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Abstract: This review summarizes recent applications of nickel as a nonprecious metal catalyst in
hydrodehalogenation (HDH) reactions of halogenated aromatic compounds (Ar–Xs). Nickel-based
HDH catalysts were developed for reductive treatment of both waste containing concentrated Ar–Xs
(mainly polychlorinated benzenes) and for wastewater contaminated with Ar–Xs. Ni-catalyzed
HDH enables the production of corresponding nonhalogenated aromatic products (Ar–Hs), which
are principally further applicable/recyclable and/or Ar–Hs, which are much more biodegradable
and can be mineralized during aerobic wastewater treatment. Developed HDH methods enable
the utilization of both gaseous hydrogen via the direct HDH process or other chemical reductants
as a source of hydrogen utilized in the transfer of the hydrodehalogenation process. This review
highlights recent and major developments in Ni-catalyzed hydrodehalogenation topic since 1990.

Keywords: hydrodehalogenation; hydrodechlorination; nickel; bimetallic systems; nanocatalysts;
Al–Ni

1. Introduction

Ar–Xs are commercially important chemicals that are used as inert solvents (chloroben-
zene or o-dichlorobenzene), end products and intermediates in the manufacture of plastics,
dyes and a diversity of agrochemicals, flame retardants or other specialty fine chemicals.
Ar–Xs are xenobiotic, highly stable in the environment, resistant to biodegradation, often
exhibit considerable toxicity and have long been regarded as a major source of environmen-
tal pollution [1]. The presence of Ar–Xs in effluent discharges is of increasing concern, due
to the ecological effects and impact on public health. The upcoming restrictive legislation
evokes urgency to the development of effective removal strategies [1].

Catalytic hydrodehalogenation (HDH) is an effective means of detoxifying halo-
genated waste. Catalytic HDH represents a modern approach whereby the hazardous
Ar–X is transformed into an easier biodegradable or even recyclable product (Ar–H) in
a closed system with limited toxic emissions or enabling the detoxification of aqueous
contaminants for subsequent biological treatment. HDH is a burgeoning area in an envi-
ronmental catalysis focused on the treating of environmental pollutants in the past two
decades. HDH involves hydrogenolysis of C–X bonds, lowering the toxicity and generat-
ing biodegradable or even reusable raw material Ar–H from Ar–X. It requires an external
source of hydrogen and is typically promoted using hydrogenation catalyst (Pd, Pt, etc.) [1]:

Ar-X + H2 → Ar-H + HX

To date, incineration has largely been the preferred technology for destroying dan-
gerous waste contaminated with Ar–Xs but the requisite high decomposition efficiency
(>99.9999%) is difficult to achieve in case of halogenated aromatic compound [2]. From
an economic viewpoint, considering incineration as the principal means of halogenated
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organic waste treatment, a move to a catalytic hydrodehalogenation-based treatment
represents immediate cost saving in terms of fuel and/or possible chemical recovery [1].

In addition, effective HDH enables the application of halogen as the protective and/or
directive group in aromatic substitution reactions in syntheses of specialty organic fine
chemicals, for example of herbicide Dicamba [3].

Considering the high cost of noble catalysts and the difficulties of platinum metals-
based catalysts preparation, it is essential to develop the intensification method to optimize
the HDH technique using an inexpensive catalyst. Advancement in the Ni-based HDH
field provides an attractive inexpensive alternative to HDH based on precious (platinum-
based) metal catalysis by expanding their application space in a range of halogenated
waste treatment methods [1–5]. In addition, the toxicity of nickel is lower in comparison
with platinum group metals [6–9]. Since Ni is ubiquitously present in the environment,
the exposure to low doses of Ni is unavoidable and may not be harmful to humans in low
concentrations [10]. It has been published that the daily dietary human’s intake of nickel
varies between 25–300 µg Ni. Nickel ranks as the 24th element in the order of abundance
in the earth’s crust [11]. Due to the above-mentioned reasons, Ni-based hydrogenation
catalysts are broadly used for thickening of vegetable oils for margarine production [12].

Direct HDH using excess of H2 gas and transfer HDH are the two employed strategies
for reductive treatment of Ar–Xs.

2. Ni-Catalyzed HDH Using Gaseous H2

Direct HDH for Ar–Xs was studied using nickel supported on support such as alumina
[13–23], silica [24–33], carbon [13,34] or unsupported in the form of Raney nickel [35–37] using
pressurized hydrogen and an elevated temperature in the gas phase.

