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Stefana Żeromskiego 116, 90-924 Lodz, Poland; gatarekpaulina@gmail.com

5 Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego 12/14,
61-704 Poznan, Poland; lukasmar@ibch.poznan.pl

6 Department of General, Oncological and Digestive Tract Surgery, Medical Centre of Postgraduate Education,
Orłowski Hospital, 00-416 Warsaw, Poland; tarnowskiwieslaw@me.com (W.T.); mariusz_ury@mac.com (M.U.)

* Correspondence: joanna.kaluzna-czaplinska@p.lodz.pl; Tel.: +48-426313091; Fax: +48-426313128

Abstract: Lesniowski-Crohn’s disease (CD) is a type of chronic inflammatory bowel disease (IBD)
of uncertain etiology. Initially, pharmacological management is undertaken; however, surgical
intervention is necessary to improve life quality and relieve symptoms in most cases. Here changes
are reported in blood metabolome that occurred three days after the ileo-colic region resection in
the case of seven patients. Alterations are observed in levels of metabolites associated with multiple
mitochondrial pathways, based on the Metabolite Set Enrichment Analysis, reflecting a high energy
demand in the post-operative period. As most of these metabolites are also essential nutrients
supplied from foods, we believe that our results might contribute to the discussion on perioperative
nutrition’s role in enhanced recovery.

Keywords: Gas Chromatography-Mass Spectrometry (GC-MS); metabolomics; blood plasma
metabolome; Lesniowski-Crohn’s disease

1. Introduction

Crohn’s disease is a chronic inflammation of the gastrointestinal (GI) tract that arises
from complicated and unclear interactions between genetic predispositions and environ-
mental factors [1,2]. CD may affect any part of the GI tract; however, in most cases, it
involves the ileum, colon, or both [2]. Over the last 50 years, the increasing prevalence
of CD has been observed, with the highest incidence rate recorded in northern Europe,
the United Kingdom, and North America [2]. Initially, CD manifests itself between the
ages 15 and 39, with a second peak between 50 and 70 [2,3]. Gender influence was found
to be different in various demographics [2].

Patients usually suffer from chronic diarrhea [1,2] for more than 4 weeks, which is a
major symptom of the CD progression [2]. Furthermore, abdominal pain (70%), weight loss
(60%) [2], malnutrition [1,3], and blood and mucus present in the stool (40–50%) [2] are also
commonly occurring symptoms of CD.

Crohn’s disease exerts a strong impact on the quality of patients’ lives, especially
regarding lifestyle and diet. For instance, patients who suffer from CD avoid consuming so-
called “trigger food” and follow strict dietary recommendations [1,2]. Of crucial importance
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is the regular taking of prescribed medication. Moreover, pain and fatigue might occur
during acute flares of Crohn’s disease, which both become an impediment to daily activities
resulting in absence from employment or school, as reported by patients [2].

Initially, pharmacological disease management is undertaken to suppress the inflam-
matory response [2] and reduce the frequent occurrence of diarrhea, leading to a significant
loss of nutrients [4]. For induction of remission, corticosteroids, budesonide, mesalazine,
or 5-aminosalicylates are commonly used. The anti-tumor necrosis factor (TNF) immuno-
suppressive therapies are involved in patients with resistance to conventional therapy [2].
Surgical resection is necessary for most patients, usually within 10 years of their diagnosis,
as most cases become medically exhausted. The surgery might improve the quality of
life and manage the progressive and/or significant loss of weight, intestinal obstruction
reoccurrences, and the risk of septic complications such as perforations [2].

However, in patients with changes or abnormalities in the metabolism of saccharides [5,6],
essential amino acids [6], and lipids [5–7], wounds and tissue healing might become diffi-
cult. Malnutrition and electrolyte imbalance are two risk factors for the occurrence of severe
post-operative complications in CD patients [8]. In this study, the influence of the opera-
tional intervention on blood plasma metabolome was analyzed in patients with advanced
CD. A well-developed GC/MS-based approach was utilized to determine fluctuations in
plasma metabolites upon the surgical resection.

2. Results

In the first step, clinical parameters were compared pre- and post-operation for all
patients, and no differences were observed of statistical significance, considering FDR
corrected p-values. Increased C-reactive protein (CRP) levels were found in all patients
after the surgery and in the case of five patients before surgery. In CD, a strong CRP response
may occur [9]. In general, the clinical parameters indicate proper clinical management
prior- and post-surgery. A summary of all clinical data is provided in Tables 1 and 2.

