Grasping Point Detection Using Monocular
Camera Image Processing and Knowledge of
center of Gravity

Dominik Stursa!, Petr Dolezel?, and Daniel Honc?

! University of Pardubice, Faculty of Electrical Engineering and Informatics,
532 10 Pardubice, Czech Republic, https://fei.upce.cz/en
dominik.stursa@upce.cz
2 petr.dolezel@upce.cz
3 daniel.honc@upce.cz

Abstract. The ability to grasp objects is one of the basic functions of
modern industrial robots. In this article, the focus is placed on a system
for processing the image provided by a robot visual perception system
leading to the detection of objects grasping points. The proposed process-
ing system is based on a multi-step method using convolutional neural
networks (CNN). The first step is to use the first CNN to transform
the input image into a schematic image with labeled objects centers of
gravity, which then serves as a supporting input to the second CNN. In
this second CNN, original input and supporting input images are used to
obtain a schematic image containing the grasping points of the objects.
This solution is further compared with a network providing grasping
points directly from the input image. As a result, the proposed method
provided a 0.7% improvement in the average intersection over union for
all of the models.
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1 Introduction

In recent decades, many manufacturers have resorted to the use of automated
robotic lines, which bring a number of advantages. The first and probably most
obvious reason is the reduction in production costs. Although the initial cost
may seem daunting, manufacturing companies will recoup their investment in
the long run due to several key benefits such as the ability to work 24/7 without
interruption or the high accuracy and repeat-ability of operations [1].

In addition, one of the biggest advantages is their predictable behaviour and
precision of movements. This leads to a greater ability to consistently produce
high quality products with little variation, all with minimal need for human
control. The safety of workers, speeding up production and increasing profits are
significantly influencing the number of robotic manipulators in industry [2].
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Not only this pressure from the industry, but also advances in digital image
processing are opening the door for all sorts of robotic applications. Machine
vision is typically used in robotic industry to detect objects [3] or their grasping
points [4], to locate obstacles [5] or to find product defects [6], and for quality
control.

Based on this information about the surrounding world, the robotic manipu-
lator can execute a controlled movement that, for example, ensures the removal
of objects from the conveyor belt to defined locations in the new position (so-
called pick and place), which is one of the typical robotic applications [7].

Over the past decades, approaches to the pick and place applications have
been introduced. Thanks to the possibilities of individual parts of the pick and
place system, it is possible to categorize them. For example, it is possible to cate-
gorize these approaches according to the robotic system used, the camera system
used, the object detection method developed using an analytical procedure or a
data-driven procedure.

Analytical approaches consider the geometric shape of the target object and
try to find exactly possible positions to grasp the object. Thanks to deep learning
methods, similar or even better results can be achieved by applying empirical
approaches without the need for analytical processing [8]. Detailed descriptions
of the benefits and differences of these approaches can be found in surveys [9,10].

Machine vision methods can be categorized according to many criteria that
narrow down the problem. An example is the dimension of the solution needed,
which delineates whether the problem needs to be solved in 2D or 3D space
[11]. In our case, the application limitation is defined by a robotic manipulator
with 3 degrees of freedom (DoF) and a suction cup end-effector. As the robotic
manipulator is not able to grasp object randomly rotated in 3D space, but only
object vertically accessible, this leads to limitation of computer vision solution
in 2D space.

In this contribution, we consider the localization of the object’s center of
gravity as an accompanying information to the system to find a suitable grasping
point, which is the initial part of the pick and place application.

1.1 Related work

Finding object grasping points has recently become a widespread issue that
helps find faster or more accurate solutions to make pick and place more effi-
cient. Convolutional neural networks are increasingly being used to find grasping
points [12]. One method that provides an improvement in the accuracy of grasp-
ing point estimation is to use neural networks to generate bounding boxes of
important grasping points using point-wise convolution [13].

Other methods used in this area are deep learning methods that finds salient
point coordinates by shape context information [14]. The use of object shape
context information is also used in a more modern processing approach using
image segmentation, where the grasping points are highlighted and used for
further not so demanding processing [15].
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It is also more common to combine different convolutional neural networks to
add different information about object positions and grasping points locations
with each other [16] or to obtain differently defined outputs that can play a role
in the decision-making process to select the correct grasp point [17].