Ni is a much less active HDH catalyst in comparison with platinum metals. For
this reason, the Ni-catalyzed HDH of Ar–Xs is performed at a higher temperature in the
gaseous phase. Using mild reaction conditions (120 ◦C/0.1 MPa of H2), the Ni-catalyzed
hydrogenation of 4-chloronitrobenzene produces 4-chloroaniline selectively using both
Ni/SiO2 or Ni/Al2O3 and no HDH reaction was observed [38]. Due to the lower reductive
activity of nickel compared with platinum metals [13,14], however, Ni-based heterogeneous
catalysts are much more selective in HDH of (poly)chlorinated benzenes producing 100%
of less chlorinated benzenes and benzene with no benzene ring reduction [29,39]. Although
even powdered nickel is active for HDH process [40], most of the published research works
studied the activity of supported Ni catalysts [41]. The lower Ni consumption, higher
mechanical strength and higher thermal stability of supported Ni-based HDH catalysts
give main reasons for research focused on effect of suitable inorganic supports. In addition,
appropriate inorganic support provides higher specific area suitable for smaller Ni particle
size formation during preparation of supported HDH catalyst which can favorably cause
the catalytic activity.

The product selectivity and catalyst stability can also be influenced by the sort of
catalyst support. As observed by Amorim et al. [39], specific hydrodechlorination (HDC)
rates over the supported Ni system increased with the decreasing specific metal area and
usually increase with the Ni particle size [42,43].

2.1. Gas Phase HDH Catalyzed by Nickel on Alumina

Nickel on γ-alumina has a lower activity than when supported on active carbon; the
difference is about one order of magnitude at 200 ◦C. The Ni content 5–10 wt% on alumina
appears to be a suitable choice for the treatment of chlorinated aromatic compounds [13].

Nevertheless, HDH in the gaseous phase using Ni supported on Al2O3 was intensively
studied and often compared with the action of Pd/Al2O3 or Pd/SiO2.

Using Pd(1 wt%)/Al2O3 enables 99% HDC of Ph–Cl at 140 ◦C and ambient pressure
of gaseous hydrogen with 86% selectivity for cyclohexane [44]. As was published by
Keane, Ni(3 wt%)/Al2O3 catalyst reduces Ph–Cl at 160 ◦C and ambient pressure of gaseous
hydrogen with 100% selectivity for benzene [1].
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The involvement of spillover hydrogen (dissociated atomic hydrogen on Ni sup-
port [1]) was examined in gas phase HDC) of chlorobenzene (CB) and 1,3-dichlorobenzene
(1,3-DCB) over Ni. The catalytic action of single component Ni, Ni/Al2O3 and physical
mixtures of Ni and Pd with Al2O3 has been considered. Inclusion of Al2O3 with Ni and
Ni/Al2O3 increased the spillover with an associated increase in the specific HDH rate (up
to a factor of 10) and enhanced selectivity to benzene from 1,3-DCB [14] (Scheme 1).
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De Jong and Louw compared HDC activity of Ni supported on carbon and γ-alumina
with Pt- and Pd-based HDC catalysts [13]. They observed that the HDC activity of Ni-
based catalyst is similar to Pt or Pd ones at temperature 250 ◦C. Generally, the HDC
activity of tested Ni supported catalysts increase with increasing content of supported
Ni. The main differences in HDC activity of Ni and platinum group metal-based cata-
lysts were found at lower temperature range (150–220 ◦C) where platinum group metals
based HDC catalysts are much more efficient [13]. Cesteros et al. studied the course of
HDC of 1,2,4-trichlorobenzene (1,2,4-TCB) related to the amount of H2 available at the
reaction temperature [15]. This research proved that the most selective Ni/Al2O3- and
Ni/NiAl2O4-based catalysts for HDC of 1,2,4-TCB to benzene are those which embody
the highest amounts of H2 desorbing at lower temperatures [15,16]. Fresh and reactivated
Ni/NiAl2O4 hydrogenates 1,2,4-TCB to cyclohexane in 30 min at 250 ◦C, an irreversible
partial chlorination of the catalytic surface making the hydrogenation of the aromatic
ring difficult [15]. Catalyst containing 10% Ni supported on γ-Al2O3 enables complete
gas phase HDC of chlorobenzene, chlorophenols, chloroanilines and chlorotoluenes at
250 ◦C, on the other hand, 4-chlorotrifluoromethylbenzene was selectively dechlorinated
to trifluoromethylbenzene under the same reaction conditions [17].