The GC/MS-based approach enabled the identification of 155 metabolites in blood
plasma samples taken from patients with Crohn’s disease pre- and three days after the
surgical treatment. Among them, 108 compounds were determined in most samples and
subjected to statistical analysis. A table of the identified compounds and an example
chromatogram of a patient plasma sample are shown in Table S1 and Figure S1 in the
Supplementary Material.

The paired t-test was applied, followed by the correction for multiple comparisons, to
evaluate the statistical significance of fluctuations in levels of individual metabolites pre-
and post-surgery. A statistically significant (p-value < 0.05) increase was found in levels of
11 metabolites and a decrease in the abundance of two compounds in blood plasma after the
surgery compared to the state prior to surgery. However, only five metabolites remained
statistically significant after the additional FDR correction (FDR corrected p-value < 0.05),
including glycerol 3-phosphate and four monoacylglycerol species (MG). Furthermore,
ribonic acid was determined in the blood plasma of only two patients after the surgery
(2/7 collected samples).

In the blood plasma of patients after the surgery, a substantial accumulation of glycerol
3-phosphate was observed (FC = 4.33), α-tocopherol (FC = 3.40), and four monoacylglyc-
erols. Interestingly, MG species, which are two pairs of isomers, showed a similar increase,
i.e., 2.79- and 2.74-fold for 1- and 2-palmityloylglycerols; 2.63- and 2.35-fold for 1- and
2-stearolyglycerols, respectively. Nearly two times higher levels of three amino acids were
found, including one endogenous amino acid L-cysteine and two exogenous: L-lysine and
L-methionine. Additionally, succinic acid was 2.5 times higher, and benzoic acid showed a
1.57-fold increase.

In turn, a significant 11-fold decrease in abundance of galactopyranose and three times
lower levels of 3,4-dihydroxybutanoic acid were determined in the plasma of patients post-
surgery. Since ribonic acid was registered in two plasma samples collected post-surgery, it
could also be considered a down-regulated metabolite.
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Table 1. Summary of patients’ clinical data.

Patient
ID

Protein [g/dL] Electrolytes Glucose
[mg/dL]

CRP
[mg/L]

Creatinine
[mg/dL]

AST [U/L] ALT [U/L] Urea
[mg/dL]

Coagulation System [s]

Total Albumins Na [mM] K [mM] Ca [mg/dL] Mg [mg/dL] Pinorg. [mg/dL] PT INR APTT

B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A

1 5.0 5.1 2.9 2.3 143 139 4.5 4.4 8.5 8.2 2.3 2.6 3.5 3.8 97 71 52 95 0.80 0.82 18 20 13 26 46 42 11.9 12.2 0.99 1.01 30 32

2 6.2 5.4 3.1 3.1 138 137 4.4 4.5 7.6 8.3 1.7 2.1 1.8 3.5 75 84 193 225 0.58 0.65 no
data

no
data

no
data

no
data 8 16 13.7 15.8 1.14 1.31 33 40

3 6.7 6.4 3.0 2.7 140 144 4.0 3.7 8.2 7.6 1.6 2.1 3.3 3.7 106 83 85 132 0.88 0.78 15 17 23 42 18 41 13.3 15.8 1.17 1.41 40 40
4 5.7 4.9 2.8 2.2 140 139 4.0 2.7 7.8 7.9 1.8 1.9 3.2 2.9 113 107 2 126 0.73 0.63 16 22 34 29 15 24 11.2 10.7 0.93 0.99 30 33
5 5.9 5.7 2.8 2.8 140 142 3.3 5.0 8.1 8.8 2.0 2.8 3.1 3.0 101 82 76 29 0.85 0.97 44 52 39 66 20 19 12.3 11.8 1.10 1.04 32 28
6 6.8 7.0 4.2 3.8 140 138 4.1 4.3 8.8 8.9 1.7 1.8 2.4 3.3 60 99 2 84 1.15 0.93 21 33 15 36 25 26 11.3 11.2 0.99 0.94 29 31
7 6.2 6.2 2.8 3.0 139 141 4.8 4.6 8.1 8.4 2.0 1.6 2.9 2.7 76 91 181 100 0.65 0.69 16 11 23 35 14 26 11.5 11.9 1.02 1.06 33 33

B—before surgery; A—after surgery.
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Table 2. Statistical analysis of clinical characteristics of patients in the study.

