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Suitable ASP U-Net training algorithms for grasping point detection of
nontrivial objects
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Abstract— Robotic manipulation with nontrivial or irregular
objects, which provide various types of grasping points, is
of both academic and industrial interest. Recently, a pow-
erful data-driven ASP U-Net deep neural network has been
proposed to detect feasible grasping points of manipulated
objects using RGB data. The ASP U-Net showed the ability
to detect feasible grasping points with exceptional accuracy
and more than acceptable inference times. So far, the network
has been trained using an Adam optimizer only. However,
in order to optimally utilize the potential of ASP U-Net, it
was necessary to perform a systematic investigation of suitable
training algorithms. Therefore, the aim of this contribution was
to extend the impact of ASP U-Net by recommending suitable
training algorithms and their parameters based on the result
of training experiments.

I. INTRODUCTION

The number of robotic manipulators in industry is steeply
growing [1]. Along with this phenomenon, the requirements
for higher accuracy, speed, autonomy, multi-purpose appli-
cability, and lower price of the robotic arms are also rising.

One of the most important functionalities of modern
robotic arms is the ability to grasp generic objects. Many
different ways of robotic object grasping have been investi-
gated. As described by Kumra et al. [2], a robotic grasping
system consists of the grasping point detection using a
perception system, planning of the movement trajectory, and
actual execution of the movement using a robotic arm with
a suitable end effector. An example of a robotic grasping
system is shown in Fig. 1.

The perception system, as the first module of robotic
grasping consecution, is expected to deal with visual process-
ing in order to identify graspable objects and their available
grasping points in the scene. Hardware sensors used to
scan the area of the scene may be 3-D vision sensors, and
conventional RGB or RGB-D cameras [3]. The type of the
sensor determines the form of output data (point cloud,
RGB-D maps, 2D image, etc.). The important step of the
robotic grasping is to detect and locate possible grasping
point positions and poses in the provided data.

In the previous authors’ work, a powerful data-driven
ASP U-Net neural network was proposed to detect feasible
grasping points of manipulated objects using RGB data [4].
ASP U-Net is generally applicable for simultaneous grasping
point detection considering various types of robotic arm end
effectors. In the aforementioned article, the network was
extensively examined for the detection of grasping points

1Authors are with the Faculty of Electrical Engineering and Infor-
matics, University of Pardubice, 532 10 Pardubice, Czech Republic
petr.dolezel@upce.cz

Fig. 1: The demonstration of a robotic grasping system. A
conveyor belt moves objects for manipulation, an industrial
camera takes an area scan of the scene, and the perception
system detects possible grasping points. Lastly, the robotic
arm equipped with an end effector places the objects into the
target positions.

of the objects scattered in a single layer, using a novel pixel-
wise transformation of an RGB image of the scene. Namely,
positions and poses of feasible grasping points available in
the scene were converted into gradient geometric shapes that
effectively encapsulated all the necessary information for a
robotic arm to manipulate the objects.

In line with current trends in image processing, ASP U-
Net is based on deep learning and deep neural networks.
The network showed the ability to detect feasible grasping
points with exceptional accuracy and more than acceptable
inference times. As with other data-driven methods based
on deep learning, a key step in the design is a training
of the neural network. In the above mentioned reference,
ASP U-Net was intuitively trained using an Adam optimizer,
since it generally provides satisfactory performance in most
cases [5], [6]. However, to optimally utilize the potential of
ASP U-Net, it would be appropriate to perform a systematic
investigation of suitable training algorithms and their param-
eters. Therefore, the aim of this contribution is to extend the
impact of ASP U-Net by recommending a suitable training
algorithm and its parameters, based on the result of training
experiments.



II. MATERIALS AND METHODS

ASP U-Net addresses a problem of feasible grasping point
estimation in a scene represented by an RGB image. This
task is motivated by a common problem of picking various
complex objects by a robotic arm and placing them to a
required position. The search for a suitable training algorithm
for ASP U-Net was performed using the following methods.
First, a robotic grasping system used for training and vali-
dation data set acquisition was described. Then, ASP U-Net
and its functionality was briefly explained. Subsequently, a
list of considered training algorithms was defined. Finally,
the procedure for identifying the most suitable algorithm was
reported.