Using different mesoporous Al-MCM-41 materials as the support for Ni catalysts, Ces-
teros et al. performed complete and selective HDC of 1,2,4-TCB to benzene at temperature
above 225 ◦C. The number of converted 1,2,4-TCB molecules per second divided by the
total number of surface Ni atoms (TOF) varied between 1.2–8.0 × 10−4 s−1 [16].

An electrophilic substitution reaction was assumed for the gas-phase HDC of substi-
tuted chlorobenzenes on Ni/γ-Al2O3 [17].

The catalytic gas-phase HDC of 2,4-dichlorophenol (2,4-DCP) has been explored
over Ni/Al2O3 and Au–Ni/Al2O3 at 200 ◦C Hydrogen chemisorption on Au–Ni/Al2O3
was approximately five times lower than that recorded for Ni/Al2O3, but both catalysts
show equivalent initial HDC activities. Ni/Al2O3 exhibits an irreversible progressive
deactivation where partial HDC to 2-CP is increasingly favored over complete HDC to
phenol. However, at least 15 mol% of 2-CP was observed (except benzene) in the obtained
reaction mixture in each case. In contrast, thermal treatment of Au–Ni/Al2O3 in H2 after
the reaction increases HDC activity with a preferential complete HDC to phenol. This
result was also achieved by a direct treatment of Au–Ni/Al2O3 with HCl [18] (Scheme 2).
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For comparison of reactivity of Pd- and Ni-based HDC catalysts, complete Pd/Al2O3
catalyzed HDC of 2,4-DCP was finished even after 30 min using Pd(9.2 wt%)/Al2O3 cata-
lyst (dosage 0.5 g Pd/Al2O3 per liter containing 2,4-DCP/NaOH = 1

2 and Cl/Pd ratio below
200) at 330 K (liquid phase) and ambient pressure of H2 [45]. A more robust Ni-based
catalyst for gas phase HDH was discovered with the testing standard hydrodesulfurization
Ni–Mo/Al2O3 catalyst HDS-9A (American Cyanamid Co., Wayne, NJ, USA) [19]. Even if it
works at 320–350 ◦C and higher H2 pressure (2–10 MPa), it is tolerant to the sulfur impuri-
ties in the treated halogenated waste. This catalyst is able to form HDH hexachlorobenzene,
1,2,3-trichlorobenzene, 1,2-dichlorobenzene, chlorobenzene [4,20] and polychlorinated
biphenyls, although the reaction time for complete conversion to the benzene is around
8 h [21].

Using carbon as the support for Ni–Mo sulphides (sulphided Ni–Mo/C), the HDH of
dichlorobenzenes, dichlorotoluene and dichlorobiphenyls proceeds smoothly in a range of
210–230 ◦C under hydrogen pressure of 3 MPa producing corresponding aromatic products
(benzene, toluene, biphenyl) [22] (Scheme 3).
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commercial hydrodesulfurization catalyst HDS-9A or Ni–Mo/C at 320–350 ◦C and 2–10 MPa of
H2 [4,21,22,33].

A number of Ni–Mg–Al and Ni–Al hydrotalcite-like precursors were prepared and
their catalytic properties in the gas-phase HDH of 1,2,4-TCB was studied at 250 ◦C. It was
documented that increasing the MgO content in the prepared catalyst greatly increased
both the activity and selectivity to benzene and the high stability of the prepared catalyst.
The positive effect of MgO was explained because MgO modifies the electronic properties
of the Ni particles causing H2 desorption at lower temperatures and also chemisorbs the
HCl produced during the HDC reaction [23].

2.2. HDH Catalyzed by Nickel on Silica

HDH of chlorobenzene, bromobenzene, their mixtures, and the three chlorobromoben-
zene isomers was examined over the temperature range 200 ◦C≤ T≤ 330 ◦C using Ni/SiO2
where the Ni loading was varied from 6.2 to 15.2% wt/wt. Each catalyst was 100% selective
in terms of HDH and there was no evidence of cyclohexane formation [1,24–27].