Clinical Parameter Before
Surgery

After
Surgery

Laboratory
Norms Statistic p Value FDR Adjusted p Value Remarks

Total protein [g/dL] 6.1 ± 0.5 5.8 ± 0.8 6.0–8.3 −1.56 0.177 0.40 ns
Albumin [g/dL] 3.1 ± 0.5 2.8 ± 0.5 3.4–5.4 −2.04 0.09 0.40 ns

Total cholesterol [mg/dL] 121.3 ± 30.6 157.0 ± 19.1 <200 - - - 1

TG [mg/dL] 76.0 ± 33.8 118.7 ± 18.6 <150 - - - 1

Na [mM] 140.0 ± 1.5 140.0 ± 2.4 135–147 0.00 1.00 1.00 ns
K [mM] 4.2 ± 0.5 4.2 ± 0.8 3.0–5.5 0.04 0.97 1.00 ns

Ca [mg/dL] 8.1 ± 0.4 8.3 ± 0.5 8.6–10.3 0.84 0.43 0.58 ns
Mg [mg/dL] 1.9 ± 0.2 2.1 ± 0.4 1.8–2.4 1.80 0.12 0.40 ns

Phosphorus (inorganic)
[mg/dL] 2.9 ± 0.6 3.3 ± 0.4 2.5–4.5 1.43 0.20 0.40 ns

Glucose [mg/dL] 89.7 ± 19.5 88.1 ± 12.0 72.0–99.0 −0.17 0.87 0.99 ns
CRP [mg/L] 84.3 ± 77.2 113.0 ± 59.7 <3.0 1.07 0.33 0.47 ns

Creatinine [mg/dL] 0.81 ± 0.19 0.78 ± 0.13 0.84–1.21 −0.54 0.61 0.75 ns
AST [U/L] 21.7 ± 11.1 25.8 ± 14.7 8.0–48.0 1.74 0.14 0.40 ns, 2

ALT [U/L] 24.5 ± 10.3 39.0 ± 14.4 7.0–55.0 3.22 0.02 0.37 p, ns, 2

Urea [mg/dL] 20.9 ± 12.3 27.7 ± 10.1 7.0–20.0 1.97 0.10 0.40 ns
PT [s] 12.2 ± 1.0 12.7 ± 2.1 11.0–13.5 1.22 0.27 0.47 ns

INR [s] 1.0 ± 0.1 1.1 ± 0.2 0.8–1.1 1.44 0.20 0.40 ns
APTT [s] 32.4 ± 3.5 33.8 ± 4.6 30.0–40.0 1.10 0.31 0.47 ns

ns—not significant after FDR correction (FDR corrected p-value < 0.05); 1 Total cholesterol and TG were measured
for 3 patients only; 2 AST and ALT were measured for 6 patients; p—raw p-value significant (p-value < 0.05).

The complete summary of the results and box plots illustrating the differences in levels
of individual metabolites pre- and post-surgery are presented in Table 3, Figures 1 and 2.

Table 3. Statistical analysis of clinical characteristics of patients in the study.

Metabolite Class of
Metabolites

RT
[min]

Mean
[a.u.] C.V. Mean

[a.u.] C.V. After/Before
Ratio p Value FDR p Value

Glycerol-3-phosphate Phosphoric acid deriv. 13.12 0.144 0.518 0.622 0.657 4.33 0.00125 0.029
α-Tocopherol Lipids 23.26 0.291 0.886 0.991 0.599 3.40 0.00845 0.140

1-Monopalmitoylglycerol Lipids 19.17 1.385 1.209 3.858 0.833 2.79 0.00010 0.004
2-Monopalmitoylglycerol Lipids 18.9 0.102 0.786 0.279 0.703 2.74 0.00006 0.004
1-Monostearoylglycerol Lipids 20.34 0.864 0.751 2.272 1.045 2.63 0.00008 0.004

Succinic acid Carboxylic acids 8.46 1.482 0.841 3.705 1.055 2.50 0.04682 0.362
2-Monostearoylglycerol Lipids 20.1 0.075 0.534 0.176 0.814 2.35 0.00012 0.004

L-Cysteine Amino acids 11.1 1.938 0.929 4.214 0.444 2.17 0.03241 0.342
L-Methionine Amino acids 10.74 1.645 0.848 3.364 0.462 2.05 0.04194 0.362

