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Abstract—The Sallen-Key low-pass biquad shows a decrease 

in attenuation at high frequencies because the real operational 

amplifier has a finite transit frequency. As a result, the course 

of the actual frequency response deviates from the ideal. 

Generally, this phenomenon occurs only in even-order filters in 

both Voltage Mode (VM) and Current Mode (CM) but is no 

longer observed for odd-order filters. When determining the 

order of the filter, it is always necessary to round the calculated 

value upwards, so it is discussed whether it is appropriate to 

round it up to the nearest odd number. Finally, this method of 

attenuation decrease correction is compared with the correction 

using another active element.  

Keywords—low-pass filter, attenuation drop above transit 

frequency, voltage mode, current mode, higher-order filter 

I. INTRODUCTION 

The main disadvantage of all types of time-discrete signal 
processing, whether digital filters or filters with Switched 
Capacitors (SC) or filters with Switched Currents (SI), is the 
periodicity of their frequency response. This leads to an 
overlap of the spectra of signals whose frequency is greater 
than half the sampling frequency in discrete processing, which 
is unacceptable. Therefore, a Low-Pass (LP) anti-aliasing 
filter must be included at the input of the circuits. The output 
low-pass reconstruction filter then removes high-frequency 
quantization noise [1]. 
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Fig. 1. Anti-aliasing and reconstruction filter for time-discrete signal 

processing. 

When designing a low-pass anti-aliasing filter, the cut-off 
frequency fC and the maximum attenuation AC in the passband 
are given, as well as the minimum attenuation in the non-
passband AS, which starts from the frequency fS. The curve 
corresponds to this and is shown in Fig. 2. 

In Fig. 2, the waveforms marked a and c correspond to the 
limit cases of the ideal filter. The waveform marked b then 
corresponds to the practical frequency characteristic for the 
filter with the influence of the transit frequency of the 
operational amplifier. 
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Fig. 2. The course of frequency characteristics of anti-aliasing filter. 

From the previously mentioned values AC, AS, fC, and fS, 
the anti-aliasing filter order n is calculated by (1). 
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The calculated filter order must round up to an integer 
because the number of orders can only be an integer. 
However, this necessarily leads to the transition from the pass-
band to the stop-band always having a greater steepness, i.e., 
a narrower transition zone than its required width. Rounding 
down is impossible because the condition of suppressing 
signals higher than half the sampling frequency (Shannon's 
sampling theorem) is not accomplished. 

Active RC (ARC) filters are generally used to implement 
anti-aliasing and reconstruction filters. However, low-pass 
filters of some structures, such as the biquad Sallen-Key 
structure [1], [2], [3], [4], [5], and some others, show a 
decrease in attenuation above the transit frequency of the 
operational amplifier. Then the frequency response of the 
filter is shown by the course b in Fig. 2. The same 
phenomenon occurs in the stop-band zone at the bandpass of 
the Huelsmann and Deliyanis structures. 

The cause of this phenomenon is that the operational 
amplifier, after losing its gain A above the transit frequency, 
shows only the output conductivity g, which with the 
dominant conductivity G connected to the input node forms 
the voltage divider according to Fig. 3 (capacitors act as a 
short circuits for high frequencies). The effect of conductivity 
G connected in parallel with the output conductivity g can be 
neglected. This in turn leads to stagnation or even a decrease 
in the attenuation according to Fig. 3. 
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Fig. 3. Biquad low-pass of the Sallen-Key structure on the top, its frequency 

response in the middle and its model in high frequencies below. 

Therefore, the magnitude of the voltage transfer ratio at the 
highest frequencies must be not equal to zero in this case: 
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where: Finf is the magnitude of the voltage transfer ratio close 
to infinity frequency, VIN, VOUT are the input and output 
voltages, g is the series output conductance of the operational 
amplifier, G is the conductance of a working resistor in the 
filter.  

The theoretical course can be easily verified by simulation 
with the MicroCap-12 program, where C = 10nF and 
R = 1kOhm, operational amplifier OP77 with ROUT = 75Ohm 
and GBW = 600kHz were used. The simulation result is 
shown in Fig. 4. 

 

Fig. 4. Result of simulation of the second-order low-pass Sallen-Key filter 

(generated in MicroCap-12). 

II. ANALYSIS OF THE COURSE OF LOW-PASS 

CHARACTERISTICS IN VOLTAGE AND CURRENT MODE 

A decrease in attenuation in the high-frequency range also 
occurs with the low-pass filter in current mode [2], [3], [4], 
[6], realized by the associated transformation from the circuit 
in voltage mode (Fig. 5 on the left), if it is active element used 
current conveyor (Fig. 5 on the right). 

The original circuit from the right side of Fig. 5 is redrawn 
in Fig. 6. Component F1 is Current Controlled Current Source 
(CCCS) with K = 1, but input resistance can’t be zero, 
therefore it will be the value approaching zero, e.g., 
r = R3 = 0.1Ohm. If input resistance is equal to zero, then the 
branch with capacitor C2 will be initialized by the zero voltage 
in the node #2 and therefore described effect doesn’t appear. 

+

G

G

C

C
G G

C

Ci
in

z

(-)

x

y i
out

G G
C

C
i
in

i
outg

in

G

C

C
g

out
G

g
in

_

 

Fig. 5. Low-pass Sallen-Key biquad in voltage mode (on the left) and 

current mode with conveyor (on the right) with simplified circuits diagram 

for high frequencies. 