In case of HDC of chlorobenzene (Ph–Cl), using 3 wt% Ni on SiO2, Keane calculated
HDC to benzene reaction rate as pseudo first order rate constant k = 20,000 molPh–Clh−1g−1

at 150 ◦C [1]. Using similar conditions and Pd/Al2O3 catalyst, Prati and Rossi describe
HDC conversion of Ph–Cl ca. 98–99% with selectivity 86–89% for benzene (and 11–14%
cyclohexane) using 0.27 mmol min−1 PhCl and 2.5 mmol min−1 H2 per gram of Pd(1
wt%)/Al2O3 catalyst at T = 413 K [44].

The comparison of HDC activity of Ni- and Pd-based catalysts supported on SiO2
is possible to make comparing published data measured by Keane (Ni/SiO2) [1,27] and
Aramendia (Pd/AlPO4-SiO2) [46]. Ni/SiO2 has lower activity compared with Pd/SiO2 in
conversion of polychlorinated benzenes to nonchlorinated product(s). In case of Ni/SiO2,
the mixture of less chlorinated benzenes with benzene is produced during gas phase
HDC [27].

Keane et al. described that Ni/SiO2 inclines to a temporal loss of activity during
HDH reaction above 290 ◦C which was accompanied by Ni particle growth and structural
modification with a consequent disturbance to the H2 adsorption/desorption surface
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dynamics [28]. The main reason for deactivation of Ni/SiO2 based HDH catalysts seems to
be the need to work at a high temperature (often higher than 300 ◦C) which is accompanied
by sintering of catalytically active Ni particles and disruption of H2/catalyst interaction [29]
(Scheme 4).
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The changes in catalytic support seem to have a minimal negative effect on HDH
reaction at the reaction conditions. This was confirmed in the study of Kim et al. [30–32],
where mesoporous alumina and silica Ni-based catalysts, with a well-defined and uniform
surface of the inorganic support, were prepared and tested for HDH of 1,2-dichlorobenzene.

Mesoporous silica Ni-based catalyst was obtained by the sol-gel method using Ni(II)
complexed by polyethyleneoxide added into SBA-15 as silica precursor [31]. Mesoporous
alumina Ni-based catalyst was prepared by mixing of nickel and magnesium stearate with
alumina sol and subsequent calcination of obtained precipitate at 550 ◦C [32].

Both the prepared mesoporous-nickel materials were well defined, however, their
HDH activity and stability were limited and worse than other elsewhere published Ni-
supported HDH catalysts at 350 ◦C [30]. Even in the case of Ni/SiO2 catalytic systems,
the selection and addition of the second appropriate metal to nickel for HDH catalyst
preparation increases the stability in the HDH process. Cu/Ni catalyst prepared using
well-defined mesoporous silica (MCM-41) as the support was proved to be highly active
and stable for HDC of Ar–Cls even at room temperature and ambient H2 pressure especially
in isopropylalcohol with the addition of triethylamine as the base [33] (Scheme 5). The
activity of catalyst remains unchanged after three recycling steps.
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Scheme 5. HDC of chlorobenzene at room temperature and ambient pressure using Cu–Ni supported
on mesoporous silica MCM-41 [33].

2.3. HDH Using Ni on Active Carbon

For 5 wt% PhCl in octane in gas phase mixed with hydrogen, Pd on active carbon
(10 wt% Pd) was found to be the most active HDC catalyst, with complete reaction even
at 200 ◦C, giving HCl, benzene and cyclohexane as HDC products. Using 10 wt% Ni
on active carbon hydrodehalogenates Ph–Cl completely at 250 ◦C. Products are HCl and
benzene. Ni (10 wt%) on γ-Al2O3 has a lower HDC activity for Ph–Cl producing benzene
quantitatively at 350 ◦C. The alumina-supported Ni catalyst (10 wt% Ni) has a high activity
to Ph–Cl but cracking above ca. 350 ◦C results in rapid deactivation, probably due to
coke formation [13]. Carbon-supported Ni catalysts prepared using Ni–Al layered double
hydroxide/carbon nanocomposite precursors displayed excellent activity in liquid phase
HDC Ph–Cl with TOF in range 0.1–7.1 × 102 s−1 depending on structure and Ni/C ratio of
prepared catalysts [47].
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2.4. Raney Nickel Based HDH

Attempts were made to dehalogenate Ar–Xs even in the liquid phase especially using
more active forms of Ni catalysts. It was published that at a low temperature (70 ◦C)
working in the liquid phase, the HDH activity increased in order: Ni/SiO2 < Ni/Al2O3 <
Raney Ni < Ni/C [34].

