

© 2022 The Authors. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Proceedings of the 34th European Modeling & Simulation Symposium (EMSS), 043
19th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 © 2022 The Authors.
doi: 10.46354/i3m.2022.emss.043

Efficient handling of lots of simulation data files

Roman Diviš1,*, Zdeněk Novotný2

1University of Pardubice, Studentská 95, Pardubice, 532 10, Czech Republic
2University of Pardubice, Studentská 95, Pardubice, 532 10, Czech Republic
*Corresponding author. Email address: roman.divis@upce.cz

Abstract
Saving information to files is the most basic and simplest way to store data, so it is often used in simple simulators and
simulation tools as the first choice for logging information about the simulation process and its results. Computer simulations
often involve simulating a significant number of replications and accumulating large numbers of files. Today's filesystems are
still not capable of efficiently storing and processing millions of files. This paper presents alternatives that allow for more
efficient storage, transfer, and analysis of data, with an emphasis on easy migration or implementation from the initial data
files. Simple approaches such as using TAR or ZIP archives to sophisticated approaches involving Parquet file, S3-like object
storage (e.g., MinIO, OpenIO) will be compared.

Keywords: data files management; data storage; object storage

1. Introduction

Computer simulations are commonly used in the
examination and analysis of various dynamic systems.
Simulators can directly provide (i) statistical evaluation
of measured data in the simulator itself, they can (ii)
generate summary output files (with statistical
evaluation) or simply provide (iii) natural (raw)
measured data about the simulated system (used for
later statistical evaluation).

Even in cases (i and ii) when the simulator does
statistical evaluation itself, the simulator usually need
to save measured data for the process of statistical
evaluation. Simulators can hold necessary data in
operating memory but because of their size it may be
infeasible to hold all the required data for processing
simulation, and recorded data in memory at once. So,
these data are usually saved to external storage (such as
files in filesystem/data store, database, specialized data
logging tools, …). These data for example consist of full
saves of simulation states, simulation records of
watched entities/values or already pre-processed

summary values. In general terms, it is a heterogeneous
dataset that has a similar structure for every simulation
run (replication). For convenience, we will call this data
a “simulation log”.

There are many different options used for saving of
simulation log to external storage:

• (Custom) plain text files
• (Custom) binary files
• Formatted/serialized text files (common formats

such as CSV, JSON, YML, …)
• Common serialization binary files (Python – Pickle,

BSON, Parquet, …)
• Archive (compressed files (TAR, ZIP, 7Z, …)
• Relational database systems (MySQL, Maria DB,

PostgreSQL, …)
• Nonrelational database systems (MongoDB,

Cassandra, …)
• Block or other specialized storage systems (S3, …)
• Specialized data storage software

https://creativecommons.org/licenses/by-nc-nd/4.0/

34th European Modeling & Simulation Symposium, EMSS 2022

1.1. Pros and cons

Each of these options has its advantages and
disadvantages and a complete review and comparison
of these options are out of the scope of this article. The
main scope of this article is to address the
implementation of simulation logs in custom-made
simulation tools. These simulation tools can be also
connected to time-limited projects and their analysis,
design and development happen quickly, and the main
focus is to provide the required functionality (simulate
the defined system, analyze and provide results). So,
the proper planning and design of every part of the
simulator is not the main concern. This can result in
using of suboptimal subsystems and handling of
simulation logs is one of them. Problem is typically
hidden for a later phase of the project. Until the
simulation log is needed and processed or until its
discovered that there are missing data/features (and
they need to be added to the simulation log),
developers can imagine that everything is correct and
optimal.

1.2. Files versus database

For these and probably many other reasons, the
text/binary files are often the first choice for the
implementation of the simulation log. Natural
text/binary (raw) files are simple, extendable, have
natural support in programming languages and their
format is given by the developer.

In simple comparison with relational database
(such as MySQL) – developer often needs to install,
configure and run database system, then
download/link external library/dependency, learn
specific API for accessing the database system and its
data, design structure of tables and map natural data
(objects, structures, …) to the specific ones in the
database system. This process adds many steps and
planning before the developer can save any data to the
database. Also, the process of adding new data is
slowed down by necessary updates to table structures.

In so-called NoSQL databases, the developer may
not be required to define table (storage) structures
before the insertion of data. So, this downside is not
present in this case while others remain. Also, the
absence of structure can be problematic in future
when new data needs to be added and the developer
needs to migrate old data to the new format.

Various commercial simulators often use their own
(proprietary) binary data files or common database
systems. As both these options can provide good
results in terms of speed and size of the simulation
log.

1.3. Problems with suboptimal formats

Suboptimal format of simulation log, in general,
leads to problems with (i) big size of log, (ii) slow
access times (read and write), (iii) inability to extend
simulation log, (iv) incompleteness of data or missing

version information.