L-Lysine Amino acids 14.36 2.989 0.930 5.814 0.257 1.95 0.02451 0.315
Benzoic acid ** Carboxylic acids 7.81 0.922 0.560 1.449 0.361 1.57 0.00511 0.099

3,4-Dihydroxybutanoic acid Carboxylic acids 9.8 0.452 0.728 0.151 0.637 0.33 0.02717 0.315
Galactopyranose Sugars 14.32 7.096 1.336 0.661 1.462 0.09 0.01396 0.202

Ribonic acid * Sugar deriv. 13.35 7/7 2/7 NA

* Metabolite was not determined in the blood plasma of 5 patients after the surgery. ** Identification uncertain.
NA—not applied.

In the next step, using metabolites selected in the statistical analysis, the Metabolite Set
Enrichment Analysis was applied to suggest biological pathways of potential importance.
The ORA enrichment analysis was used to assess if particular sets of metabolites were repre-
sented more than expected by chance within the provided compound list. Three metabolite
sets were found with p-value < 0.05, namely mitochondrial electron transport chain (2/19,
expected 0.26), carnitine synthesis (2/22, expected 0.301), and glycerolipid metabolism
(2/25, expected 0.352), which were associated with up-regulated glycerol 3-phosphate,
succinic acid, L-Lysine and 2-MG 16:0 (Figure 3).
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Figure 1. Box plots illustrating changes in levels of selected metabolites before and after the surgery.
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Figure 2. (A) Volcano plot shows metabolites with the raw p-value < 0.05 and simultaneously log2
(fold change) above 0.5; (B) Circular dendrogram and heatmap created using the set of biologically
relevant metabolites. Further, 0–1 scaling was applied to normalize the abundance of individual
metabolites in patients’ plasma prior- and post-surgery.

Figure 3. Results of the Metabolite Set Enrichment Analysis with Fold Enrichment higher than 4.
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3. Discussion

This study’s main goal was to compare plasma metabolites’ profiles before and after
the ileo-colic region resection in the case of seven patients with active and advanced
Lesniowski-Crohn’s disease.

In general, results of MSEA suggest activation of mitochondrial pathways and related
processes. One of the major metabolic goals after a strong trauma, such as a surgical injury,
is an intensive endogenous synthesis of glucose (gluconeogenesis) [10,11]. The enhanced
glucose production ensures substrate supply to compromised tissues and cells, in which
mitochondrial respiration is not (yet) possible [10]. However, 80–90% of the energy for
gluconeogenesis is provided by free fatty acids (FFAs) oxidation in mitochondria [10,11].
FFAs are obtained through triacylglycerols (TG) lipolysis. TG species undergo sequential
hydrolysis, and fatty acids are removed preferentially from the sn-1 or sn-3 positions, finally
resulting in the obtainment of 2-MG [12]. The isomerization of 2-MG to 1-MG enables
further hydrolysis of 1-MG species to free fatty acids and glycerol [13]. Therefore, the
increased levels of 1- and 2-MG might indicate lipolysis initiation, followed by the FFAs
beta-oxidation. Noteworthy in this respect is that we observed higher levels of L-lysine
and succinic acid in blood plasma upon surgery linked to carnitine synthesis regarding
MSEA results. Carnitine actively participates in the transport of fatty acids from the cell’s
cytoplasm through the mitochondrial membrane to enable their β-oxidation [12].

A high energy demand post-surgery could also be reflected in a nearly 11-fold decrease
in plasma galactopyranose levels. Galactose is metabolized mainly in the Leloir pathway
to glucose 6-phosphate, which subsequently enters pathways of hexoses’ breakdown,
e.g., glycolysis [14].

Furthermore, increased glycerol 3-phosphate and succinic acid levels were linked to
the activation of the mitochondrial electron transport chain (ETC) and glycerol-3-phosphate
shuttle, based on the MSEA. The ETC drives the generation of ATP via the electrochemical
gradient of protons, caused by the energy obtained in redox reactions, in which glycerol
3-phosphate actively participates [15].