Using liquid phase conditions and a reaction temperature between 60–70 ◦C, the
Raney Ni-catalyzed HDH proceeds well using an elevated pressure of hydrogen (1 MPa)
in the presence of alkaline hydroxide for the removal of produced HX by neutralization.
Under the liquid phase conditions, a gradual loss of catalyst activity was observed in all
probability due to the covering of the catalyst’s surface with NaX. After aqueous treatment
causing NaX dissolution, the catalyst activity was restored [34].

Rapid HDH of tetrabromobisphenol A catalyzed by the suspension of the Raney Ni
catalyst and on cathode electrochemically produced nascent hydrogen was published using
co-action of ultrasound [35] (Scheme 6).
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Recently, Ma et al. published a straightforward HDC of chlorinated phenols catalyzed
by Raney Ni (20 mg per mmol of 4-CP and 1.1 mmol of NaOH) at room temperature
and ambient pressure of hydrogen in an alkaline aqueous solution. The employed Raney
Ni was successfully reused more than five times without a significant effect on HDC
conversion. The authors observed that the applied combination of triethyl amine, together
with NaOH as the base, is the most effective combination in this HDC process due to the
minimizing of Al/Ni leaching from the Raney Ni catalyst during the HDC process [36].
For comparison, the complete HDC was observed after 30 min using 5% Pd/C (5 mg per
mmol 4-CP in co-action of 1.05 eq. of NaOH) at room temperature and ambient pressure of
hydrogen [48]. Using Rh nanoparticles (2.45 mg Rh/L) under the same reaction conditions,
the complete non-selective HDC of 4-CP (100 mg/L) was achieved after 1 h, producing
phenol, cyclohexanone and cyclohexanol [49].

The HDH of lipophilic Ar–Xs catalyzed by Ra–Ni is significantly enhanced by the
addition of excess of aqueous NaOH or KOH for neutralizing of the produced HX with the
addition of the phase-transfer catalyst to enable facile transport of hydroxide anions into
the immiscible organic phase containing Ar–Xs [37].

3. Hydrogentransfer in Ni-Catalyzed Hydrodehalogenation Reactions

Transfer HDH reaction, described as the addition of hydrogen to a molecule from
a non-H2 hydrogen source, is a convenient and powerful method to obtain various non-
halogenated compounds (Ar–Hs) from starting Ar–Xs. It is an attractive alternative to
direct HDH. The reasons for this are (i) the transfer HDH method does not require poten-
tially hazardous pressurized H2 gas nor elaborate experimental setups, (ii) the hydrogen
donors are readily available, inexpensive and easy to handle, (iii) the major side product
is potentially recyclable, and (iv) the usually used catalysts are readily accessible and not
sensitive [50–54].

For transfer hydrogenation reactions, in-situ generated Ni(0) is generally used which
is more active in comparison with Ni/Al2O3, Ni/SiO2 or Ni/TiO2 [55,56].
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Powerful reductants such as ionic metal hydrides (NaBH4 and its derivatives, CaH2)
or several electropositive metals are usually used in the published Ni-catalyzed transfer
HDHs in contaminated water or organic solvents [51–57].

It is known that simple Ni(II) salts react with NaBH4 in water or an ethanol solution
to form a black precipitate (nickel or nickel boride) which is a powerful hydrogenation
catalyst under heterogeneous conditions. Solvents of a greater coordinating power, such
as N,N-dimethylformamide, Ni(II) chloride and NaBH4 reportedly constitute a soluble
hydrogenation catalyst [51] (Figure 1 and Scheme 7).
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Scheme 7. Reduction of Ni(II) salts produced colloidal Ni(0) or soluble complex of Ni(0) depending
on used solvent and/or ligands, respectively [51].

Tabaei et al. studied the effective HDH of polychlorinated biphenyls (PCBs) in tetrahy-
drofuran (THF) solution using an excess of NaBH2(OCH2CH2OCH3)2 and the addition
of NiCl2 at 68 ◦C after ten hours of action [58]. Using the same reaction conditions,
1,2,4-trichlorobenzene was hydrodechlorinated with a high efficiency to benzene and
chlorobenzene [59] (Scheme 8).
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Scheme 8. Ni(PEt3)2Cl2 catalyzed HDC of polychlorinated biphenyls in THF [59].