2 Problem Formulation

This section serves to correctly define the aim of the article. As mentioned, we are
concerned with the first necessary step in the object pick and place task, which
is machine vision. Specifically, determining the center of gravity of an irregular
object with a homogeneous mass distribution using image data processing. The
need to obtain the center of gravity of the object is related to the effort to find
the most suitable grasping point, which will load the robotic manipulator in
uncontrolled axes only minimally during the pick and place application.

Objects of interest are differently sized normalized triangular construction
supports illustrated together with expected robotic manipulation implementa-
tion in Fig. 1.

Example of Robotic Stand Example of object arrangement

Fig. 1. Demonstration of the problem and arrangement of monitored objects on a
conveyor belt.

According to the complexity of the shape and size of the objects along with
the monotony of the surface on which the objects are placed, a monochromatic
monocular camera was chosen to capture the image for processing.

2.1 Proposed Solution

Since we want to use image processing to find the center of gravity of the object,
which we then use as auxiliary information for the evaluation of the grasping
point, the following two procedures were chosen to determine the center of grav-
ity. The first procedure is to construct a parameterized analytical solution. The
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second procedure is to obtain the center of gravity of the object using basic im-
age processing methods. Both of these procedures will be used to label the data
for convolutional neural network training.

Once the object center of gravity has been marked, this information is fed
together with the input image into a second step in which a search for suitable
grasping points is performed. Both steps are implemented by converting the
input image into a schematic image using a convolutional neural network. In
the output schematic image, the coordinates of possible grasping points are
then calculated from the individual segmented entities. The whole process is
illustrated in Fig. 2

CNN Schematic image Coordinates
CoG) with marked cP, -
( Center Of Gravity sehomatio] 1= [x1, y1]
chematic image .
Ilr:g;te > (C(;\‘F’,\; H with marked HLocator }—} .
L Grasping Points .
GPp, - [Xn, ¥nl

Fig. 2. Diagram of proposed processing approach.

Analytical Solution Using the analytical solution, the center of gravity was
calculated exactly according to the geometry of the triangular construction sup-
port, which is described in Fig. 3

Triangular Construction Support Triangular Construction Support Drawing

Fig. 3. Drawing of the triangular structure with all significant points, parameters and
centers of gravity marked.

Used triangular beams contain rounded edges and cut-outs that cause the
center of gravity to shift relative to a normal solid triangle. As a result, the
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analytical calculation of the center of gravity must be treated as a composition
of the centers of gravity of the individual parts, leading to the following equations
for the center of gravity coordinates of the object.

m
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where zorr and yorg are outer round shaped triangle coordinates of center
of gravity; x;rr and yyrg are inner round shaped triangle coordinates of center
of gravity; xpy, and yg, are center coordinates of holes; and all A correspond
to the contents of the area of the individual elements named identically as in
the case of coordinates. Parameter m corresponds to the number of mounting
holes in the support. Depending on these calculations, a center of gravity label is
then created in the schematic image according to the size of the parameterized
triangle.

Ya

Image Processing Solution The application of basic image processing meth-
ods to calculate the center of gravity can be used when there is only the one
object in the image, and only on objects that are fully filled [18].

Since the objects themselves contain cutouts, the problem in this case is also
split to find multiple individual important centers of gravity, which will later
be folded to obtain the main center of gravity. For the purpose of this method,
the holes for the screws are neglected and only a large cut-out in the middle of
the object is considered. The result is the determination of the center of gravity
of the cut-out and the center of gravity of the filled object separately and the
subsequent subtraction of the both individual coordinates in both axes.

The separate processing consists in converting the grayscale image into a
binary image, in which the coordinates of the center of gravity are calculated.
To obtain a binary image, the input image is processed using thresholding. The
next step is to perform a pattern fill, which is used both to calculate center of
gravity for filled object, but also after subtracting it from the original binary
image to create the cut-out object and then calculating its center of gravity. The
following is the composition of the centers of gravity of the components of the
object and the marking of the center of gravity itself in the schematic figure. The
size of the center of gravity marking is based on the size of the object area. The
individual steps of image processing procedure for labeling the center of gravity
of an object is shown in Fig. 4.