A. Robotic grasping system

In this contribution, the robotic arm was equipped with
two types of end effectors; a parallel gripper and a vacuum
cup, as seen in Fig. 1. Additionally, ASP U-Net targeted on
objects scattered in a single-layer manner. Such an arrange-
ment doesn’t utilize depth information, since all grasping
points occur approximately at the same vertical level. Hence,
RGB data can be considered as sufficient input source of
information.

Furthermore, nontrivial objects with a fixed shape in three
color variants (white, blue, gray) were used for the training
experiments. The base of the objects was 3 cm high and 4 cm
long. The height of the smaller side was 1.3 cm, the height of
the larger side was 2.6 cm. The objects provided two kinds
of grasping points – edge and plane – for manipulation using
either the parallel gripper or the vacuum cup, depending on
the object position and pose. The objects with the highlighted
possible grasping points are shown in Fig. 2.

Fig. 2: The shape of the considered nontrivial objects with
highlighted grasping points (upper image) and the real object
representatives in their color variants (lower image).

Clearly, different spatial arrangements of the objects in the
scene can occur, and each individual arrangement differently
affects the feasibility of the grasping points for the robotic
arm. As extensively shown in the original study [4], the
method was designed to successfully deal with the feasibility
of the grasping points affected by the mutual influence of
surrounding objects. An example is shown in Fig. 3.

Fig. 3: The feasible grasping points in the scene. Some of the
possible grasping points are not feasible due to a neighboring
object. These grasping points should not be detected.

B. ASP U-Net for grasping point detection

ASP U-Net was inspired by the U-Net [7], a U-shaped
fully convolutional network designed initially for bio-
medical image segmentation problems. It follows a classical
encoder-decoder scheme with a bottleneck. Additionally, it
includes skip signals, that allow the network to propagate
context information to higher resolution layers. Inspired
by SqueezeNet [8] and Squeeze-SegNet [9], conventional
convolutional and transposed convolutional layers in ASP
U-Net were replaced with special modules called Down
sampling module and Up sampling module. According to
Ref. [10], these replacements could provide more than 10×
parameter reduction while keeping the accuracy. Besides, the
attention mechanism, as presented in Ref. [11], was utilized
to the decoder part of ASP U-Net. Attention gates filter the
features propagated through the skip connections. As a last
enhancement, U-Net part of the ASP U-Net architecture was
duplicated and mirrored. The mirrored parts were concate-
nated at the concluding section of the network. Thanks to this
enhancement, ASP U-Net is expected to adapt its parameters
to process the features relevant to the parallel gripper in the
first mirrored branch, and the features relevant to the vacuum
cup in the second mirrored branch. The memory requirement
of the architecture is 77 MB, and it contains 6.4 million
trainable parameters.

ASP U-Net is expected to transform the original RGB
image of the scene with the manipulated object into two
schematic grayscale images, where the grasping points are
highlighted as gradient shapes bearing all the necessary
information for a robotic arm. The intended outputs of the
network are shown in Fig. 4.

A simplified diagram of the architecture is shown in Fig. 5.
Refer to Doležel et al. [4] for the detailed description of the
architecture.

C. Training algorithms

Training algorithms are used to change parameters of the
neural network (such as weights and biases) to reduce the
loss function. Therefore, selection of a particular training
algorithm is a crucial step in a neural network design, since



Fig. 4: ASP U-Net transforms the original RGB image of the
scene into a pair of schematic images, where the positions
of the grasping points are highlighted as gradient shapes.
Specifically, the first output from ASP U-Net represents the
positions and poses of the grasping points suitable for a
parallel gripper (i.e., edges of the objects), and the second
output should represent the positions of the grasping points
suitable for a vacuum cup (i.e. planes of the objects).

the training algorithm is responsible for providing the most
accurate results of the neural network behavior.

Various training algorithms have been researched within
the last few decades. According to an extensive literature
research, the following algorithms were selected for consid-
eration in this study.

1) Stochastic gradient descent (SGD): SGD is basic but
one of the most used algorithms [12]. It is dependent on
the first order derivative of a loss function. In its canonical
variant, it has only single parameter - learning rate (lr), which
determines the step size of each iteration.

