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Abstract—This paper deals with the composition of a circuit 

matrix using the diakoptic method. The diakoptic method is a 

generalization of Thevenin's theorem. The diakoptic method 

allows solving complex electrical and electronic circuits. This 

method divides a complex electrical circuit into simpler circuits. 

The description of each of these circuits executes by the same or 

different method. For example, we can describe the first part of 

a circuit (with current sources) by the node voltage method. 

After then, we describe the second part of a circuit (with 

switched capacitors) by the nodal charge equations method, etc. 
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I. INTRODUCTION 

The general principle of solution of more complex 
electrical circuits exploits the separation of the complex 
circuit into simpler circuits [1] and more others. Each simpler 
electrical circuit matches a two-port network. Therefore, the 
description of this circuit executes by the individual 
submatrix. Mathematical description of these two-port 
networks uses simple parameters for matrix formulation. 
Subsequently, these parameters convert to parameters 
resulting from the interconnection of the partial two-port 
networks and are therefore suitable for further calculation. 

However, the above method is not the only one to solve 
complex circuits. Alternative methods exploit the principle of 
finding the resulting circuit matrix not by a parallel connection 
of two-port networks but by a series or cascade connection of 
two-port networks. 

The principle of compiling a matrix for circuit description 
by the diakoptic method, which follows from Thevenin's 
theorem, is described below. While the available literature 
commonly describes the interconnection of two-port 
networks, the algorithm for constructing a matrix using the 
diakoptic method is not generally known. Thus, we describe 
this algorithm is in this text. 

The designation, which was used under the name 
diakoptic, was introduced by Gabriel Kron in [1]. This is a 
general principle that allows simplifying the solution of a 
complex physical system by dividing it into many simpler 
parts [1], [2]. It is used in various technical fields, including 
electrical engineering. 

II. ASSEMBLY OF A MATRIX DESCRIBING A ELECTRICAL 

CIRCUIT BY THE DIAKOPTIC METHOD 

In the solution of electrical and electronic circuits [3], [4], 
[5], [6], [8], [9], [10] etc., a diakoptic method is often used.  

This method follows from the generalization of the well-
known and easily derivable and therefore easily understood 
Thevenin's theorem: any electrical circuit from aspect to its 
two terminals A and B can replace by an equivalent voltage 

source V0 with internal resistance R0, as shown in Fig. 1. While 
the original circuit contains voltage source V, resistor net R1 to 
R4, and load impedance Z. The equivalent circuit consists of 
the equivalent source V0 and resistance R0, and the original 
load Z. 

 

Fig. 1. Thevenin’s theorem. 

While in Fig. 1 there is a passive impedance Z between the 
considered terminals. In Fig. 2 there is a voltage source VL 
with an internal impedance ZL at the top between the A, B 
terminals. Here V0 is the no-load voltage between A, B 
terminals and R0 the resistance between the terminals of the 
original circuit. 

 

Fig. 2. Circuit modification step by step. 

In the next step, we convert the voltage source VL with 
internal impedance ZL to the current source I with internal 
admittance Y in a known manner. The resulting circuit 
diagram is in Fig. 2 below. 

The first part on the left side of the schematic diagram now 
contains a voltage source V0 with an internal resistance R0 in 
series, and we can easily describe this part by the loop current 
method. The second part on the right side of the schematic 
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diagram now contains a parallel combination of current source 
I with internal admittance Y, and we can easily describe this 
part by the node voltage method. Notice key circuit quantities 
are marked in this figure only. 

Previously presented circuit substitution is one of more 
possible variants. The second variant of circuit substitution is 
rest in the exchange of the left part of the circuit to a circuit 
with the current source. After that, we convert the right part of 
the circuit to a circuit with the voltage source. This solution is 
depicted in Fig. 3. We can see that both electrical circuits from 
Fig. 2 and Fig. 3 are equivalent. 

 

Fig. 3. The second variant of the circuit modification. 

Circuit from Fig. 3 is described as follows by (1), where IA 
is current from voltage source V0 and Y is equivalent 
admittance of impedance ZL: 
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After rewritten we get (2). 
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In general, therefore, we can divide the circuit into two 
parts. One of them, containing circuit elements G, Y, and input 
and output currents I1, I2 and nodal voltages V1, V2, can 
generally be described by the node voltage method. The 
second part, containing the elements R, Z, and input and output 
voltages V3, V4 and loop currents I3, I4, can then be generally 
described by the method of loop currents, as shown in Fig. 4. 

 

Fig. 4. The description of the first part of the circuit is by the node voltage 

method, the second one by the loop current method. 

