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Abstract: The article presents the results of simulations using the finite element method (FEM) aimed
at examining the extent of damage to the wheel rim as a result of hitting an obstacle. The obtained
results can be used as comparative data during the performance of expert opinions to give an answer
as to how the damage occurred. The data obtained from the FEM simulation can also be used in
the process of geometric optimization of the rim, which aims to obtain a rim resistant to this type
of damage.

Keywords: impact; finite element method; optimization; road safety

1. Introduction

Road wheels of vehicles should be treated as a fundamental factor influencing the level
of active safety. They transfer not only the torque generated by the propulsion system, but
also all the forces that result in a reduction in speed and maintenance of directional stability.
Along with the suspension system, the wheels are also the first element reacting to the
forces caused by moving on the surface and damping vibrations related to its unevenness.
It often happens that the wheels are one of the first elements transmitting destructive
forces—during collisions and road accidents. Many studies on vehicle traffic safety have
shown that the tire road friction coefficient (TRFC) is correlated with the accident proba-
bility [1–4]. According to the report on road safety in Poland [5], in 2020 the share of road
accidents due to technical reasons was 17.1%. However, excessive speed of vehicles is still
the main cause of road accidents. This factor is also widely discussed in the literature [6–8],
examples of studies from the Czech Republic are presented in [9] and from Hungary in [10].
The issues of road transport safety are widely discussed in the literature, for example
in [11–16]. Many authors pay attention to vehicle safety systems: braking systems, includ-
ing Anti-lock Braking System (ABS) and Electronic Stability Program (ESP) [17–22], vehicle
suspension systems [23–26], tires [27–30], tire pressure monitoring systems (TPMS) [31,32],
and other systems [33–36]. In [37], tests mapping the damage to the wheel of a tire on a
vehicle on a special test stand are described.

The problem of studying the phenomena occurring between the elements of road
wheels and the ground is complex. Due to this fact, the analysis of damage to these elements
is not used to recreate the course and assess the causes of incidents, collisions, and road
accidents. Damage to road wheels—rims in particular—is a common phenomenon that
experts in this field deal with. It occurs as a result of driving into a hole in the road surface,
hitting an obstacle, or as a result of a collision with another vehicle. One of the key problems
in the analysis of this type of event is determining the speed value—regardless of whether
the problem concerns “only” the payment of compensation for damage (e.g., resulting
from the road condition) or determining the details of the course of a road accident and
determining its cause. In recent times, experts dealing with this subject have less and less
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possibilities in terms of the methods of analysis used. This is due to the use of more and
more modern technological solutions in vehicles, which make the known and used so far
“tools” useless. Attempts to use traces in the form of damage to wheel elements—despite
the fact that the description of the phenomena may be problematic—should be considered
a justified and necessary direction.

Due to road safety, the wheels are subjected to endurance tests [38]. The scope of the
tests includes the measurements of stresses during the simultaneous action of bending and
torsional moments as well as fatigue tests [39–41]. The next laboratory tests that the wheels
are subjected to are impact tests. Their methodology is described by international standards
or by standardized test procedures directly defined by vehicle manufacturers. Impact tests
are mandatory for newly designed car rims and their assigned tires. The tests are designed
to simulate a collision with an obstacle hitting the side surface of the wheel [42,43] and
in the radial direction [44]. The test results are intended to identify the stresses arising
in the tire and rim, and to measure the energy at which the internal structure of the tire
is broken. During the impact tests, the wheel is attached to the supporting structure and
the beater hits the side of the wheel or the tire tread. The weight of the hammer and the
height of the fall depend on the size of the wheel. Cracks and deformations of the wheels
are measured after the tests and their values must be within the specified permissible
ranges [37]. Currently, there are many combinations of rim and tire selection for a given
car model. Applying a different type of tire to a given rim, e.g., a low-profile tire, will
significantly change the stress distribution during hitting an obstacle or a collision. For this
reason, the results of laboratory tests, which determine the strength of the wheel rims, are
not useful for the analysis of the course of real road incidents. Numerical simulation of
wheel impact tests can reduce the risk of test failure and be a valuable tool for the designer
to obtain more efficient and light wheels [45].