Higher abundances of L-cysteine, L-methionine, and α-tocopherol (vitamin E) were
also observed upon surgery. L-methionine is the precursor of endogenous L-cysteine,
which in turn is converted to glutathione, an essential antioxidant [16,17]. Regarding
the MSEA, among overrepresented pathways were methionine, cysteine, and glutathione
metabolism, as well as homocysteine degradation. α-Tocopherol (vitamin E) is also a crucial
antioxidant that essentially prevents lipid oxidation. As intense oxidation processes are
suspected to occur in mitochondria after the surgical trauma, an increased risk of reactive
oxygen species (ROS) leakage occurs. The ROS might cause significant damage to cellular
structures and, in this way, disrupt their functions [18]. Thus, higher plasma levels of these
compounds might be related to the maintenance of oxidative stability of mitochondrial and
cellular membranes.

Changes in metabolome and lipidome in patients with inflammatory bowel diseases
are intensively investigated using different biological matrices (serum, urine, tissues) and
analytical techniques (LC/MS, GC/MS, NMR). Usually, metabolomes or lipidomes of
patients with Crohn’s disease or ulcerative colitis (UC) are compared to healthy volunteers
to find potentially useful biomarkers for clinical purposes. Daniluk et al. presented in their
LC/MS-based study the downregulation of serum phospholipids in patients with Crohn’s
disease (n = 9) and ulcerative colitis (n = 10) compared to healthy volunteers (n = 10) and a
significant upregulation of LacCer 18:0/16:0 in patients with Crohn’s disease compared to
healthy controls. LacCer 18:0/16:0 was also successfully tested alone and with other serum
inflammatory markers as a potential marker of Crohn’s disease, allowing differentiation
from ulcerative colitis. The subsequent pathway analysis indicated possible alterations
in the glycerophospholipids metabolism and sphingolipid metabolism in patients with
Crohn’s disease [7]. Stephens et al. performed urine sample analysis from patients with in-
flammatory bowel diseases and healthy controls, using nuclear magnetic resonance (NMR)
spectroscopy combined with targeted profiling techniques. As a result, the decrease was ob-
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served in TCA cycle intermediates (succinate and citrate), amino acids (asparagine, lysine,
histidine, and 1-methylhistidine), gut microflora metabolites (methanol, formate, hippu-
rate, acetate, and methylamine), trigonelline, creatine, urea, and taurine, in patients with
inflammatory bowel diseases compared to controls [19]. Stephens et al. also compared their
results to those obtained by Williams et al. Both studies had similar concepts and outcomes.
Moreover, Williams et al. did not find any differences between patients with CD who
underwent bowel resections and those who had not [20]. Pierre Martin et al. investigated
urine samples from 21 pediatric patients with IBD and 27 healthy children using NMR
spectroscopy and reported alterations in metabolites related to central energy metabolism,
amino acids, and metabolites belonging to gut microbial metabolic pathways [21]. In turn,
Dawiskiba et al. performed an NMR-based metabolomics analysis of serum and plasma
samples collected from 24 patients with ulcerative colitis, 19 patients with Crohn’s disease
(CD), and 17 healthy controls. The results of their work correspond well with other reports
and include an increase in serum leucine, isoleucine, 3-hydroxybutyric acid, N-acetylated
compounds, acetoacetate, glycine, phenylalanine, and lactate levels, a decrease in serum
levels of creatine, dimethyl sulfone, histidine, choline, and its derivatives, and a decrease in
urine levels of citrate, hippurate, trigonelline, taurine, succinate and 2-hydroxyisobutyrate
in patients with IBD compared to healthy controls [22]. In these studies, UC and CD caused
similar alterations in metabolic profiles and distinguishing CD from UC was difficult or
not possible. Only Stephens et al. reported the possibility of distinguishing between CD
and UC but only when CD patients who underwent surgical intervention or were on anti-
TNF-α treatment were retained in the dataset for the comparison [20]. Ooi et al. presented
GC/MS-based results of metabolites profiling in biopsies from 22 UC patients and serum
samples from UC patients (n = 13), CD patients (n = 21), and healthy volunteers (n = 17). In
the case of tissue samples, 16 amino acids and 6 metabolites involved in the TCA cycle were
significantly decreased in UC patients. Analysis of serum samples from CD patients re-
vealed the upregulation of alanine, aspartic acid, glycine, methionine, proline, fumaric acid,
malic acid, and succinic acid and the downregulation of glutamine, histidine, and trypto-
phan when compared to healthy volunteers. The differences were also shown between UC
patients’ and CD patients’ metabolomes [23]. However, comparing the reported outcomes
with the results presented in this manuscript can be difficult. The study did not include a
healthy control group, and it was focused on investing plasma alterations appearing upon
the surgical intervention. Therefore, the outcomes are likely related to high energy demand
in post-surgery recovery. It is noteworthy that metabolomics can be used for predicting the
therapeutic response in IBD [24]. However, the observed alterations in the metabolome
may depend on the type of therapy. Thus far, the application of anti-tumor necrosis factor,
vedolizumab, Infliximab, exclusive enteral nutrition, and fecal microbiota transplantation
has been widely investigated [24]. For the follow-up study, more different types of samples
should be collected (plasma, urine, feces) at more time points to widely verify the current
observations and evaluate long-time outcomes of ileo-colic region resection.