Therefore, we can generalize the schematic diagram from 
Fig. 4 to the scheme in Fig. 5. 

 

Fig. 5. Generalized circuit diagram from Fig. 4. 

Circuit from Fig. 4 is described as follows by (3). 
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In the first step, after renumbering of (3), we get the result 
in the form (4). 
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In the second step, we can rewrite (4) into (5). 
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In the last step, it is necessary to extend (5) by the 
equations which describe the circuit quantities at the interface 
between the parts described according to Kirchhoff's circuit 
laws, i.e. V2 = V3 and I2 = –I3 into form (6). 
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We can simplify this system of the six equations (6) by 
including the last two after the first four equations. This set of 
equations (7) is already suitable for rewriting into matrix form. 
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Thus, (7) we can rewrite this set into a square matrix form. 
In this matrix form is the system matrix of the circuit (8). 

The matrix (8) consists of four submatrices. The individual 
submatrices have the following meaning. 
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The first matrix (9) is the admittance matrix describing the 
left part of the circuit by the node voltage method. 

 
G G

G Y G

−
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The second submatrix (10) is the impedance matrix 
describing the right part of the circuit by the loop current 
method. 
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The voltages at the interface between the two subcircuits 
are the same. The currents at the interface between the two 
subcircuits have the same value, differing only in their 
directions. We qualify this fact by a negative sign between 
currents I2 and I3 (11). 
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The last two submatrices (11), (12) are incidence matrices 
because from the circuit diagram (see Fig. 3) is evident the 
relation between voltages and currents in the circuit (11). 

Therefore, after rewriting (11) into a matrix form, 
incidence matrices are (12), (13). 
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Zero elements in (12) indicate no interconnection between 
the currents I1, I3, and I1, I4 and I2, I5. Analogically, zero 
elements in (13) indicate no interrelationship between the 
following voltages V3, V1, V4, V1, and V4, V2. 
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It follows from the structure of matrices (12), (13) having 
interchanged rows and columns and elements replaced by 
additions that these are matrices transposed to each other. 
Then (4) transcribed to (8), we can write for not one, but for N 
nodes and loops in the general matrix form (14) or (15). Here, 
simple elements are replaced by matrices. 

From the comparison of matrices (13) and (14), we can see 
that we have two possible shapes of the resulting matrix. The 
first of these is (14). 
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And/or second one is (15). 

 
− T

Y M

M Z
 () 

Where Y is the admittance matrix, Z is the impedance 
matrix, M is the incidence matrix and MT is the transposed 
incidence matrix. 

Now, we can express this matrix by the general scheme 
according to Fig. 6. The diagram in Fig. 6 shows two circuits 
meeting in N two-ports. 

 

Fig. 6. The general circuit diagram for more nodes and loops. 

We can use the diakoptic method for solving a more 
complex electrical circuit. For example, an electrical circuit 
which one part consists of the switched capacitor circuit as is 
depicted in Fig. 7 [4]. This circuit can be described by the 
matrix in form (16). 

 

Fig. 7. Example of the combined circuit general diagram. The left part is 
described by the capacitance matrix. The right part is described by the loop 

current method. The left part is an SC circuit that is connected by the right 

part into another circuit in port V. 

In this case, the switched capacitor part of the circuit is 
described in (16) by the capacitance matrix and another part 
by the loop current method by the Z matrix. The second part 
can be used for connection into another circuit in port V as is 
depicted in Fig. 7 belove. In this case, the SC circuit matrix is 
generally (for example) n-order, Z matrix n+m-order and is 
connected into another circuit in m-nodes. 
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CONCLUSION 

We described a close relation between Thevenin's theorem 
and the diakoptic method. We can use both to simplify the 
electrical circuit. Thevenin's theorem converts the original 
circuit to the circuit that contains a single loop and a single 
node. Meanwhile, the diakoptic method converts the original 
circuit to the circuit that contains multiple loops and nodes. 

As we mentioned above, we can divide the circuit into 
subcircuits. We can describe each of these circuits by the most 
suitable methods according to the given configuration. We can 
then combine the above description by the node voltage 
method and the loop current method, the node voltage method 
and the nodal charge equations method, not only. Also, we 
describe each part of the circuit with different two-port 
parameters [4], [7]. 

We will also appreciate the diakoptic method in the 
symbolic analysis of circuits. If we solve a more complex 
electrical circuit, the relationships for the resulting electrical 

circuit are extensive and confusing and thus practically 
unusable. On the other hand, if we divide the original 
electrical circuit into subcircuits, then the symbolic results of 
individual electrical circuits are simplified. 
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