The first problem is connected to the usage of text
format and specifically formats with excessive
overhead (such as XML format). Binary files can be
smaller and faster. The second problem - read speed –
can be caused by a big number of poorly organized
files, the ineffective internal organization of files or
the inability to seek specific data in files (text files
without index). On the other hand, the inability to
extend the simulation log (or inflexibility to do so) can
be caused by custom-made binary formats or by using
formats and systems that require defining data
structure before use. The last problem –
incompleteness or missing information – is often
found later when many data are already produced
without proper organization and labelling, and errors
and missing information leads to an inability to
distinguish between individual datasets and
configurations of simulations.

This article focuses on the custom-made
simulation tools that probably use a simple method for
handling the simulation log and are considering a
better approach. Considered options may be used in
batch mode – post-processing the original simulation
log to the new format or in online mode – direct
implementation of the new format of simulation log to
the simulation tool. The main focus is also given to
simple yet effective variants for the handling of the
simulation log so that the process of migration is
short.

2. A brief overview of state-of-the-art

The topic of different variants of data storage,
simulation log format or usage of various database
systems is quite well discussed. Unfortunately, most of
these articles focus only on a very narrow field of
simulation or the comparison itself is limited to very
specific cases. For example, in (Ng et al., 2004)
authors focus on biomolecular simulation data and
consider DB2, netCDF and Python Pickle options.
Another article (Buyl, Colberg & Hofling, 2014)
proposes a new structured file format for molecular
data. In the thesis (So, 2016) author compares Parquet
and JSON files in the case of the Particle Swarm
Optimization algorithm.

Some articles are discussing underlying
optimizations and not how to directly optimize stored
data. As an example of optimization of an underlying
database management system and its own data
storage mechanism, we can refer to (Alagiannis et al.,
2015) where authors optimize PostgreSQL storage and
offer a comparison with other DBMS. A different
example of underlying optimization is articles that
refer to new and optimized file systems
implementations, for example in (Ovsiannikov et al.,
2013) authors present an alternative to Hadoop
distributed file system.

 Diviš et al.

3. Case study

For our case study, the MesoRail (Diviš and Kavička,
2015) simulation tool is used. Its custom-made
simulator is written in Java programming language.
The MesoRail simulation tool is specially designed to
perform railway traffic simulations on the mesoscopic
level of detail. Its main task is to serve in support of
examination of the throughput/capacity of rail system
infrastructures (especially railway stations and
nodes). The simulator supports deterministic and
stochastic traffic flows and implements several
methods for conflicts that happen during stochastic
simulations. Mainly it implements the reflective
nested simulations method that uses recursive
simulations with limited lookahead and different
parametrization for evaluation of the best solution for
a given conflict. This process results in the running of
many simulations and for detailed analysis, it needs
much data saved in the simulation log.

As a custom-made simulator for implementation of
simulation log was chosen to use simple text and
binary files and a few specific formats. For every
simulation replication, there is generated 8 files plus
the number of simulation state dumps for every
conflict that happened in simulation. Simulation log
files for one replication consist of (sizes of files can
vary, presented values are average values for current
simulation experiments):

• user readable simulation log with details of
parametrization – text file, size around 10 kB,

• nested simulations log – text file, CSV like, size
around 2-3 MB,

• train delays analysis – text file, CSV like, size
around 1 kB,

• simulation executor log – text file, size around 30
kB,

• simulation run time – text file, size around 5 B,
• nested simulation graph – GraphML file (text-

based XML), size around 50 kB,
• railway tracks occupation chart – SVG file (text-

based XML), size around 70 kB,
• simulation conflicts log – text file, CSV-like, size

around 5 kB.

And for every evaluated conflict there is:

• simulation state dump file – binary file, custom
binary serialization, size around 200 kB.

In total there are 20 to 30 files per simulation
replication.

For evaluation of the aforementioned methods, we
gathered simulation logs from 10 000 replications:

• Total - 195 863 files, 38.6 GB,
• Text file logs – 78 166 files, 20.4 GB,
• Simulation state dump (binary) files – 117 697

files, 18.2 GB.

4. Format comparison

As mentioned before, the focus of this article is on
simple yet effective methods that can be added to
already existing or new simulation tools. For
comparison we’ve chosen the following formats:

• original data,
• ZIP archive,
• TAR archive,
• Pickle serialization format,
• Parquet serialization format,
• S3-like object storage MinIO.

For each of these variants, we measured and
reported:

• size of stored data,
• read speed (random access),
• brief description of the pros and cons of the

method.