Scrivanti et al. later even published the complete HDH of 1,2,3-trichlorobenzene
using an excess of NaBH4, the catalytic amount of Ni(Ph3P)2Cl2 salt with the co-action
of an extra two equivalents of Ph3P in ethanol/pyridine solution at 70 ◦C after several
hours of action. The formation of Ni(0) stabilized with Ph3P is proposed as a catalytically
active Ni(0)-based species which oxidatively inserts into the C–Cl bond and enables its
subsequent reduction [60] (Scheme 9).
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Scheme 9. HDH of Ar–X using Ni(PPh3)2Cl2 with 2 equivalents of PPh3 in ethanol/pyridine
with subsequent addition of excess NaBH4 (benzene was produced with 100% conversion using 2
mmol 1,2,3-TCB dissolved in 10 mL ethanol/pyridine 9/1 with addition of 0.05 mmol Ni(PPh3)2Cl2,
0.1 mmol PPh3 and 7 mmol NaBH4 at 70 ◦C/3 h) [60].

Recently, a series of Ni(NNP) pincer complexes with HDH activity in co-action of
excess of NaBH4 as a reductant was described by Wang and Gardinier [61]. This system
(especially in case if R = methoxy or methyl) was recognized as effective mainly for
hydrodebromination of Ar–Brs and hydrodeiodination of Ar–Is but is very slow in case of
HDC of Ar–Cls in N,N-dimethylacetamide (DMA) even at 80 ◦C [61] (Scheme 10).
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Scheme 10. HDH of Ar–Br or Ar-I using Ni(NNP) complex and NaBH4 and the proposed reaction
pathway [61].

The main drawback of above-mentioned methods seems to be poor utilization of used
NaBH4 reductant. Only one hydride from NaBH4 reductant is used for HDH of Ar–X with
subsequent loss of untapped BH3. This drawback is potentially removed by the method
described by Lipshutz et al. using Me2NH.BH3 as the reductant, Ni(Ph3P)2Cl2 as the source
of Ni-catalyst and K2CO3 as the HX scavenger in acetonitrile [62]. This method affords
facile HDH of aromatic iodides, bromides and even chlorides (Scheme 11).
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Scheme 11. The efficient HDH caused by borane-dimethylamine catalyzed by in-situ prepared
Ni(Ph3P)n [62].

Sakai et al. described facile HDH of Ar–Xs using an excess of zinc powder and aqueous
NaOH in ethanol catalyzed by colloidal nickel produced in-situ from added NiBr2 at 60 ◦C.
The oxidative addition of Ni into Ar–X bond is considered with subsequent reduction to
Ar–H and recycling of catalytically active nickel [63].

Prichodko et al. published the promoting effect of ionic liquids for Ni-catalyzed HDH
using powdered zinc in the role of reductant and Ni(PPh3)2Cl2 with co-action of PPh3
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as HDH catalyst. In the described procedure, different Ni(L)nCl2 (L = Bpy, Phen, PPh3)
complexes were tested as Ni-based HDH and/or homocoupling catalysts in 1-alkyl-3-
methylimidazolium chloride or other ionic liquids (1-alkyl-3-methylimidazolium halides,
AlkMIMXs) and compared with the application of N,N-dimethylacetamide as the polar
aprotic solvent [64] (Scheme 12). The calculated TON is 18–20.
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Shteingarts and Adonin described effective co-action of Zn powder as the reductant
and NiX2 together with appropriate ligand (2,2′-bipyridyl (bipy) or phenanthroline (phen))
for partial aromatic hydrodefluorination in case of polyfluorinated aromates [60,61]. Us-
ing this Ni-based HDH system, (the hydride complex HNiXLn probably operates as the
reductant [65,66]) (Scheme 13).
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It is well known that the catalytic system based on complexes of Ni(II) with bipy
even enables polymerization of dichloroaromates in tetrahydrofuran using NaH as the
reductant [67] (Scheme 14).
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Scheme 14. Ni-based HDC of p-dichlorobenzene produces polyphenylene [67].

Tetrabromodiphenyl ethers dissolved in minute concentrations in a methanolic solu-
tion of triethylamine were hydrodebrominated by hydrogen produced upon irradiation of
dispersed Ni-graphite carbon nitride C3N4 catalyst [68].