In summary, three days after the surgery in the blood plasma of patients, the charac-
teristic increase was found in levels of saturated monoacylglycerols, lysine, methionine,
cysteine, glycerol-3-phosphate, α-tocopherol, and succinic acid, and a significant decrease
in galactose level compared to the state before surgery. Based on the Metabolite Set Enrich-
ment Analysis, the changes observed in the metabolome could be linked to the mitochon-
drial processes’ activation, reflecting a high energy demand in the post-surgery recovery.
Most of these metabolites are simultaneously essential nutrients supplied from a daily diet,
e.g., monoacylglycerols or galactose, or only from the diet, e.g., exogenous amino acids:
lysine and methionine, or tocopherol. Hence, the results are also consistent with critical
aspects of perioperative care, highlighting the possible role of fast re-establishment of oral
feeding after surgery and avoidance of pre-operative fasting in the enhanced recovery [25].
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4. Materials and Methods
4.1. Characteristics of Patients

Blood samples were taken and originally anonymized by the Department of Gen-eral,
Oncological and Digestive Tract Surgery of the Medical Centre of Postgraduate Education,
Orłowski Hospital, Warsaw, and secondary anonymized by Department of Biochemistry
and Clinical Chemistry, Medical University of Warsaw. Serum samples were obtained
from 7 patients with active Crohn’s disease (CD) according to the Harvey-Bradshaw score
(the active form of the disease defined as ≥5) [26], qualified for the ileo-colic region
resection. A standard low-fat diet with limited fiber content and increased protein content
was administered to patients in the pre-operative period. On the first day after surgery,
intravenous fluid and electrolyte infusion was used. On the second day after surgery,
enteral nutrition began, initially in liquid form and from the third day in the form of solid
foods. The use of human blood subjects for this study was approved by the Medical Centre
of Postgraduate Education Ethical Committee. The general characteristics of patients are
presented in Table 4. In the study were enrolled 3 men (36 ± 10 years old) and 4 women
(42 ± 17 years old).

Table 4. General patients characteristics.

Patient ID Gender Age Disease State

1 M 42 active
2 F 29 active
3 M 43 active
4 F 52 active
5 F 60 active
6 M 24 active
7 F 26 active

4.2. Blood Collection

Two consecutive blood plasma samples were collected from patients (n = 7), pre- and
post-surgery, respectively. Blood was collected in the morning, in fasting state, on the day
before surgery, and on the third day after surgery. Blood samples were centrifuged for
10 min at a speed of 1500× g at 4 ◦C to obtain plasma. Finally, samples were portioned into
1.5 mL tubes adapted for low temperatures, frozen and transported on dry ice, and stored
at −80 ◦C for further analysis.

4.3. Metabolites Extraction and Derivatization

Low molecular weight metabolites were extracted from 30 µL of blood plasma with
1 mL of ice-cold mixture of acetonitrile, isopropanol, and water (3:3:2 v/v/v) [27]. Briefly, all
samples were homogenized for ~10 s, then shaken at 4 ◦C for 5 min, and finally centrifuged
at 13,000 rcf (2 min, at 4 ◦C). Supernatants were removed and split into two 450 µL portions:
the first one was subjected to the analysis and the second one was a backup sample.
Extraction solvents were evaporated at 30 ◦C in a rotary vacuum concentrator (Eppendorf),
and dry precipitates were subsequently derivatized. A two-step derivatization procedure
was performed. First, 10 µL of methoxyamine hydrochloride solution was used (20 mg/mL
in dry pyridine), and samples were kept at 37 ◦C for 90 min. In the second step, 90 µL of
N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) was applied for silylation, and the
reaction was continued for another 30 min at 37 ◦C. All samples, QCs (pools and standard
mixtures), and blanks were centrifuged, transferred to glass chromatographic vials, and
then subjected to the GC/MS analysis.

