
rameterized with N_PFE. N_PFE specifies the number of
parallel processing elements, the number of convolvers in each
processing clement, and also the number of memory buffers
in each of the two internal memory banks. Thus, the amount
of hardware resources is proportional to the square of N_PFE.

A. Software Stack

The software stack generates memory dump and machine
instructions for the hardware. It requires a pre-trained model
file in the ‘h5’ format, generated by Tensorflow. The soft-
ware parses the model file for the network architecture and
arrangement of convolutional, pooling, and fully connected
layers along with their output activation functions. It, in
turn, generates the hardware memory maps for input feature
list, model weights, save and load operations, and inference
outputs. It further generates the program instruction file which
is executed on the hardware.

B. Hardware Blocks

1) Processing Elements and Processing Element Array: A
processing element or PE can independently perform layer
computations for convolution, pooling, and fully connected









time. Larger networks with 16 N_PFE is more appropriate,
though now, the word size and hence accuracy may be reduced
to some extent to keep the resource count low. The BRAMSs
used for on-chip memory banks store one layer’s weights,
inputs and outputs during computation. Thus the memory bank
size and hence the number of BRAMs can vary depending on
the model size targeted for a given implementation.

VII. CONCLUSION

In this paper, we have proposed an adaptive CNN inference
accelerator based on FPGA, that can work with models of any
size and complexity. The hardware can easily be scaled to run
on devices with sizes varying from large cloud nodes to edge-
computing nodes. The scalability and adaptability together
make our setup very useful for a wide range of applications.
In the future, we plan to increase the scope of our design to
run more complex deep learning models with a combination of
dense, RNN, and CNN layers. We also plan to investigate the
energy requirements for our design and make it more power-
efficient and suitable for commercial usage.

REFERENCES

[1] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12. Red Hook, NY, USA: Curran Associates Inc.,
2012, p. 1097-1105.

[2] A. Graves, A. rahman Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” 2013.

[3] U. Coté Allard, F. Nougarou, C. L. Fall, P. Giguére, C. Gosselin,
F. Laviolette, and B. Gosselin, “A convolutional neural network for
robotic arm guidance using semg based frequency-features,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 2464-2470.

[4] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295-2329, 2017.

[5] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127—
138, 2017.

[6] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292-308, 2019.

[71 K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
and H. Yang, “Angel-eye: A complete design flow for mapping cnn
onto embedded fpga,” [EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 1, pp. 35-47, 2018.

[8] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, and J. sun Seo, “Alamo:
Fpga acceleration of deep learning algorithms with a modularized rtl
compiler,” Integration, vol. 62, pp. 14-23, 2018. [Online]. Available:
https://www.sciencedirect.conyscience/article/pii/S0167926017304777

[9] T. Yuan, W. Liu, J. Han, and F. Lombardi, “High performance cnn
accelerators based on hardware and algorithm co-optimization,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 1,
pp. 250-263, 2021.

[10] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating cnn
inference on fpgas: A survey,” 2018.

[11] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12, 2012, p. 1097-1105.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.