2. Materials and Methods

The main and basic scientific assumption adopted by the authors was to develop a tire
wheel model and to conduct a study aimed at analyzing the distribution of stresses and
strains. The road wheel system, due to its complexity in terms of energy consumption and
the ability to suppress excitations from objects with which it interacts, is highly complicated.
The tire is a complex structure, made of numerous layers of materials, e.g., steel, nylon, with
different strength properties. In addition, these layers have different spatial orientation,
and their bonding with the rubber results in an element with a heterogeneous structure. For
this reason, the tire is an element whose structure is difficult to model. The methodology
of numerical tests of tires has been described, among others, in [38,46–50]. The research
conducted by the authors was divided into stages. This study presents and discusses
the results of the first stage. It takes into account the wheel model in which a simplified
(general) tire model was adopted. The work was mainly focused on the analysis of the
phenomena occurring in the wheel rim with the “simplified” tire model. The conducted
numerical tests were related to the simulation of a car wheel hitting an obstacle when
driving perpendicularly against an obstacle such as a curb. The distribution of stresses and
deformations of the wheel rim was analyzed in detail. The image of the deformation of
the wheel rim is a derivative of the static pressure, air pressure in the tire, and the speed of
hitting an obstacle. The obtained test results can be used in the process of reconstruction of
road events, collisions, and accidents. The next stages of the research assume the use of an
extensive tire model (taking into account its structure and structure differentiation, as well
as validation of the developed numerical model based on experimental tests).

3. Model Subject to Numerical Research

The simulation method based on computer-aided design is characterized by low cost
and high safety factor and allows to realistically recreate the failure state [45,51,52]. Due
to the complexity and non-linearity of the tire, the tire is usually simplified or neglected
in the simulation of the wheel-to-obstacle test [53]. Numerical tests were carried out in
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the Abaqus program. A solid wheel model was made, consisting of a 225/50R17 tire and
a 7.5J×17 ET34 rim.

The rubber layer was described as a non-linear constitutive elastic-plastic material based
on the Mooney–Rivlin model [44,46] which was assigned the following parameter values:

• C10 = 0.14 MPa;
• C01 = 1.8 MPa;
• D1 = 0 MPa;
• ρ = 1100 kg/m3.

The air pressure inside the tire was simulated by applying a pressure of 230 kPa to
the inner surface of the tire and the rim. This kind of mapping the pressure ignores the
phenomenon of air compression when hitting an obstacle.

The steel belt inside the tire was simulated by a steel rim with a thickness of 0.35 mm,
the width of which corresponds to the internal dimension of the tire. It was modeled
as a skin element and connected to the inner surface of the tire using the Tie command.
Elements such as the carcass, tread, and bead core were not used.

A contact interaction is superimposed on the outer and inner surfaces of the tire which
interact with each other. This action is designed to simulate the behavior of the rubber
being bent and to avoid it from penetrating the inside of the tire. In addition, the outer sides
of the tire will touch the rim flanges during flexing, so it was necessary to apply similar
interactions here.

The Tie joint was used to connect the rim flange to the tire edges. Without this
connection, the tire could deform inwards on impact. In the real tire, the position is
maintained by the bead that was omitted in the analyzed model.

The solid model of the tire rim was made in accordance with the standard [54]. The
hub model was made on the basis of a real element, but numerous simplifications were
used. This is due to the fact that, in numerical analysis, the hub is used only for mounting
the tire. From the outside, a pull was made to support the rim collar. The hub does not
have a bearing as the simulation does not include the rolling process of the wheel.

In order to ensure the correct movement of the wheel during the impact, its suspension
was modeled. The control arm is simplified in the form of a beam with two holes for sleeves.
Due to the fact that the simulations were carried out for the wheels in the straight-ahead
position, modeling of the rocker joints was abandoned. The solid models of the elements
subjected to the FEM analysis are presented in Figure 1.
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Figure 1. Models used in the strength analysis; (a) rim; (b) tire; (c) wheel hub; (d) rocker arm. Figure 1. Models used in the strength analysis; (a) rim; (b) tire; (c) wheel hub; (d) rocker arm.