3 Experiments Procedure

In this section, the design of the system for estimating the center of gravity
and for estimating the grasping points of triangular structural supports will be
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Fig. 4. Image processing procedure for marking the center of gravity of an object.

described. Both systems are based on convolutional neural networks performing
image segmentation and producing a schematic image.

Two approaches have been chosen for comparison, the first is the aforemen-
tioned approach illustrated in Fig. 2, the second is the conventional approach
that performs the processing of the whole image in one step providing directly
the resulting grasping points. Moreover, due to the two methods for labeling the
data, these approaches are also compared and evaluated with each other.

Both variants used the encoder-decoder principle, specifically a scalable ver-
sion of the U-Net architecture that can be scaled according to provide the nec-
essary segmentation. A scheme of this proposed scalable architecture based on
the U-Net topology is shown in Fig. 5.

Output
288 x 288 x 1

Input —
288 x 288 x 1(2)

Bottleneck

Encoding layer Decoding layer Conv(3x3) + Relu Conv(3x3) + Sigmoid

Fig. 5. The encoding layer halves the width and height of its layer while doubling its
depth. The opposite function is performed by the decoding layer, which doubles the
width and height of its inputs and reduces the depth to half of the previous decoding
layer or bottleneck. Everything then depends on the parameters of the first convolution
and the depth of the network (how many encoding or decoding modules are used).
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3.1 Dataset Creation

In order to acquire training and testing data, the special stand was prepared. A
Basler acA2500-60um industrial monochrome camera [19] was used as a proper
sensor. This sensor was set to provide 2048 x 2048 px images. The camera was
equipped with a Computar M3514-MP lens [20] in order to monitor the scan
area of 300x300 mm from a distance of 500 mm, which was calculated using the
basler configuration tool [21].

Data Acquisition For the purpose of verifying the ability to adapt to the
parameters (sizes) of triangular construction supports and due to the possibili-
ties of the labeling techniques, the dataset was divided into 2 types of images.
Specifically, the images where triangular construction support in different posi-
tions and rotation is present once in time, for 3 different supports sizes, where
200 images were taken for each size. The second group, used only for testing
purposes, are images with multiple objects on a single image, of which 300 were
created for these purposes. Thus, a total of 900 images were taken for training
and testing neural network topologies. Examples of these images are shown in
the following Fig. 6.

Small Triangular Medium Triangular Large Triangular Mixed Triangular
Support Support Support Supports

O
A

7

Fig. 6. Examples of different sizes of triangular construction support and of their mix.

Data Labeling Each image from the training and test set was labeled for
neural network use. Specifically, the positions of the center of gravity and the
positions of the grasping points, for which corresponding schematic images were
created according to the two techniques mentioned in section 2.1. A custom la-
beling application was created, which for the first method was able to manually
determine the important points (selected mounting holes of the triangular sup-
port), thanks to which the image is automatically labeled also with respect to
the parameterization of the size of the marking determined by the distance of
the selected points. The position of the center of gravity and grasping points
is then calculated using calculations based on knowledge of the design drawing.
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The second part was the automatic marking purely using the described digital
image processing to gain the center of gravity. An example of the given marking
is shown in Fig. 7.

Important Points and Demonstration of Markings Schematic Images
Benotin Vector Centre of Gravity - top CNN(CoG) - top
9 Grasping Points - bottom CNN(GP) - bottom

Fig. 7. Example marking of the center of gravity and grasping points of an object.

Data Augmentation Furthermore, the data was augmented to expand the
dataset and thus provide better training of the networks. The original dataset
was augmented as follows. Thanks to the possibility of applying basic image
processing, the background for the original images was removed and replaced
with three additional shades in the black and white spectrum, resulting in a
light grey, dark grey and black background. This step increased the dataset size
to 2400 frames for training and 1200 frames for testing.

3.2 Neural Network Training

Overall, given the problem, the experiments with topologies can be divided into
four individual parts. The first and second parts are training the neural network
to gain the center of gravity, where for the first method the computed centers
of gravity from manual labeling are used and for the second method the labels
from image processing are used. The third part is a CNN training to determine
grasping points, where the input information is not only the input image but
also a supporting schematic image capturing the center of gravity of the objects.
Fourth is to train a neural network to directly determine the grasp points from
the input image only.