For every suitable format, we tried to make an
archive file per replication, per 100 replications, per
1000 replications or per 5000 replications. In RAW
terms file counts and sizes are shown in table 1.

Table 1. File counts and sizes for chosen scenarios

Dataset size File count Total file size (GB)

1 25 0,01

100 2045 0,42

1000 21126 4,32

5000 83730 17,10

For every considered format we benchmarked the
creation of archive files and then tried to perform
many random access reads.

It is necessary to mention that the main target of
our article is to evaluate simple implementations. This
leads to suboptimal implementation and performance
of several considered formats. We want to find the best
simple solution and we know that optimal
implementation of any of mentioned formats may lead
to much better results. Unfortunately, optimal
implementation can be time-consuming and possibly
limits the further expansion of stored data in the
simulation log. Basically, every considered data format
is filled with the natural format of presented text and
binary data files, instead of parsing data and
transforming them into much better data
representation.

Gathered results of random access read speeds are
presented in table 2. For every chosen data format we
created archive files according to the presented sizes
of datasets and then performed a series of random
access reads of stored files.

34th European Modeling & Simulation Symposium, EMSS 2022

Table 2. Measured random read speeds for benchmarked scenarios

Read
speed

(MB/s)

Dataset
size

RAW Zip Tar Pickle Parquet MinIO

1 253,9 96,2 72,1 28,0 192,1

100 260,8 926,7 874,7 924,2 470,3 196,8

1000 205,4 425,4 112,9 79,4 33,1 190,3

5000 171,8 240,1 17,2 11,6 0,5 47,9

4.1. Benchmark results

From performed benchmarks, we measured best
read speeds usually when we made archives of 100
replications (about 2000 files with a size of about 0,5
GB). And for extremely big archive files performance
dropped significantly, only in the case of MinIO (S3-
like storage) performance was quite stable, dropped
only in the biggest scenario.

Size of resulting archives we’re usually. Only the
Parquet format performed better than other options
and its size was about ¼ the size of other formats. But
formats like Zip offer different compression levels and
thus may lead to smaller archive sizes.

MinIO was used in a single-node server scenario
without the utilization of cluster storage features or
additional options such as compression.

Parquet format can offer better results with a more
focused implementation of this data format. Storing of
RAW files is suboptimal and leads to decreased
performance.

The overall best performance was measured in Zip
format and Pickle (Python binary serialization)
format. As Zip format is supported by most
programming languages and operating systems it’s
the best choice of our benchmark for archiving
simulation logs.

5. Conclusions

We proposed simple options to enhance
implementations of the so-called simulation logs.
This topic is mostly useful for authors of custom-
made simulation tools where much development time
is needed to create the simulation itself instead of
optimising of simulation log.

After consideration of several simple archive
formats and then benchmarking them, we can say that
a simple way of the utilization of Zip archives of
carefully chosen size can lead to a big benefit in terms
of storage size needed, read speed of simulation logs,
transfer speed of simulation logs over the internet or
long term storage of simulation logs.

Of course, for specific scenarios, other users may
find different formats more beneficial. Also, specific
formats for data storage (such as Parquet) with correct
usage may yield even better results. Our focus was on

finding a simple yet effective way of enhancing
handling of our simulation logs.

Acknowledgements

The work has been supported by the Funds of the
University of Pardubice, Czech Republic. This support
is very gratefully acknowledged.

References

Alagiannis, I., Borovica-Gajic, R., Branco, M., Idreos,
S., Ailamaki, A. (2015). NoDB: Efficient Query
Execution on Raw Data Files. J. Commun.
ACM,12:112-121.

Buyl, P., Colberg, P. H., Hofling, F. (2014). H5MD: A
structured, efficient, and portable file format for
molecular data. J. Computer Physics
Communications, 6:1546-1553.

Diviš R., Kavička A, (2015). Design and development of
a mesoscopic simulator specialized in investigating
capacities of railway nodes. Proceedings of the
European Modeling and Simulation Symposium,
52-57.

Ng, M. H., Johnston, S., Murdock, S., Wu, B., Tai, K.,
Fangohr, H., Cox, S., Essex, J. W., Sansom, M.,
Jeffreys, P. (2004) Efficient data storage and
analysis for generic biomolecular simulation data.
3rd UK e-Science Programme All Hands Meeting
(AHM 2004), Nottingham, UK, 443-450.

Ovsiannikov, M., Rus, S., Reeves, D., Sutter, P., Rao, S.,
Kelly, J. (2013). The Quantcast File System. Proc.
VLDB Endow, 11:1092-1101.

So, G. (2016). Comparing Performance of Parquet and
JSON Files for a Particle Swarm Optimization
Algorithm on Apache Spark. Ms. Thesis California
State University, Northridge.