 

Fig. 6. Schematic diagram of original circuit drawn in MicroCap-12. 

From simulated results (see Fig. 7), the difference between 
maximal and minimal magnitude is 80dB, this value is 
corresponding to the ratio between input current and the 
output current (i.e., R2 between input resistance R3 of the 
CCCS). 

 

Fig. 7. Result of simulation of the second-order low-pass Sallen-Key filter 
in current mode (generated in MicroCap-12). 

Thus, the higher-order filter composed exclusively of 
second-order sub-blocks (biquads) will behave similarly in 
voltage and current modes. Therefore, the frequency response 
of an even-order filter deviates from the frequency response 
of an ideal filter when the attenuation does not increase 
monotonically but stagnates. 

However, the third-order filter, whose voltage mode 
diagram is in Fig. 8, does not have this disadvantage. The 
cause is the capacitor C of the input RC cell, which behaves 
like a short circuit at high frequencies, the voltage Vi is zero, 
so at high frequencies, the rest of the circuit is not excited in 
both voltage and current mode. The output voltage of the filter 
is zero and then filter attenuation increases monotonically. 

The frequency response of the third-order filter is therefore 
close to the frequency response of an ideal filter. This 
theoretical premise can be easily verified through a simulation 
with the program MicroCap-12, when the values of elements 
we choose for the same cut-off frequency as for the previous 
2nd order filter, i.e., for 10kHz. The result of the simulation 
shows in Fig. 9. 
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Fig. 8. Low-pass Sallen-Key third-order filter in voltage mode (on the top) 

and current mode with conveyor (on the bottom) with simplified circuit 
diagrams for high frequencies. 

 

Fig. 9. Result of simulation of the third-order low-pass Sallen-Key filter in 

voltage mode (generated in MicroCap-12). 

This phenomenon also occurs with the low-pass filter in 
current mode, realized by the associated transformation from 
the circuit in voltage mode [7], [8], [9], [10], when a current 
conveyor works as the active element (Fig. 8 below). 
A higher-order filter that contains at least one third-order 
block (Fig. 10) will behave the same. Therefore, the frequency 
response of a generally odd-order filter is close to the 
frequency response of an ideal filter. 
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Fig. 10. Cascade ordering of partial filters in odd-order filters. 

To Fig. 10, we can add the information that the 6th order 
filter cannot implement using two cascaded 3rd order filters. 
The 3rd order filter has one real pole of the frequency 
response. If we use two such filters in a cascade, these real 
poles would be identical. 

If the calculation (1) after rounding gets an even number 
(an even-order filter), but if the next higher odd-order we use 
for the construction of higher-order filters instead of even 
ones, the characteristics of the high-frequency filter will 
approach the ideal course. 

III. DISCUSSION OF A SOLUTION BASED ON ADDING ANOTHER 

ACTIVE ELEMENT TO THE FILTER FEEDBACK 

Another well-known possibility of solving the problem of 
degradation of the attenuation of the filter at high frequencies 
is to connect another operational amplifier in voltage mode [6] 
or conveyor in current mode [11], [12] of the filter, according 
to Fig. 11. 
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Fig. 10. Correction of the attenuation decrease by another active element in 

the feedback in voltage mode (on the top) and current mode (on the bottom). 

However, the transmission T of such a circuit with two 
active elements differs from the transmission of the original 
circuit with a single active element, as can be seen (at first 
glance) from a comparison of the Mason-Coates graphs (MC-
graphs) of these circuits shown for voltage mode in Fig. 12. 

According to Fig. 12 on the left, the transmission T for two 
active elements is (3). 
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Meanwhile, for a circuit with a single active element in a 
straight branch, the MC-graph form Fig. 12 on the right 
generates a result transmission (4). 
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The difference between the two transmissions is more 
clearly reflected in the frequency dependence of the gain of 
the operational amplifier in the open feedback loop, which is 
given by the relation (5) for the two refractive frequencies of 
this characteristic ωT (transit frequency, about 1MHz), ωOL 
(−3dB frequency of the open-loop response, about 10Hz). 
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The transmission determines (6) for a circuit with two 
active elements and (7) for a circuit with a single active 
element. 
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Fig. 11. MC circuit graph with two active elements (on the left) and MC circuit graph with single active element (on the right). 
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CONCLUSION 

In conclusion, one of the ways to eliminate the decrease in 
attenuation of the low-pass filter at high frequencies is to 
implement a filter composed only of blocks of odd orders. 

However, this modification increases the steepness of the 
frequency characteristic between the pass-band and the stop-
band, according to Fig. 2 variant c. The course of the 
frequency characteristic is thus much stricter than required, 
but quite analogously, as it is less strict with the necessary 
round of the calculated filter order upwards. 

Thus, we can say that by choosing an odd order, we always 
get closer to the ideal course of the frequency response at the 
cost of increasing the filter order by one. This consequence is 
not a problem. Thus, when we determine the filter order, we 
always round result up, i.e., the resulting order is always 
higher than the calculating value. However, the frequency 
response of the transmission doesn't change with the 
comparison with the use of another active element in the 
feedback. 
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