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Abstract
Fuzzy systems are commonly used to model uncertainties occurring
in data. They have been intensively investigated and extended to be
used for the construction of time series forecasting models. In partic-
ular, intuitionistic fuzzy sets have been used to capture higher levels
of uncertainty occurring in the modeled data. Neural networks were
also used to reflect non-linearity relationships frequently observed in
time series. Following this line of research, in this paper, we propose
a new hybrid fuzzy system merging the most promising data represen-
tation methods with an advanced optimization technique, which is the
principle of justified granularity. In this technique, we construct an inno-
vative time series forecasting model. In the experimental part of the
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paper, we demonstrate the advantages arising from applying the pro-
posed approach to metal price forecasting. We provide solid evidence that
the proposed model is competitive with other state-of-the-art models
known from the literature for forecasting horizons of one and five days.

Keywords: Fuzzy systems, neural networks, time series forecasting

1 Introduction
Representing uncertainty and non-linearity in time series is an important prob-
lem that has been addressed for many years. One of the models applied for
this task is a fuzzy system (FS).

The FS-based approach to time series forecasting comprises three stages:

1. Approximation of time series. The collected historical time series are par-
titioned and fuzzified. The produced fuzzy time series (FTS) approximate
the original time series (TS) to represent the uncertainty involved in them.

2. Construction of a fuzzy system. From the obtained FTS, fuzzy if-then rules
are inferred. The set of these rules representing temporal relationships exist-
ing in the FTS is called a FS. In this way, the FS forms a TS forecasting
model which is used to predict the future values of the FTS.

3. Forecasting and defuzzification. The FS is used to forecast the FTS. Then,
if necessary, the FTS is defuzzified. As a result, we obtain crisp forecasts.

Note that the presented stages are mutually dependent. The construction of
the forecasting model used at Stage 2 depends on how the TS approximation in
Stage 1 is made. The partitioning and fuzzification of TS substantially influence
the possibility of creating an effective fuzzy system. Besides, the fuzzy system
constructed in Stage 2 affects the accuracy of forecasts produced at Stage 3.

It is worth mentioning that the efforts of researchers are usually focused
on improving a particular, selected stage of the above procedure. This leads,
however, to the necessary adaptation of the other parts of the described
process.

This paper proposes an amendment of both the first and second stages of
the FS-based forecasting approach. At first, we improve the partitioning and
the fuzzification of the TS. We propose to use the principle of justified gran-
ularity to optimize the construction of fuzzy sets. Then, on that basis, we
construct intuitionistic fuzzy sets. As a result, we obtain intuitionistic fuzzy
time series (IFTS) that are later subject to forecasting. Accordingly, instead of
using FTS, we apply the optimized IFTS to construct an intuitionistic fuzzy
system used in Stage 2 of the considered approach. Moreover, by complement-
ing that system with a neural network, we improve its effectiveness for TS
forecasting.

There have been several attempts to incorporate the additional uncertainty
into FTS models (Gaxiola et al, 2014; Luo et al, 2019; Eyoh et al, 2018) in order
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to improve their inference capability and robustness to noise. However, as far
as we know, the proposed neural intuitionistic fuzzy system with the justified
granularity is the first extension of FTS forecasting models that considers the
volatility in the TS data in Stage 1. In addition, intuitionistic fuzzy opera-
tors are exploited to obtain the firing weights of if-then rules and a weighted
average method intuitionistic fuzzy sets is used to defuzzify the outcome of
the proposed neural intuitionistic fuzzy system of Takagi-Sugeno-Kang (TSK)
type. In the earlier version of this paper (Hajek et al, 2021), we argued that the
main limitation of the used fuzzy clustering approach is that no if-then rules
were matched for many observations due to the high volatility in the TS data.
To address this issue, here we replace the fuzzy clustering algorithm with fuzzy
association rules for rule generation. The gradient descent algorithm is used to
train the neural intuitionistic fuzzy system. High accuracy and computational
efficiency are achieved by learning both the consequent parameters of the if-
then rules and the parameters of fuzzy sets. In summary, the contributions of
this study are threefold:

• A novel neural intuitionistic fuzzy system utilizing intuitionistic fuzzy sets
and justified granularity is proposed. Different from the existing TS forecast-
ing models, this extension of a neural fuzzy systems preserves the semantics
of fuzzy sets while considering the TS characteristics to assign the the
membership and non-membership degrees to TS elements.

• For the first time, the architecture of neural intuitionistic fuzzy system for
IFTS forecasting is developed. To this end, intuitionistic fuzzy operators
are proposed to process the information in terms of membership and non-
membership degrees. To ensure a high level of TS coverage and sufficient
complexity of the architecture, fuzzy association rules are generated.

• To demonstrate the performance of the neural intuitionistic fuzzy system,
several sets of experiments are conducted to forecast precious metal prices,
which are known to be highly volatile. As far as we know, this is the first
time that a generalization of a neural fuzzy system is applied to metal price
forecasting.

The remainder of this paper is organized as follows. Based on the literature
review given in Section 2, we motivate the research presented in this paper. In
Section 3, which covers the theoretical background, we formalize the addressed
problem and present all the elements known from the literature that we later
use for the construction of the proposed model. Section 4 outlines the proposed
TS forecasting approach. Section 5 provides experimental evidence for the high
competitiveness of the proposed model. Section 6 concludes the paper.

2 Related work
As indicated in the introduction, the FS-based approach to forecasting consists
of three stages. The literature review presented in this section is focused on
two key stages, namely (1) TS approximation and (2) construction of FSs.
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2.1 Approximation of time series
The approximation of TS, which is the first stage of the FS-based approach,
was addressed in numerous papers. For the partitioning of TS in the time
domain, the equal-sized intervals were predominantly used (Yu and Huarng,
2010; Bisht and Kumar, 2016). This assumes however uniform distribution
of data over the universe of discourse, which rarely occurs in reality. Con-
sequently, the fuzzy sets constructed over the equal-sized intervals do not
represent the underlying data well (Bose and Mali, 2019).

For that reason, to optimize the parameters of fuzzy sets distributed
non-uniformly over the universe of discourse, diverse optimization methods
were used, including clustering-based methods that provided a good trade-off
between computational demand and forecasting accuracy (Roy, 2016; Bose and
Mali, 2018; Bougoudis et al, 2018). Evolutionary algorithms were also used
for this task due to their capacity to find the optimal global solution (Bas
et al, 2018). The disadvantage may be their computational requirements and
susceptibility to overfitting.