4.4. GC/MS System and Spectra Processing

The GC/MS system consisted of Agilent 7890B gas chromatograph with the S/SL inlet,
connected to the Pegasus BT time-of-flight mass spectrometer (LECO Corporation). For
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metabolites separation, the standard Restek Rxi-5MS fused-silica capillary column of a low-
polarity bonded phase was selected in following dimensions: 30 m length, 0.25 mm ID, and
0.25 µm film thickness. The constant flow of helium was set to 1 mL/min, and 0.5 µL of each
sample was injected in splitless mode at 280 ◦C. The inlet purge flow rate was 40 mL/min,
and the septum purge flow 3 mL/min, respectively; the inlet was purged 70 s after injection.
The GC oven temperature program was as follows: 1 min at 70 ◦C, raised subsequently by
12 ◦C/min to 300 ◦C, and held for 14 min (total run time 34 min and 10 s, 336 s of solvent
delay). The transfer line temperature was kept at 300 ◦C, and the ion source temperature
was 250 ◦C. EI-MS spectra were recorded in the m/z range 50–650, at the acquisition rate
of 12 spectra/second, and the standard electron ionization energy of 70 eV was used.
The GC/MS system suitability was verified within a series of autotunes and controlled
during the sequence using quality control samples and blanks. The obtained GC/MS
profiles were exported as ANDII MS files and transferred from the ChromaTOF software
for Pegasus BT (ver. 5.32) to ChromaTOF (ver. 4.51.6.0) with the stat compare module for
data processing. The automatic peak detection, deconvolution, retention index calculation,
and library search were performed subsequently. Based on the analysis of alkanes mixture
(C10–C36), retention indices (RI) were estimated to improve identification results and to
correct retention times (RT). For the identification of the compounds, the Mainlib and
Fiehn libraries were used; quality filter assumed similarity index (SI) >700. The unique
quantification mass for each compound was defined and used to obtain accurate peak
areas for the statistical comparison. Unknown compounds and impurities (i.e., plasticizers,
column bleeds, alkanes, siloxanes) were removed from the obtained table of data. The
identifications were subsequently compared to those obtained from the MS Dial software
(v 4.80) [28]. The calculated values of RI were compared to theoretical values obtained from
the Kovats RI library for MS Dial (9062 unique compounds), NIST Chemistry WebBook,
PubChem database, and Human Metabolome Database.

4.5. Statistical and Bioinformatic Analysis

Peak areas were derived from predefined and unique for each metabolite quantification
mass. Features with >50% missing values were removed, and the k-nearest neighbors
approach was used to estimate the remaining missing values. Data were additionally
filtered based on relative standard deviation (RSD = SD/mean). Samples were normalized
to the sum of all detected signals and log-transformed. Box plots were created using
the ggplot2 and ggpubr packages. The lower and upper hinges represent 25% quantile
and 75% quantile, respectively, and the middle line median (50% quantile). The lower
whisker is the smallest observation greater than or equal to the lower hinge—1.5·IQR
(interquartile range)—and the upper whisker is the largest observation less than or equal
to the upper hinge + 1.5·IQR. The statistical comparison of normalized peak areas was
performed in the R environment (rstatix package). The significance of differences in
plasma metabolites’ abundances before and after the surgical treatment was assessed
based on the paired t-test. Then, the Benjamini–Hochberg FDR approach was applied
to all obtained p-values for the multiple testing correction. The fold change (FC) was
calculated for all metabolites by dividing the abundance post-treatment by the abundance
prior treatment. Obtained p-values and fold changes were then used to create the volcano
plot (EnhancedVolcano package). The circular dendrogram surrounded by the heatmap
presenting the biologically most interesting metabolites was generated using the ggtree
package. Metabolites selected in the statistical test were listed, and input was created for
the Metabolite Set Enrichment Analysis (MSEA, available at https://www.metaboanalyst.
ca/MetaboAnalyst/upload/EnrichUploadView.xhtml (accessed on 21 November 2020)),
which was employed to facilitate the identification of biologically meaningful patterns [29].
The statistical significance of the obtained overrepresentation (ORA) was estimated using
the hypergeometric test.

https://www.metaboanalyst.ca/MetaboAnalyst/upload/EnrichUploadView.xhtml
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