2) RMSprop: RMSprop is unpublished optimization algo-
rithm, firstly proposed by Geoff Hinton in his online course.
It was developed as the adaptation of Rprop algorithm
[13] for batch training. Parameters of the RMSprop include
learning rate, ρ (a discounting factor for the history/coming
gradient), and ε (a small constant affecting numerical stabil-
ity).

3) Adagrad: This algorithm deals with the learning rate
being constant for all parameters and for each iteration [14].
Therefore, it adapts the learning rate individually for each
neural network parameter at each iteration, based on previous
gradients. Initial learning rate (ilr) has to be set, together with
initial accumulator value (iav), which is the starting value for
the per-parameter momentum values, and with ε.

4) Adadelta: Adadelta is a more robust extension of
Adagrad, which tunes learning rates based on a moving
window of gradient updates instead of accumulating all past
gradients [15]. The parameters include ilr, γ (the decay rate),
and ε.

5) Adam: Adam training algorithm is a variant of a
stochastic gradient descent algorithm, that is based on adap-
tive estimation of first-order and second-order moments [5].
The parameters to be defined include lr, β1 (an exponential
decay rate for the first order moment estimates), β2 (an ex-
ponential decay rate for the second order moment estimates),
and ε.

6) Adamax: This algorithm is an extension to the Adam
version of gradient descent that generalizes the approach to
the infinite norm (max) [5]. Sometimes, it results in a more
effective optimization on some problems. This algorithm has
the same parameters as Adam.

7) Nadam: Nadam is a variant of the Adam training
algorithm with the Nesterov momentum [16]. Like Adamax,
this algorithm has also the same parameters as Adam.

D. Procedure for determining the most suitable algorithm

In order to determine the suitable training algorithm, it was
necessary to apply all the algorithms comprehensively for
ASP U-Net and compare the obtained results systematically.
A sufficiently large dataset of scene images and target
outputs was needed for this purpose. Additionally, since
neural network training is a stochastic process, the training
experiments were performed repeatedly to obtain statistically
significant results. Last but not least, for selected algorithms
it was necessary to set or tune their parameters. All these
issues are discussed below.

1) Training dataset: The same dataset, as in the study
[4], was used for the training in this contribution. The
dataset included 716 original images of a conveyor belt with
the manipulated objects taken by a Basler acA2500-14uc
industrial RGB camera [17] from a distance of 500 mm. The
resulting collection of images included from 0 to 9 objects of
three colors with various spatial orientations. Many images
contained only parts of the objects. Resolution of the images
was 288 × 288 RGB pixels with 8-bit depth.

Each image of the training set had to be annotated in order
to be usable for ASP U-Net training. Namely, the grayscale
schematic images according to Fig. 4, which defined the
positions and orientations of the feasible grasping points,
were prepared for each image.

Consequently, the augmentation was used to this dataset
using shift operation (±10 px) and rotate operation (±10°).
Lastly, the dataset was divided into the training (70 %) and
validation set (30 %). Some examples from the dataset are
depicted in Fig. 6.

2) Training experiments: Two steps of training experi-
ments were performed. Firstly, a promising algorithm had to
be chosen, since complete optimization of all parameters of
all algorithms was not achievable in time. Therefore, ASP
U-Net was trained using each selected training algorithm.



Fig. 5: The ASP U-Net architecture.

Fig. 6: The example of the images in the training set.
Each input image should correspond to two target schematic
images. Note that only feasible grasping points are annotated.

Parameters of each algorithm were set based on a compro-
mise between the values obtained from the literature review.
Initial weights were set randomly with Gaussian distribution.
Binary cross entropy (1) was used as the loss function.

loss = −(y log(p) + (1− y) log(1− p)), (1)

where y is a binary indicator of correct observation of every
pixel in the output image and p is the predicted probability
of the observation.

The training experiments were performed twenty times
for each training algorithm in order to reduce the stochastic
character of the training. All parameters of the training are
summarized in Table I.