The solid model of the wheel suspension did not include a spring and a shock absorber.
Only a virtual influence of these elements on the shock impulse was introduced. The
following parameters were assigned:

• Spring stiffness 22,000 N/m;
• Shock absorber damping coefficient (dashpot coefficient) 2000 Ns/m.

Two variants of the obstacle were created: symmetrical (Figure 2a) and asymmetrical
(Figure 2b). The use of these two types of obstacles will allow to create conditions similar to
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those in reality. These elements were modeled as a non-deformable part, without assigned
material properties.
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Figure 2. Variant of the obstacle: (a) symmetrical, (b) asymmetrical.

After the assembly was made, the FEM mesh was added, the parameters of which are
provided in Table 1.

Table 1. Characteristics of finite elements.

Model Type of Finite Elements Number of Finite Elements Number of Nodes

Tire C3D8R 78,719 109,783

Rim C3D8R 34,656 53,228

Wheel hub C3D8R 1703 2384

The steel belt inside the tire S4R 2540 2667

Obstacle R3D4 2560 2562

A FEM net was applied to all wheel elements, the rocker arm and the obstacle, the
parameters of which are presented in Table 1. The position of the wheel in relation to the
obstacle in the position before starting the analysis is shown in Figure 3.
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When assigning impact parameters, an obstacle reference frame was introduced
(Figure 4). It was assigned with the ability to move along the vertical axis with a value of
v = 13,888 mm/s (v = 50 km/h). The impact time was determined to be t = 0.0102 s.
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4. Modeling Results
4.1. Hitting a Symmetrical Obstacle

Stresses of about 260 MPa arose in the deformed area. The maximum values, 400 MPa,
appeared on the points located on the outer and inner surfaces of the rim flange—Figure 5a.
These are points directly exposed to contact with the obstacle.
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Figure 5. Distribution of stresses (a) and displacements (b) after the wheel hits a symmetrical
obstacle—isolated rim.

Figure 5b shows the map of points displacement with respect to the initial position.
Due to the inversion of the coordinate system, the displacements are negative. The maxi-
mum value of the displacement of individual points on the boundaries of the flanges is
46.7 mm from the initial position. By subtracting this value from the displacement of the
global coordinate system (17.6 mm), we obtained the real value of the deformation of the
rim, which is 29.1 mm.

Figure 6 shows the behavior of the suspension components (rocker arm, shock absorber,
spring) during the simulation. The end of the rocker arm mounted to the hub made a
movement consistent with the displacement of the wheel. There was a rotation around the
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inner sleeve (Figure 6b). A slight deformation of the element was observed, which is as
expected due to the use of pins in the actual suspension.
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The second element influencing the results of the analysis was a shock absorber with a
spring. As expected, there was a change in length (shortening) of this part (Figure 6d)—they
worked correctly.

Although the tire model was simplified compared to the real object, the simulation
resulted in deformations (Figure 7) consistent with the observation after the wheel hit the
real obstacle. It can therefore be concluded that the model and material properties of rubber
were correctly selected for the purposes of this analysis.
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4.2. Hitting an Asymmetrical Obstacle

Another analysis concerns the impact of the wheel on an asymmetrical obstacle while
maintaining the same parameters, i.e., impact speed v = 50 km/h, impact time t = 0.0102 s.
The map of stresses for this simulation is shown in Figure 8a.
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Figure 8. (a) Distribution of stresses and (b) displacements; after the wheel hits an asymmetrical
obstacle—isolated rim.

It can be seen that there are single points on the deformed surface of the rim flange
with the same maximum stress value of 400 MPa. On most surfaces, the stresses of 260 MPa
were observed as shown in Figure 5. However, the area of their occurrence is different. In
the event of a collision with a symmetrical obstacle, the stress map of this value covers the
area in the radial direction from the points on the outer diameter through the surface with
bolt holes to the curve surrounding the central hole. After hitting an asymmetrical obstacle,
the stresses equal to 260 MPa appear on the protective hump (HUMP) of the rim surface.
The development of stresses on the flange on an arc equal to 2/5 of the rim circumference
is also noticed. The deformation in the rim (Figure 8b) corresponds to the shape of the
obstacle. Contrary to Figure 5b, the rim surface is clearly divided into two areas, with
different deformation values.