To handle the uncertainty in the TS data and improve forecasting perfor-
mance, the TS space can be divided into information granules representing
semantically sound entities (Lu et al, 2014). Different granular spaces were
used in the literature to produce high forecasting accuracy in multi-factor FTS
models (Deng et al, 2016; Singh and Dhiman, 2018). A time-dependent fuzzy
information granule was proposed by Yang et al (2017) for effective long-term
TS forecasting. However, either evolutionary algorithms are used to optimize
the parameters of generated fuzzy sets, or fuzzy systems must be trained to
achieve high accuracy.

It should be noted that the above methods are not capable of modeling
the dynamic behavior of TS. To address this issue, we propose a novel TS
approximation method combining (1) data partitioning based on the concept
of justified granularity to produce the parameters of unequal-sized intervals
and (2) fuzzification of intuitionistic fuzzy sets by exploiting the variance in
the TS data.

2.2 Construction of fuzzy systems
For FTS forecasting, it is necessary to determine fuzzy logic relationships
between their previous and forecasted values. This is done using historical TS
data (Bose and Mali, 2019). Conventional FTS methods based on fuzzy rela-
tionship matrices (Song and Chissom, 1993) have been extended to improve
forecasting performance. For example, exponential FTS were introduced to
replace conventional FTS in order to assign a larger weight to recent TS
observations (Talarposhti et al, 2016). This idea was shown to be useful for
forecasting stock market indexes as more recent changes are more important to
stock market investors. Fuzzy empirical probabilities were introduced into the
FTS model to exploit probabilistic and fuzzy uncertainties in financial TS pat-
terns (de Lima Silva et al, 2019). A trend weighting function was incorporated
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into the FTS two-factor model to improve the forecasting performance (Kumar
et al, 2019). Moreover, for the same purpose, fuzzy sets were extended using
hesitant fuzzy sets (Bisht and Kumar, 2016, 2019) and probabilistic fuzzy
sets (Gupta and Kumar, 2019) in FTS forecasting models.

The main disadvantage of these fuzzy logic relationship-based models is
their poor generalization capacity, often leading to inaccurate out-of-sample
forecasts. Moreover, it is difficult to find matched fuzzy logic relationships and,
therefore, reliable predictions cannot be performed for these observations (Li
and Yu, 2020). To overcome these problems, neural networks were integrated
with FTS models to learn the nonlinear relationships from the underlying data.

To obtain the set of fuzzy logic relationships, neural networks were trained
to predict the consequences of the relationships by using the index numbers
of fuzzy sets of the antecedents in the high-order FTS model (Chen, 2014;
Egrioglu et al, 2009). Similarly, index numbers were replaced by the central
values of fuzzy sets, and a neural network was used to to defuzzify the FTS
data (Singh and Borah, 2013). In other studies, membership values were used
to feed neural networks calculating fuzzy logic relationships (Yu and Huarng,
2010; Yolcu et al, 2016). Support vector regression was also used to compute
unrecognized high-order fuzzy logic relationships from the stock market TS
data (Wu et al, 2021). Alternatively, hybrid neural fuzzy models were used
to learn the relationships, using an if-then rule-based inference mechanism to
generate defuzzified forecasts. Adaptive neuro-fuzzy inference system (ANFIS)
represents the most widely applied hybrid model integrating fuzzy inference
systems and neural networks. In ANFIS, the antecedents of if-then rules are
given in advance, and a neural network is employed to learn the rule conse-
quents that are represented by fuzzy sets (in the Mamdani fuzzy inference
system) (Gaxiola et al, 2014) or by linear functions (in the Takagi-Sugeno-Kang
(TSK) fuzzy inference system) (Peng et al, 2015; Su and Cheng, 2016).

To incorporate the additional uncertainty present in many real-life TS
data, several extensions of fuzzy inference systems were developed. A type-2
fuzzy inference system incorporating the footprint of uncertainty was applied
by Gaxiola et al (2014) to calculate the type-2 fuzzy weights in a neural net-
work, which significantly enhanced its robustness to TS noise. To reduce the
over-fitting problem of single forecasting models, ensembles of neural inter-
val type-2 fuzzy systems were proposed for TS prediction (Soto et al, 2018).
By introducing intuitionistic fuzzy sets into the interval type-2 fuzzy infer-
ence system, its inference capability was improved by enriching the reasoning
information (Luo et al, 2019; Eyoh et al, 2018).

Existing neural fuzzy models for FTS forecasting are compared in Table
1. The main disadvantage of the neural fuzzy models is that only static mem-
bership functions have been considered in the partitioning and fuzzification
process. In other words, even though the degree of hesitancy was taken into
account in the fuzzification process by using type-2 (intuitionistic) fuzzy sets,
volatility in the TS data was neglected. In fact, the clustering-based and dis-
cretization methods used in previous neural fuzzy models were not designed
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originally for the estimation of type-2 or intuitionistic fuzzy sets. Moreover,
they are based only on data density without preserving semantics of fuzzy sets.
To overcome these disadvantages, the principle of justifiable granularity is pro-
posed in this study to reflect both the data coverage and semantics of fuzzy sets
by maintaining an acceptable degree of specificity. In addition, unlike existing
models, the proposed fuzzification process allows us to effectively model the
variance in TS data. Motivated by the applications of intuitionistic fuzzy sets in
FTS forecasting, we propose a neural intuitionistic fuzzy system that not only
overcomes the above problems but also retains the computational efficiency
and interpretability of its rule base by generating it using fuzzy association
rules.

Table 1 Comparison of neural fuzzy models for FTS forecasting.

Study Fuzzy set NN (learning) Partitioning and fuzzif. Defuzzif. Fuzzy system

Egrioglu et al (2009) FS MLP (BP) equal-sized WA FLR
Yu and Huarng (2010) FS MLP (BP) equal-sized WA FLR
Singh and Borah (2013) FS MLP (BP) RD WA FLR
Chen (2014) FS MLP (BP) EBD MPI FLR
Gaxiola et al (2014) T2FS MLP (BP) equal-sized WA Mamdani FRBS
Peng et al (2015) FS MLP (BP) increment. clust. WA TSK FRBS
Yolcu et al (2016) FS MLP (BP) fuzzy c-means WA FLR
Su and Cheng (2016) FS MLP (BP) subtract. clust. WA TSK FRBS
Singh (2017) FS MLP (BP) EBD WA FLR
Bas et al (2018) FS Pi-Sigma (PSO) equal-sized MPI FLR
Soto et al (2018) T2FS MLP (BP) PSO WA TSK T2FRBS
Eyoh et al (2018) T2IFS MLP (BP) equal-sized WA TSK T2IFRBS
Luo et al (2019) T2IFS RNN (EKF) density clust. WA TSK T2IFRBS

this study IFS MLP (BP) PJG IFWA TSK IFRBS

Legend: BP - backpropagation algorithm, EBD - entropy-based discretizazion, EKF - extended Kalman filter, FLR
- fuzzy logic relationship, FRBS - fuzzy rule-based system, FS - fuzzy set, IFWA - intuitionistic fuzzy weighted
average, MLP - multilayer perceptron, MPI - middle point of interval, NN - neural network PJG - principle of
justified granularity, PSO - particle swarm optimization, RD - re-partitioning discretization, RNN - recurrent NN,
T2IFS - type-2 intuitionistic fuzzy set, TSK - Takagi-Sugeno-Kang, WA - weighted average.