To solve the defined problem, separate training was performed within each
problem. For each problem, 4 configurations of depth parameters and initial filter
count of scalable topology were chosen. The ADAM optimizer was used as the
optimization algorithm, and weights were set for each topology randomly with
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Gaussian distribution. Due to the stochastic nature of neural networks, each
topology was trained five times to select the best performing model.

4 Results

For all the individual neural network solutions and topologies, the Intersection
over Union (IoU) metric, which is commonly used to evaluate the performance
of detection techniques, was selected.

A comparison of the methods for determining the center of gravity was carried
out first. In this case, certain configurations of the scalable network were chosen
for both labeling methods. Specifically, this was a combination of depths 2 and
4 along with the number of filters corresponding to values of 64 or 32. This
resulted in 4 combinations of both that provided significantly different values
for the testing set. The values of these results are shown in the following Tab. 1.

Table 1. Results of intersection over union for centers of gravity.

Topology Model 1/Model 2|Model 3|Model 4|Model 5|Mean value
Computed - 2, 32| 0.5941 0.5568 | 0.5685 | 0.5956 | 0.5355 0.5701
Computed - 2, 64| 0.5935 | 0.6206 | 0.6267 | 0.6708 | 0.6014 0.6226
Computed - 4, 32| 0.7460 | 0.8141 0.8391 0.7694 | 0.8347 0.8007
Computed - 4, 64| 0.7632 | 0.7995 | 0.8361 | 0.8554 | 0.8326 0.8173
Processed - 2, 32 | 0.6041 0.5018 | 0.5510 | 0.5615 | 0.5532 0.5543
Processed - 2, 64 | 0.6015 | 0.5996 | 0.6671 0.6109 | 0.6244 0.6207
Processed - 4, 32 | 0.7545 | 0.8341 0.8415 | 0.7583 | 0.8422 0.8061
Processed - 4, 64 | 0.7752 0.7856 | 0.8641 | 0.8041 0.8221 0.8102

As second, the topology was tested to determine the grasping points from
both types of inputs. These topologies used the best performing model of CoG
determination providing input information. Results of IoU for tested topologies
are summarized in Tab. 2

Table 2. Results of grasping points estimation with supporting information.

Topology Model 1|Model 2|Model 3|Model 4|Model 5|Mean val.
Comp. - 4, 64; 4,64(0.7613 |0.7351 |0.7815 |0.7351 |0.8213 |0.7669
Comp. - 4, 64; 4,32/0.7515 |0.7995 |0.7319  |0.7442 |0.7726  |0.7599
Proc. - 4, 64; 4,64 [0.7503 |0.7982 |0.8111 |0.8211 |0.8301 [0.8022
Proc. - 4, 64; 4,32 (0.7611 |0.7112 |0.8078 |0.8042 |0.7896  |0.7748

Lastly, the data were evaluated using the direct method to determine the
grasping points, for which the 4 combinations of sizes and depths are shown in
the Tab. 3
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Table 3. Results of grasping points estimation.

Topology|Model 1{Model 2|Model 3|Model 4 Model 5/Mean val.
T1 -6, 32|0.6621 ]0.6011 |0.6056 |0.6202 |0.6434 |0.6265
T1 - 6,64 |0.6888 ]0.6055 |0.5995 ]0.6332 |0.6611 |0.6376
T1-8,32|0.7511 ]0.7684 |0.7881 |0.7687 |0.7222  |0.7597
T1 - 8,64 |0.8044 ]0.7800 |0.7944 ]0.7992 |0.8155 |0.7987

5 Conclusion

The task of the first investigation was to determine whether generating data
labels based on empirical computations provides higher accuracy than automatic
data labeling. However, it can be determined from the data that the effect of the
center of gravity method alone does not have a strong influence in the average
values.

One of the other objectives of this work was to test whether preprocessing
some key information about the object (the center of gravity in this case) can lead
to more accurate estimation of the grasping points. For these cases, it is necessary
to compare Tab. 2 and Tab. 3, which show the accuracy of the determination of
the grasping points. These tables show that, on average, more accurate results
are obtained with connected networks (with supporting information) containing
a comparable number of parameters than with a separate network. Specifically,
for parametrically comparable topologies, there is an average improvement of
0.7%.

In the future, the influence of preprocessing itself could be subjected to a more
rigorous analysis that would precisely normalize the influence of the number of
parameters against the resulting accuracy.
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