The maximum value of the displacement of individual points on the boundaries of the
flanges is 47.4 mm from the initial position. By subtracting this value from the displacement
of the global coordinate system (17.6 mm), we get the real value of the rim deformation,
which is 29.8 mm.

Figure 9 shows a comparative graph of stress increase as a function of time. The
maximum stresses visibly fall into two stages (Figure 7). The first stage is the compression
time of the tire. The stresses that arise in the rim then result from the interaction of the tire
and compressed air. At the moment of direct impact of the obstacle on the rim, the stress
increases rapidly to the maximum values and is maintained until the end of the simulation.

The values of the stresses in the rim when hitting an asymmetric obstacle increase
slower than in the case of a test with a symmetrical obstacle. This may be due to the smaller
increments of pressure change within the tire due to the different obstacle surface acting
on the wheel. When the obstacle is in direct contact with the rim of the wheel, the stress
increases rapidly. It can be concluded that, apart from the extent of deformation, the change
in the shape of the obstacle has no effect on the differences in the values of stresses in
the rim.
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5. Research on a Real Object

Simulations of the impact of a tire with an obstacle are performed with the condition
of vertical displacement of the obstacle towards the stationary wheel. This assumption is
also the basis for performing experimental tests related to tire damage and deformation
of the wheel rim. However, in the case of a real collision, the conditions of contact of the
wheel with the obstacle are different and result from the location of the impact point on the
wheel, the angular position of which results from the height of the obstacle.

Laboratory tests were carried out on the impact of a pneumatic tire consisting of a
225/50R17 tire mounted on a 7.5J×17 ET34 rim against an obstacle while maintaining
impact conditions similar to real ones. The aim of the measurements was to compare the
results of the wheel rim deformation obtained in both methods.

The test stand is shown in Figure 10. The wheel mounted on the support system
is moved vertically without the possibility of rotating in relation to the obstacle. The
obstruction is restrained so that the straight line joining the point of contact with the
center of the wheel makes an angle of 30◦ to the vertical axis of the wheel. The shape
and dimensions of the obstacle corresponded to a curb block installed between the road
surface and the footpath. The implementation of the experiment consisted of loading the
vehicle wheel in the vertical direction. The value of the loading force was selected so that
the impact energy corresponded to the energy when the vehicle was moving at a speed of
50 km/h.
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Figure 10. View of the test stand: 1—transverse and longitudinal displacement mechanism of the
measuring table; 2—hydraulic pump; 3—pair of vertical force sensors; 4—hydraulic actuator; and
5—control panel for measuring the vertical load.

Figures 11 and 12 show the stages of the wheel hitting an obstacle performed on the
test stand.

The shape of the deformation of the rim is similar to the shape obtained from the model
tests of a collision with a symmetrical obstacle (Figure 5). The maximum displacement of
the point at the edge of the rim is 21 mm. This value is lower by approx. 30% in relation to
the results obtained in FEM modeling. Despite the use of a simplified numerical model
to analyze damage to a passenger car wheel after hitting an obstacle, the obtained results
were similar to those presented by Gao et al. [55].
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6. Conclusions

The bench tire deformation tests were performed according to the test procedure
contained in international standards. This is due to the necessity to obtain repeatability of
tests and to compare the results obtained for various combinations of tire and wheel rim.
The numerical tests using the finite element method were based on the general assumptions
of the bench tests regarding impact modeling. In real cases, we often encounter a situation
where a vehicle moving along a track perpendicular to an obstacle (curb) hits it. The point
of impact does not lie in the vertical plane of the wheel, but its position depends on the
diameter of the wheel and the height of the obstacle. The resulting deformation of the rim is
the only parameter used to analyze the causes of a collision, in particular the vehicle speed.
Therefore, a problem arises whether the results of the tire wheel strength analysis carried
out according to standardized procedures can be used to infer the causes of a collision. The
results presented in the article allow for the formulation of two basic conclusions regarding
the deformation of the rim. The formulation of hypotheses may be supported by the results
of numerical analyses of the collision of a wheel with a symmetrical obstacle. The obtained
differences in the size of the deformation of the rim are acceptable during court settlements
as to the causes and effects of the collision.
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