3 Background
As mentioned in the introduction, in this paper, we address a problem of TS
forecasting which we formalize as follows.

3.1 Time series forecasting - problem formulation
Let T = {0, 1, ..., n} be a discrete time scale of the length n ∈ N. For each
t ∈ T , we define a vector of crisp variables Xt =< xt(0), xt(1), ..., xt(m) >,
where m + 1 ∈ N is the length of that vector. Variables xt(i) ∈ R are called
predictors, regressors, independent or explanatory variables (Hyndman and
Athanasopoulos, 2018). The set of vectors Xt collected over time forms a
multivariate TS {Xt}.

Assume yt ∈ R is a distinguished crisp variable called a forecast variable,
regressand, dependent or explained variable (Hyndman and Athanasopoulos,
2018). The goal of TS forecasting is to find a forecasting model M representing
the relationship between Xt and yt enabling to calculate the forecast ŷt+1 =
M({Xt}). In this case, M is called a regression model.



Springer Nature 2021 LATEX template

Article Title 7

As the model M is induced from historical data, it is usually not perfect.
It means the values of ŷt+1 differ from real-world observations yt+1.

The forecasting error measured at time t is calculated as et+1 = ŷt+1−yt+1

(Shmueli (2011)). For a longer forecasting horizon h > 1, a mean percentage
error (MAPE) is calculated by the formula (1).

MAPE =
1

h

h∑
t=1

| e
t+1

yt+1
| (1)

The root mean square error (RMSE) is calculated by formula (2).

RMSE =

√√√√ 1

h

h∑
t=1

(et+1)2 (2)

3.2 Fuzzy sets and intuitionistic fuzzy sets
Let us assume an element x from the universe of discourse X belongs to a
fuzzy set F in the degree µF . The fuzzy set is defined by formula (3).

F = {⟨x, µF ⟩x ∈ X} (3)
For the purpose of this paper, we assume that the fuzzy set is represented

by a triangular membership function:

µ(x) = max(min(
x− a

b− a
,
c− x

c− b
), 0), (4)

where a and c locate the feet of the membership function, and b defines its
peak.

An intuitionistic fuzzy set A is complemented by a non-membership degree
(Atanassov, 1999) of the element x and is defined by formula (5).

A = {⟨x, µA(x), νA(x)⟩x ∈ X} (5)
It holds that 0 ≤ µA(x) ≤ 1, 0 ≤ νA(x) ≤ 1 and 0 ≤ µA(x) + νA(x) ≤ 1.

The hesitation degree πA(x) is calculated as πA(x) = 1− µA(x)− νA(x).

3.3 Principle of justifiable granularity
To optimize the fuzzy membership functions used in the proposed fuzzy
system, we use the principle of justified granularity (PJG).

The PJG was originally proposed to optimize the construction of an infor-
mation granule (Pedrycz and Vukovich, 2001). Let us go into detail about that
technique.

Let x ∈ [xmin, xmax] be a real-valued variable, where xmin, xmax are its
lower and upper bounds, respectively. We form in the interval [xmin, xmax] a
parametrized triangular fuzzy number F . Its membership function is denoted
as µF (x; m, a, b) with the parameters a, b standing for its bounds, and m
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(a < m < b) as its modal value, i.e., µF (x; m, a, b) = 1. We assume that m is
calculated as the median (Pedrycz and Homenda, 2013).

We fit F to the observations of the variable x ∈ [xmin, xmax]. For this pur-
pose, we optimize the parameters a and b of F (x; m, a, b). First, we decompose
X(x; m, a, b) to two linear functions. For a ≤ x ≤ m, we have the left-hand
side of the membership function:

X(x; m, a) =
1

m− a
· x− a

m− a
. (6)

For m ≤ x ≤ b, the right-hand side of the membership function is
accordingly defined:

X(x; m, b) =
1

m− b
· x− b

m− b
(7)

To optimize X two conflict requirements, namely coverage and specificity,
are considered.

We define the coverage of X in the interval [a, b] by formulas (8) and (9) for
the left-hand and right-hand sides of the membership function, respectively:

cov([a,m]) =
∑

x∈[a,m]

X(x; m, a), (8)

cov([m, b]) =
∑

x∈[m,b]

X(x; m, b). (9)

The specificity measures the amount of information contained in a fuzzy
subset. The specificity also evaluates the degree to which a fuzzy subset points
to one element as its member. An increase in the specificity of information
tends to increase the usefulness of the information (Yager, 1998). For example,
in the case of a numeric interval, the inverse of the length of this interval can
serve as a sound measure of specificity. The shorter the interval, the better
the satisfaction of the specificity requirement (Wang et al, 2014; Pedrycz et al,
2014).

When it comes to a triangular fuzzy set A, the specificity measure is deter-
mined by considering the specificity of a certain a-cut of the fuzzy set and then
integrating the corresponding partial results. For X(x; m, a) we have:

sp([a,m]) = 1− 0.5 · |m− a|
|m− xmin|

. (10)

Accordingly for X(x; m, b) we have:

sp([m, b]) = 1− 0.5 · |b−m|
|xmax −m|

. (11)

To optimize the coverage and specificity of the fuzzy granule, the perfor-
mance index Q is defined separately for both sides of the membership function.
Formulas (12) and (13) are used for this purpose:

Q(a) = cov([a,m]) · sp([a,m)], (12)
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Fig. 1 A conceptual framework of the proposed IFTS forecasting model.

Q(b) = cov([m, b]) · sp([m, b)]. (13)
The bounds a, b of the granule are optimized to find the trade-off between

the coverage and specificity of the granule. The optimization results in the
following expressions:

aopt = argmaxa Q(a), (14)

bopt = argmaxb Q(b). (15)

3.4 Takagi-Sugeno-Kang fuzzy inference system
The approach proposed in this paper is based on the fuzzy inference system of
TSK type, which consists of if-then rules of the first order. The j-th rule Rj ,
j = 1, 2, . . . , N , can be defined as follows:

Rj : if xt
1 is A1,j and xt

2 is A2,j and . . . and xt
i is Ai,j and . . . and

xt
n is An,jthen yt+h

j = a0,j + a1,jx
t
1 + · · ·+ ai,jx

t
i + · · ·+ an,jx

t
n,

(16)

where Ai,j is antecedent intuitionistic fuzzy set for the i-th input attribute
xt
i and j-th rule Rj , yt+h

j is the predicted output for the j-th rule, h is
the forecasting horizon, and a0,j , a1,j , . . . , ai,j , . . . , an,j are the consequent
parameters.