The second step is to select a promising training algorithm
and optimize its parameters. The parameters of the training
algorithm with the most suitable and stable performance

TABLE I: Parameters of the training

Input shape 288 × 288 × 3
Number of experiments 20
Validation split 0.3
Initialization Normal distribution (mean = 0, std = 0.05)
Number of epochs 100
Crit. for resultant model Loss function value over validation set
Batch size 4
Parameters for SGD lr = 0.01
Parameters for RMSprop lr = 0.001; ρ = 0.9; ε = 10−7

Parameters for Adagrad ilr = 0.001; iav = 0.1; ε = 10−7

Parameters for Adadelta ilr = 0.001; γ = 0.95; ε = 10−7

Parameters for Adam lr = 0.001; β1 = 0.9; β2 = 0.999; ε = 10−7

Parameters for Adamax lr = 0.001; β1 = 0.9; β2 = 0.999; ε = 10−7

Parameters for Nadam lr = 0.001; β1 = 0.9; β2 = 0.999; ε = 10−7

in the first step were tuned using another set of training
experiments. Specific parameter ranges were not given until
the next section because they were dependent on results in
the first step.

III. RESULTS

ASP U-Net was trained and validated twenty times ac-
cording to the procedure addressed in Section II-D. To
demonstrate the training results, resulting values of the binary
cross entropy loss function evaluated over the validation data
at the end of the training sessions were depicted as box
graphs in Fig. 7. Central lines in the box graphs, shown in
the figure, are medians of loss function; the edges of boxes
are 25th and 75th percentiles; and the whiskers extend to



Fig. 7: The box graphs of the binary cross entropy loss
function evaluated over the validation data at the end of the
training sessions.

Fig. 8: The learning curves (values of the cost functions
related to the epoch number) for the best training sessions.

the most extreme data points (except outliers). Additionally,
the best training sessions for each training algorithm were
pointed out, and the learning curves (values of the cost
functions related to the epoch number) were shown in Fig. 8.

The resulting values of the binary cross entropy loss
function indicated that the Adam algorithm was best suited
for further investigation. It provided the best overall resulting
value of the cost function, while its performance was robust
and individual training sessions provided little variance in
solutions. In addition, looking at Fig. 8, the Adam algorithm
demonstrated a very steep learning curve. Therefore, the
Adam algorithm was selected for parameter tuning.

Intuitively, a grid search on log scale was applied to tuning
of the parameters. Specifically, β1 and β2 remained constant,
since it was strongly recommended to use their original val-
ues [5], and the rest of the parameters created a grid, where
ε = {10−7, 10−4, 10−1, 1}, lr = {10−2, 10−3, 10−4, 10−5}.

Fig. 9: The box graphs of the binary cross entropy loss
function evaluated over the validation data at the end of the
training sessions for various parameters of Adam algorithm.

For each combination in this grid, ASP U-Net was trained
and validated twenty times analogously to the procedure
addressed in Section II-D. To demonstrate the results, the
retrieved values of the loss function evaluated over the
validation data at the end of the training sessions were again
depicted as box graphs in Fig. 9.

Looking at Fig. 9, the pair ε = 10−4, lr = 10−3 seemed
promising. Thus, the neighborhood of this combination of
values was examined. Specifically, the grid with the values,
where ε = {5 × 10−5, 8 × 10−5, 3 × 10−4, 5 × 10−4}, lr =
{5× 10−4, 8× 10−4, 3× 10−3, 5× 10−3} was prepared for
investigation. Again, the final values of the cost function over
the validation data were shown as box graphs - see Fig. 10.

Fig. 10: The box graphs of the binary cross entropy loss
function evaluated over the validation data at the end of the
training sessions for various parameters of Adam algorithm
- fine tuning.

The best overall values were provided by the pair ε =



8 × 10−5, lr = 8 × 10−4, since this setting provided the
best value of the cost function and was a favorable average
of all values for this setting as well. However, there is no
significant trend in the data presented. Thus, it is possible
that the experiment could be extended with a more significant
number of training sessions.

IV. CONCLUSIONS

In this contribution, a suitable training algorithm for ASP
U-Net was experimentally determined. Moreover, parameters
of this algorithm were tuned to provide even better results.
Although it is obvious that the search procedure was per-
formed in an engineering way only, the determined algorithm
with its parameters can be considered sufficiently robust and
efficient for ASP U-Net training.
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