4 Neural Intuitionistic Fuzzy System
As depicted in Fig. 1, the concept of the proposed IFTS forecasting model
comprises three stages: (1) approximation of TS using intuitionistic fuzzy sets,
(2) construction of a neural intuitionistic fuzzy system of TSK type, and
(3) defuzzification of forecasted values using the intuitionistic fuzzy weighted
average (IFWA) operator.
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4.1 Partitioning and fuzzification of time series
In the first stage of the proposed approach, we partition and fuzzify the con-
sidered TS. The proposed method for approximating TS includes the following
steps:

Step 1. Following previous studies (Bisht and Kumar, 2016; Gupta and
Kumar, 2019), the universe of discourse is defined using standard deviation
U = [Dmin−σ,Dmax+σ], where Dmin, Dmax and σ are minimum, maximum,
and standard deviation of the TS data in the training set.

Step 2. According to the Principle of Justified Granularity, we calculate the
modal value m, minimum xmin and maximum xmin of the TS from the kth time
interval t ∈ [(k−1)·w, k·w]. Then an interval [xmin, xmax] within the universe of
discourse (amplitude or the change of amplitude) is created. Over this interval,
a fuzzy triangular number Xk is constructed with the membership function
Xk(x; a,m, b), where the parameters a and b are subject to optimization.

Initially, they are assumed as a = xmin and b = xmax, then they are
optimized using the function of coverage (8),(9), specificity (10),(11), and
optimization indexes (12),(13) given in Section 3.3.

As a result, the parameters of the granule are optimized as a = aopt and
b = bopt (see formulas (14) and (15)). Thus, the resulting, optimized triangular
membership function is obtained as Xk(x; aopt,m, bopt).

Step 3. Fuzzify TS data using the optimized triangular membership func-
tions from Step 2. To perform the fuzzification of intuitionistic fuzzy sets, we
employ the fuzzification method developed by Hajek et al (2020) and calculate
the membership and non-membership degree for the considered TS as follows:

µA(x
t
i) = µ(xt

i)× (1− δD), (17)

νA(x
t
i) = 1− µ(xt

i)× (1− δD)− δD, where: (18)

D = (max(µ(xt
i), µ(x

t−1
i ), . . . , µ(xt−4

i ))−min(µ(xt
i), µ(x

t−1
i ), . . . ,

µ(xt−4
i )))

(19)

and δ is set to 1 in agreement with Hajek et al (2020). Hence, intuitionistic
fuzzy sets are given as A = {⟨xt

i, µA(x
t
i), νA(x

t
i)⟩xt

i ∈ Xi}, where Xi is the
universe of discourse for the i-th input attribute. Note that in our case, the
fuzzification parameter D considers the volatility of the last five observations
in the TS (xt

i, x
t−1
i , . . . , xt−4

i ) but its calculation can be tailored to the specific
forecasting problem.

4.2 Construction of the fuzzy system
To generate the if-then rules for the fuzzy inference system of TSK type defined
by formula (16), we extract fuzzy association rules using the extended Apriori
algorithm (Chen and Wei, 2002). To model the linguistic labels in the fuzzy
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association rules, we use the triangular membership functions obtained using
the Principle of Justified Granularity in Step 2 of the TS approximation pro-
cess. The if-then rules are generated from the frequent itemsets based on the
pre-defined minimum support and confidence. Only those rules are considered
in which the forecasted attribute under study represented the rule consequent.

4.3 Forecasting and defuzzification
In this step, the parameters of membership functions aopt,m, bopt and conse-
quent parameters a0,j , a1,j , . . . , an,j of the if-then rules are adapted using the
gradient descent algorithm due to its stable convergence (Eyoh et al, 2018;
Hajek and Olej, 2017). The algorithm for updating the above parameters can
be defined as follows:

wi+1 = wi−η∇θJ
(
wi; x

(t); y(t+h)
)
, (20)

where w is the updated parameter of the neural intuitionistic fuzzy system
w = {aopt,m, bopt, a0,j , a1,j , . . . , an,j}, η denotes learning rate, i is the itera-
tion index, J is the objective function (root mean square error (RMSE)), and
x(t) and y(t+h) represent the input and output for the t-th TS observation,
respectively.

Recall that the outputs of the if-then rules are calculated as yt+h
j = a0,j +

a1,jx
t
1 + · · ·+ ai,jx

t
i + · · ·+ an,jx

t
n. To obtain the defuzzified forecast yt+h

IFWA,
the weighted average of the outputs is calculated in the following steps. First,
the firing weight wj is obtained for the j-th rule Rj using the Gödel t-norm
operators defined in the following way (Angelov, 1995):

wµ
j = min

j=1,2,...,N
(µA(x

t
1), µA(x

t
2), . . . , µA(x

t
n)), (21)

wν
j = max

j=1,2,...,N
(νA(x

t
1), νA(x

t
2), . . . , νA(x

t
n)), (22)

wj = wµ
j − wν

j , (23)
where wµ

j and wν
j are the membership and non-membership degrees of the firing

weight wj , respectively. It is worth noting that only those rules are considered
for which the firing weights are positive. Their acceptance degree is higher
than their non-acceptance degree. The firing weights wj are transformed to
the normalized values wnorm

j .
Then, the IFWA operator is applied to calculate the defuzzified output of

the neural intuitionistic fuzzy system as follows:

yt+h
IFWA =

∑N
j=1 y

t+h
j wnorm

j∑N
j=1 w

norm
j

. (24)
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Fig. 2 Architecture of neural intuitionistic fuzzy system for IFTS forecasting.

4.4 Architecture of neural intuitionistic fuzzy system for
time series forecasting

The proposed five-layered architecture of neural intuitionistic fuzzy system for
IFTS forecasting is outlined in Fig. 2. Detailed operation of each layer is as
follows.

Input layer : Layer 1 is designed to pass the crisp input attributes
xt
1, x

t
2, . . . , x

t
n to the fuzzification layer.

Fuzzification layer : Each neuron in Layer 2 represents an antecedent intu-
itionistic fuzzy set. For the i-th input attribute xt

i, M intuitionistic fuzzy sets
are constructed Ai,1, Ai,2, . . . , Ai,M . Specifically, the PJG is first used to opti-
mize information granules in terms of triangular fuzzy sets. Then, intutionistic
fuzzy sets are obtained using the fuzzification method in formulas (17) and
(18).

Rule layer : For each rule R1, R2, . . . , RN (defined in formula (16)), there
is a neuron in Layer 3 whose output is the firing weight wj calculated using
formula (23).

Consequent layer : In Layer 4, neurons represent the outputs of the
rules yt+h

j , which are calculated as the weighted sums of the crisp input
attributes xt

1, x
t
2, . . . , x

t
n with consequent parameters a0,j , a1,j , . . . , an,j used as

the weights.
Defuzzification layer : The neuron in Layer 5 represents the final defuzzified

output yt+h obtained using the IFWA operator in formula (24).
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5 Model Validation
In this section, we validate the proposed neural intuitionistic fuzzy system for
TS forecasting of precious metal prices. Precious metals are not only considered
an investment and a store of value, but they are also increasingly used as
industrial commodities. For this reason, price fluctuations in the precious metal
market have been increasingly volatile, which is generally considered harmful,
as it entails uncertainty about future prices and translates into the volatility of
material costs. This is also why the forecasting of precious metals has attracted
broad interest in recent years (Du et al, 2020; Salisu et al, 2020).

5.1 An illustrative example of univariate time series
forecasting

To illustrate each step of the proposed neural intuitionistic fuzzy system, the
forecasting model is used to predict the daily gold price in January 2017.

Step 1. The universe of discourse is given as U = [1162.39, 1230.26], where
Dmin = 1175.85, Dmax = 1216.80 and σ = 13.46.

Step 2. First, a sequence of three information granules is produced {Xk} =
{X1, X2, X3}, as shown in Table 2. Then, the parameters a and b of the
fuzzy triangular numbers Xk(x; aopt,m, bopt) are obtained using formulas (14)
and (15) (Table 3), and linguistic terms are assigned to the fuzzy triangular
numbers.

Table 2 Sequence of granules for gold price time series.

t granule gold price t granule gold price t granule gold price

1 1 1175.85 6 2 1190.35 11 3 1200.55
2 1 1178.50 7 2 1203.00 12 3 1212.85
3 1 1189.50 8 2 1216.05 13 3 1260.80
4 1 1178.55 9 2 1214.75 14 3 1195.00
5 1 1205.05 10 2 1196.05 15 3 1189.70

Table 3 Parameters of fuzzy triangular numbers.

fuzzy number aopt m bopt linguistic term

X1 1178.50 1178.55 1205.05 low
X2 1190.35 1203.00 1214.75 high
X3 1189.70 1200.55 1212.85 medium

Step 3. Pairs of membership and non-membership degrees [µA(x
t), νA(xt)]

are obtained as the result of fuzzification of intuitionistic fuzzy sets (formulas
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(17) and (18)), as shown in Table 4. For example, [µlow(x
9), νlow(x

9)] = [0.34×
(1− (0.55− 0.00)), 1− 0.34× (1− (0.55− 0.00))− (0.55− 0.00)] = [0.15, 0.29].

Table 4 Intuitionistic fuzzy sets.

t low medium high t low medium high

5 [0.00,0.00] [0.02,0.34] [0.00,0.17] 11 [0.00,0.66] [0.00,0.00] [0.03,0.16]
6 [0.00,0.00] [0.16,0.04] [0.00,0.00] 12 [0.00,0.66] [0.00,0.00] [0.00,0.19]
7 [0.00,0.00] [0.00,0.20] [0.00,0.00] 13 [0.24,0.39] [0.00,0.00] [0.07,0.12]
8 [0.00,0.45] [0.00,0.20] [0.00,0.00] 14 [0.24,0.18] [0.00,0.00] [0.00,0.19]
9 [0.15,0.29] [0.12,0.08] [0.00,0.00] 15 [0.18,0.06] [0.00,0.51] [0.00,0.63]
10 [0.11,0.55] [0.00,0.00] [0.00,0.00]

Step 4. Three rules can be defined as follows:

R1 : if xt
1 is low then yt+1

1 = a0,1 + a1,1x
t
1, (25)

R2 : if xt
1 is medium then yt+1

2 = a0,2 + a1,2x
t
1, (26)

R3 : if xt
1 is high then yt+1

3 = a0,3 + a1,3x
t
1. (27)

Step 5. Neural network is trained for one-day-ahead forecasting. For the
given data, there is one neuron in the input layer and one neuron in the
output defuzzification layer. The number of neurons in the fuzzification layer
is set to three (i.e., the number of intuitionistic fuzzy sets), three neurons
in the if-then rules layer represent the three rules, and three neurons in the
consequent layer represent the consequents of the three rules. The trained
consequent parameters are a0,1 = 0.00083, a1,1 = 0.996, a0,2 = 0.00085, a1,2 =
0.997, a0,3 = 0.00084, a1,3 = 1.005. The defuzzified outputs are presented in
Table 5, and the RMSE for the given training data is 11.82.

Table 5 Defuzzified forecasts.

t y
t+1
1 y

t+1
2 y

t+1
3 y

t+1
IFWA

t y
t+1
1 y

t+1
2 y

t+1
3 y

t+1
IFWA

5 1199.92 1211.54 1201.86 1204.44 11 1195.44 1207.01 1197.37 1199.94
6 1185.28 1196.76 1187.20 1187.20 12 1207.69 1219.38 1209.64 1212.23
7 1197.88 1209.47 1199.81 1202.39 13 1211.62 1223.35 1213.58 1216.18
8 1210.87 1222.59 1212.83 1215.43 14 1189.91 1201.43 1191.83 1189.91
9 1209.58 1221.29 1211.53 1211.53 15 1184.63 1196.10 1186.55 1184.63
10 1190.96 1202.49 1192.88 1195.44

5.2 Experimental setup for multivariate forecasting of
precious metal prices

Accurate forecasting models are critical to the decision-making of investors
and mining companies and are important to the efficient functioning of com-
modity markets. Forecasting real-world precious metal prices is a complex task
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Fig. 3 The daily metal prices from January 1, 2007 to December 31, 2017.

where various factors need to be accounted for. The prices are often influenced
by changes in the global economy, oil price, current exchange rates and other
factors, so they often fluctuate and vary considerably (Liu et al, 2020; Hajek
and Novotny, 2022). Consistent with this stream of research, multivariate
forecasting of precious metal prices was investigated in this study.

The closing prices of five major precious metals were used in this study,
namely gold, silver, palladium, platinum, and rhodium. The daily metal prices
TS data were collected from January 1, 2007 to December 31, 2017, covering
3,949 trading days (daily observations). More precisely, daily spot prices in
USD per ounce were obtained from the Kitco database1. The price TS of gold,
silver, palladium, platinum, and rhodium are illustrated in Fig. 3.

To evaluate the performance of the proposed neural intuitionistic fuzzy
system, two forecasting horizons were considered for the metal prices, leading
to two datasets, one for the one-day-ahead (daily) forecasting, and the other
for the five-day-ahead (weekly) forecasting. Sequential validation was applied
by partitioning the data into the training data immediately followed by the
testing data in ratio 9:1 in agreement with previous studies (Wang et al, 2019;
Livieris et al, 2020). This is, the first 3,554 observations were used as training
data, and the following 395 observations were used for model testing.

In this set of experiments, we adopted the multivariate approach used in
earlier studies (Kristjanpoller and Hernández, 2017; Jabeur et al, 2021) and
considered the technical indicators of respective metal prices, the exchange
rate of US Dollar to Chinese Yuan (USDCNY), previous Brent crude oil price
(BRN), and news sentiment indicators as input attributes. More precisely, 20-
day technical indicators were calculated, and three types of indicators were
included: (1) trend-type indicator (an exponential moving average (EMA)),

1https://www.kitco.com/
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(2) oscillator-type indicator (relative strength index (RSI)), and volatility-type
indicator (rate of change (ROC)). These indicators are defined as follows:

EMAt =
2

21
(SMAt − EMAt−1) + EMAt−1, (28)

RSIt = 100− 100

1 +RS
,ROCt =

Pt − Pt−20

Pt−20
× 100, (29)

where SMAt is 20-day simple moving average at day t, RS is the ratio of the
smoothed average of 20-day upward / downward ROC, and Pt is the metal
price at day t. Earlier research has indeed uncovered some compelling evidence
that trading strategies based on technical indicators can be used to achieve
abnormal returns in metal commodity markets (Narayan et al, 2015).

The previous day’s closing prices of BRN and USDCNY were used and
their respective data were collected from the MarketWatch database. Hence,
the effects of other commodity (oil) market and foreign exchange market were
considered. To incorporate the information effects on precious metal prices,
the intensity of positive and negative news sentiment was obtained using Sen-
tiWordNet (publicly available at https://github.com/aesuli/SentiWordNet).
The headlines of news articles related to metals for the respective period
2007-2017 were collected using the Thomson Reuters newswire service. In
total, 266,165 headlines were collected, and the mean values of SentiWord-
Net sentiment indicators were calculated for each day. The detailed statistical
description of the experimental datasets is presented in Table 6.

Table 6 Descriptive statistics on attributes.

Attribute Mean Min. Max. Std.Dev.

gold price 1,213.9 608.4 1,895.0 287.9
EMAgold 1,213.8 612.7 1,821.4 290.9
RSIgold 54.9 0.0 100.0 33.2
ROCgold 0.43 -19.41 19.41 4.23

silver price 20.26 8.79 48.58 7.34
EMAsilver 20.26 9.34 43.19 7.33
RSIsilver 51.6 0.0 100.0 33.1
ROCsilver 0.31 -100.00 24.92 8.20

palladium price 601.2 170.0 1,071.0 205.6
EMApalladium 599.9 174.7 1,032.9 204.3
RSIpalladium 56.1 0.0 100.0 32.6
ROCpalladium 0.73 -100.00 36.74 8.15

platinum price 1,354.2 787.2 2,276.1 311.7
EMAplatinum 1,354.9 808.1 2,102.9 311.7
RSIplatinum 52.1 0.0 100.0 34.4
ROCplatinum -0.04 -100.00 24.52 6.60

rhodium price 2,279.3 625.0 10,100.0 2,224.3
EMArhodium 2,284.0 625.5 9,826.2 2,205.9
RSIrhodium 44.9 0.0 100.0 38.6
ROCrhodium -0.28 -100.00 44.40 9.28

BRN 82.0 27.8 146.1 26.8
USDCNY 6.62 6.04 7.81 0.42
SentiWordNetpos 0.23 0.00 1.83 0.10
SentiWordNetneg -0.22 -1.46 0.00 0.11
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To demonstrate the forecasting efficiency of the proposed neural intuition-
istic fuzzy system, the following state-of-the-art neural fuzzy models were
considered:

• IFNN-TS (intuitionistic fuzzy neural network for TS forecasting) (Hajek
et al, 2021), an earlier version of the neural intuitionistic fuzzy system.
The parameters of the membership functions and rule antecedents of the
IFNN-TS system were set using the subtractive clustering algorithm and the
consequent parameters of the if-then rules were adapted using the gradient
descent algorithm.

• ANFIS-GA (ANFIS trained using a genetic algorithm) (Alameer et al, 2019),
with the membership functions and rule base initialized using the subtractive
clustering algorithm with the same settings as in IFNN-TS and trained using
the GA with the parameters adopted from Alameer et al (2019).

• INFN-PSO (intuitionistic neuro-fuzzy network trained using particle swarm
optimization) (Hajek and Olej, 2017), with the parameters of the model
initialized using the subtractive clustering algorithm and trained following
the settings recommended in Hajek and Olej (2017).

• IT2FLS-EKM (interval type-2 fuzzy logic system with the enhanced Karnik-
Mendel algorithm) (Wu and Mendel, 2009), generated in the Matlab Fuzzy
Logic Toolbox as the interval type-2 TSK fuzzy inference system and tuned
using the gradient descent algorithm.

For all the above methods, three settings were examined with N = {3, 5, 7}
rules and antecedent fuzzy sets / intuitionistic fuzzy sets / interval type-2
fuzzy sets. All the experiments with these methods were carried out in the
Matlab Fuzzy Logic Toolbox in Matlab R2020a. In all experiments, we used the
gradient descent algorithm (with 100 iterations and the learning rate η = 0.01)
to train the neural intuitionistic fuzzy system and other neural fuzzy models.

We also compared the performance of the proposed model with several
state-of-the-art models used in previous studies for metal price forecasting:

• ES (exponential smoothing) (Hassani et al, 2015), adopting the triple ES
(Holt-Winters) model with smoothing factors of 0.2.

• ARIMA (autoregressive integrated moving average) (Lasheras et al, 2015),
using the ARIMA(1,1,0) model found by Lasheras et al (2015) using the
Hyndman and Khandakar algorithm.

• RF (random forest) (Liu and Li, 2017), trained using 100 random trees and
500 iterations.

• XGBoost (extreme gradient boosting) (Jabeur et al, 2021), using the
XGBoost regressor algorithm with gbtree booster, the learning rate of 0.05,
the number of estimators of 100, and a maximum depth of 5.

• MLP (multilayer perceptron) (Lasheras et al, 2015), a shallow NN model
with the settings adopted from Lasheras et al (2015) as follows: one hidden
layer of 24 sigmoidal neurons, the momentum of 0.5, and the learning rate
of 0.001.
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Fig. 4 Example of membership functions obtained using justified granularity.

• LSTM (long short-term memory) (Livieris et al, 2020), a deep NN model
with an LSTM layer of 200 neurons followed by a dense layer of 32 neurons
(the structure was adopted from Livieris et al (2020)) trained using the
stochastic gradient descent algorithm.

For the experiments with the remaining forecasting methods, we used the
implementations of machine learning methods in the Python library Scikit-
Learn 0.23.0.

In agreement with earlier related research (Liu et al, 2020; Du et al, 2020),
forecasting performance was evaluated using RMSE and mean absolute error
(MAE) on the testing data separately for the 1-day-ahead and 5-day-ahead
forecasting horizon. In addition, mean directional accuracy (MDA) was used to
evaluate the proposed system’s capacity to predict the correct forecast direc-
tion (upward or downward) and investigate the financial performance of the
constructed precious metals portfolio in terms of its return and risk.

5.3 Experimental results
In the first step, we defined the universe of discourse and partitioned it
using the Principle of Justified Granularity. Fig. 4 illustrates this process for
attribute EMAgold. In our experiments, we examined three settings of the
number of triangular membership functions M = {3, 5, 7}. We only present
the results for M=3 and M=5 membership functions because the performance
for M=7 deteriorated due to overfitting.

In the next step, the set of if-then rules was constructed using fuzzy asso-
ciation rules. Table 7 shows the number of fuzzy association rules produced
together with Ant (the average number of conditions in the antecedents of the
fuzzy association rules) and Conf (the average confidence of the fuzzy associ-
ation rules). The minimum confidence level was set to Conf=0.9. Regarding
the rule base interpretability, a higher number of rules were required only
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for rhodium and silver, indicating higher complexity of these datasets. Nev-
ertheless, the number of rule antecedents remained low across all precious
metals.

For illustration, the example of the constructed rule base for the gold price
(for M=3) was as follows:

R1 : if EMAt
gold is medium and USDCNY t is low then yt+1

1 is medium,

R2 : if EMAt
gold is low and USDCNY t is high then yt+1

2 is low,

. . .

R12 : if EMAt
gold is medium and ROCt

gold is low then yt+1
12 is medium.

Table 7 Generated fuzzy association rules.

M= 3 membership functions M=5 membership functions
Metal # rules N Ant Conf # rules N Ant Conf

gold 12 1.75 0.95 19 1.89 0.95
silver 19 1.42 0.95 43 2.09 0.96
palladium 11 1.64 0.98 8 1.38 0.99
platinum 15 2.00 0.98 14 1.64 0.97
rhodium 76 2.20 0.96 23 2.13 0.97

Experimental results in Table 8 show the effectiveness of the proposed
neural intuitionistic fuzzy system with justified granularity (NIFS-JG) by
comparing its performance against four neural fuzzy models and five other
benchmark TS forecasting models used previously for metal price prediction.
The results of the comparisons show that NIFS-JG was highly competitive
regarding all metal prices in terms of both forecasting horizons. Best perfor-
mance in terms of RMSE was achieved for one-day-ahead forecasting of gold,
and palladium prices, while the proposed model was superior for silver and
palladium in case of five-day-ahead forecasting. For most precious metals, the
NIFS-JG model also outperformed its earlier version IFNN-TS. The proposed
approach to data partitioning and construction of fuzzy systems also appears
to be effective compared with the traditional clustering method used in the
remaining neural fuzzy models. To be fair, we have to admit that the num-
ber of rules produced by the other models was lower than for NIFS-JG, as
M = N for the subtractive clustering algorithm. The results also show that
the proposed model was highly competitive compared with the state-of-the-art
models for metal price forecasting.

Obviously, the results in Fig. 5 also suggest that M=3 membership func-
tions was a preferable setting in terms of both forecasting accuracy and
interpretability at the fuzzy partition and rule base level (as compared with
NIFS-JG with M=5).

To illustrate the high accuracy achieved using the proposed model, Fig. 6
shows the actual vs. predicted metal prices on the testing data for one-day-
ahead forecasts.
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Fig. 5 Average RMSE for different numbers of membership functions.

Fig. 6 Actual vs. predicted metal prices for one-day-ahead forecasting.
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Table 8 Results of metal price forecasting (the best result is in bold).

NIFS-JG NIFS-JG IFNN-TS
M=3 M=5 M=3

Metal Forecast MAE RMSE MAE RMSE MAE RMSE
gold 1-day 6.656 9.671 10.127 13.127 6.687 9.689
gold 5-day 16.068 20.677 17.993 22.551 15.408 19.680
silver 1-day 0.222 0.298 0.259 0.329 0.155 0.223
silver 5-day 0.380 0.471 0.422 0.509 0.364 0.474
palladium 1-day 7.620 10.733 10.411 13.803 7.843 10.978
palladium 5-day 17.551 15.277 18.765 16.106 16.873 21.681
platinum 1-day 8.644 11.585 11.685 14.835 8.658 11.550
platinum 5-day 19.071 23.398 21.295 34.075 18.968 25.000
rhodium 1-day 16.856 28.621 10.808 21.737 16.766 23.574
rhodium 5-day 22.245 36.460 22.474 56.630 24.100 38.365

ANFIS-GA INFN-PSO IT2FLS-EKM
M=3 M=3 M=3

Metal Forecast MAE RMSE MAE RMSE MAE RMSE
gold 1-day 7.045 9.994 6.684 9.764 9.731 13.067
gold 5-day 16.980 21.335 16.058 20.497 18.011 22.820
silver 1-day 0.175 0.243 0.177 0.246 0.194 0.257
silver 5-day 0.461 0.602 0.369 0.483 0.379 0.502
palladium 1-day 7.976 10.997 7.792 10.811 7.993 10.917
palladium 5-day 19.306 24.697 17.611 22.643 17.365 22.480
platinum 1-day 8.635 11.579 9.670 12.536 9.698 12.800
platinum 5-day 21.537 27.881 19.340 25.186 19.468 25.430
rhodium 1-day 12.605 18.007 13.460 21.996 15.723 22.537
rhodium 5-day 33.144 47.137 22.204 36.562 24.543 39.459

ES ARIMA RF
Metal Forecast MAE RMSE MAE RMSE MAE RMSE
gold 1-day 16.092 20.665 9.949 12.538 11.434 14.933
gold 5-day 17.066 21.485 10.747 13.431 18.630 23.104
silver 1-day 0.376 0.471 0.305 0.377 0.239 0.311
silver 5-day 0.389 0.499 0.567 0.683 0.369 0.471
palladium 1-day 19.008 24.491 8.117 10.997 28.084 44.407
palladium 5-day 18.628 23.833 11.789 15.408 39.000 52.530
platinum 1-day 19.954 25.342 15.398 18.626 15.986 21.408
platinum 5-day 20.185 26.426 19.387 23.135 23.957 31.448
rhodium 1-day 19.948 32.646 35.700 46.425 100.64 126.57
rhodium 5-day 19.532 35.204 125.17 178.98 104.28 127.36

XGBoost MLP LSTM
Metal Forecast MAE RMSE MAE RMSE MAE RMSE
gold 1-day 9.890 12.651 10.936 13.697 23.845 26.618
gold 5-day 20.034 25.991 11.851 14.659 40.757 44.271
silver 1-day 0.175 0.238 0.422 0.484 0.331 0.386
silver 5-day 0.401 0.512 0.607 0.674 0.514 0.581
palladium 1-day 43.012 67.012 13.240 16.733 23.173 28.449
palladium 5-day 66.324 87.890 19.293 23.892 32.040 40.103
platinum 1-day 13.763 17.322 18.385 21.249 19.900 25.642
platinum 5-day 32.737 43.584 24.599 27.542 27.569 35.163
rhodium 1-day 22.660 28.273 56.930 67.615 65.726 87.358
rhodium 5-day 58.262 75.672 103.62 120.43 95.874 130.39

To evaluate the error performance of the models statistically, we carried
out a non-parametric Friedman test. The NIFS-JG model ranked on aver-
age as follows: 3.0 and 3.4 for MAE (one- and five-day-ahead forecasts), and
3.2 and 2.4 for RMSE. Significant differences were observed for the aver-
age ranks of the compared methods at p < 0.05, indicating significantly
different performance across the error measures and forecasting horizons.
Therefore, we performed the Holm–Bonferroni posthoc procedure to compare
the performance between the best model and the other compared models. For
the one-day-ahead forecasting, NIFS-JG performed significantly better than
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ES, ARIMA, RF, XGBoost, MLP, and LSTM at p < 0.05. For the five-
day-ahead forecasting, NIFS-JG significantly outperformed ANFIS-GA, RF,
XGBoost, MLP, and LSTM at p < 0.05. These results were consistent for both
performance measures.

In addition to MAE and RMSE, the performance of the NIFS-JG model
was evaluated in terms of MDA. Table 9 shows that NIFS-JG consistently
exceeded the baseline naïve benchmark (obtained using the majority class vot-
ing). The naïve benchmark indicates the class imbalance of downward and
upward movements in the data. Interestingly, the results suggest that the pro-
posed model is particularly effective in the case of highly unbalanced rhodium
datasets, implying its successful deployment also in periods of long-term metal
price increases/decreases. However, the naïve baseline was also surpassed for all
other precious metals, regardless of their upward or downward price volatility.

Table 9 Mean directional accuracy of metal price forecasting.

Metal Forecast NIFS-JG Naïve baseline
gold 1-day 65.13 64.05
gold 5-day 65.74 63.54
silver 1-day 60.41 57.97
silver 5-day 58.63 57.22
palladium 1-day 64.72 62.03
palladium 5-day 64.85 61.52
platinum 1-day 58.38 57.97
platinum 5-day 58.88 57.22
rhodium 1-day 95.81 81.27
rhodium 5-day 87.82 81.01

Correct forecast of upward/downward direction is important for generating
‘buy’, ‘hold’ and ‘sell’ signals. Therefore, we further investigated the finan-
cial performance (return and risk) of the precious metals portfolio constructed
based on the signals generated using the NIFS-JG-based trading strategy
(‘buy’ (‘hold’) signal for upward price forecast, and ‘sell’ signal for downward
price forecast). The closing metal prices were used for trading, and the weights
of the five metals in the portfolio were equal. Returns for individual precious
metal are presented in Fig. 7, showing that the trading strategy based on the
NIFS-JG forecasting signals outperformed the buy-and-hold (B&H) strategy
particularly in five-day-ahead forecasting. For the portfolio of the five precious
metals, we obtained an average return of 59.35% (for one-day-ahead forecast-
ing) and 68.78% (for five-day-ahead forecasting) for the testing period. The
forecasting-based trading strategy was more profitable than the traditional
buy-and-hold strategy (with an average daily return of 30.92% and a weekly
return 33.30%). However, it should be noted that our trading strategy was
associated with a higher portfolio risk (portfolio standard deviation). The stan-
dard deviation of returns was used to calculate the risk, obtaining σ = 7.52%
and σ = 7.80% for the one-day-ahead and five-day-ahead NIFS-JG forecasting
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Fig. 7 Daily and weekly returns of buy-and-hold (B&H) and NIFS-JG-based trading strate-
gies.

strategies, hence exceeding those for the buy-and-hold strategy (σ = 4.25%
and σ = 5.12%).

6 Conclusion
This study has developed an efficient forecasting model that incorporates intu-
itionistic fuzzy sets to consider uncertainty present in the TS volatility. First,
we granulated TS into meaningful entities with high coverage and specificity.
We constructed the rule base using fuzzy association rules to make the fore-
casting model both interpretable at the rule base and fuzzy partition level and
comprehensive in terms of coverage with matching rules. Finally, we performed
the forecasting using an optimized neural intuitionistic fuzzy TSK system and
defuzzified the forecasts using an intuitionistic fuzzy weighted averaging oper-
ator. In the learning process, the fuzzy TSK model exploits the capability of
neural networks to minimize forecasting error.

We validated the proposed forecasting model using five TS of major pre-
cious metal prices in the experimental evaluation. The proposed model not
only outperformed existing neural fuzzy systems but was also highly com-
petitive compared to other state-of-the-art metal price forecasting models. In
addition to achieving solid predictive performance, the proposed model pro-
vides investors with interpretable sets of trading if-then rules, which is superior
to the traditional buy-and-hold strategy in terms of portfolio return.
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A number of important limitations need to be noted regarding the pro-
posed forecasting model. First, the process of partitioning and fuzzification
was based mainly on the TS volatility, while other TS characteristics were not
taken into account. Therefore, future research should investigate alternative
approaches to generate fuzzy granules to enhance the data partitioning stage
with enriched information, such as trend information. Furthermore, the rule
base was fixed, which can be a concern if the model needs to be retrained
on new data with different patterns. Adaptation of the rule base during
the neural learning process is therefore another possible direction for future
research. Future studies might also enhance the proposed model by replac-
ing the neural intuitionistic fuzzy TSK system in the forecasting stage with
recently proposed extensions of recurrent neural fuzzy systems (Tang et al,
2021; Ding et al, 2021) and by extending the model to allow for forecasting
interval-valued TS (Maciel et al, 2021). For the latter, a neural interval type-2
intuitionistic fuzzy system is suggested, in which both the fuzzification and
defuzzification of the interval-valued TS should be carried out separately for
its lower and upper bounds.
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