Based on recognition of Ni(II) role in coenzyme F430, some artificial models were
synthetized and tested as biomimetic catalysts in HDH reactions. Only slow partial HDC
of hexachlorobenzene to pentachlorobenzene using Ni-complex F430 with Ti(III) citrate as
the electron donor was, however, observed. The authors proved that Co-complex such
as vitamin B12 is much more effective in HDH reactions using Ti(III) citrate [69]. Based
on the structure of coenzyme F430, structurally simpler complexes were tested as possible
biomimetic HDH catalysts [51].

Ni(II) complexes of several tetraazacycles were reported to form soluble complexes
with NaBH4, but no catalytic activity was ascribed to these compounds. The 2,6-disubstituted
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pyridine-based Ni(II) complexes (Figure 2) were described as effective homogeneous HDH
catalysts for polychlorobenzenes reduction using NaBH4 or hydrazine in mixtures of polar
organic solvents (acetonitrile, ethanol) or their aqueous solutions [70,71].
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zenes [65,66].

Isopropyl zinc bromide and especially tert-butyl magnesium bromide used as reduc-
tants and Ni(II) 1-benzoyl-5-hydroxypyrazoline complex (NiNOO) as the catalyst enable
facile dehalogenation not only of halogenobenzene derivatives in tetrahydrofuran but
even of hexachlorobenzene [72] (Scheme 15). The use of sufficient excess (over 6 eq.) of
t-BuMgCl enables even complete HDC of hexachlorobenzene.
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Scheme 15. NiNOO complex mediated HDH using isopropylzinc bromide or tert-butylmagnesium
chloride as reductants [72].

LiH-based HDH catalyzed by Ni-complex produced by the reaction of tert-butyl
alcohol with LiH and nickel acetate in hot tetrahydrofuran or 1,2-dimethoxyethane was
recognized as being very effective for halogenobenzenes or halogenonaphtalene [73–78]
(Scheme 16).
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Scheme 16. NiCRA produced by the reaction of alkali metal hydride with soluble Ni(II) salt,
Al(III)acetylacetonate and t-BuOH in ethers smoothly hydrodehalogenates Ar–Xs [73–78].

Subsequent research of Fort et al. developed a new HDH system based on Ni–Al
clusters produced in-situ from Ni(II) acetate and Al(III) acetylacetonate using sodium
alkoxide/sodium hydride in THF [79–82] (Scheme 17).
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in THF using excess of NaH (100% conv. to benzene starting from di-, tri- or tetrachlorobenzene
using 10 mol% of nano Al–Ni and 2.5-fold mol excess of NaH per C–Cl unit) [79–81].

4. Decontamination Methods Based on Transfer HDH for Treatment of Contaminated
Aqueous Solutions

Probably over 90% of hazardous waste is aqueous and its toxic effect is dependent
on the kind and concentration of contaminants dissolved or dispersed in produced waste
water [82,83].

4.1. Raney Nickel Applications in Transfer HDH

Ma et al. published a smooth HDH of chlorophenols with H2 in an alkaline aqueous
solution using suspension of the Raney nickel catalyst [84]. The used Ra–Ni is recyclable
5-times without loss of HDC activity.

Wang et al. reported an increase in the HDH rate using ultrasonic action on triclosan
catalyzed by Raney Ni saturated with gaseous H2 [85].

Raut et al. published effective HDC of 4-chlorophenol (30 mg/L) caused by a high
excess of Raney Ni (3 g/L) in an aqueous solution by co-action of trialkyl amines (45 mg/L)
without the addition of other reductants [86]. The observed HDC was explained by the
partial dissolution of Raney Ni in an aqueous trialkylamine solution with subsequent
H2 formation which adsorbed on catalytically active nickel sponge and caused HDC of
4-chlorophenol (Scheme 18). The proposed mechanism is based on the observed increase
of dissolved Ni in the reaction mixture during described HDC process [86].
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Scheme 18. Dissolution of Ni in R3N/H2O produces H2 reductant causing HDH of 4-chlorophenol
(86% HDC conversion decreases to 38% after 3th recycling of used Ra–Ni) [86].

For comparison of HDC activity, Ra–Ni (1 g/L) or Pd(5%)/C (1 g/L) were tested for
HDC of 4-CP (30 mg/L). After 24 h of action, Pd/C caused complete HDC of 4-CP whereas
Ra-Ni achieved 84% conversion to phenol [86].

Study of Ma et al. [87] compares activity of Raney nickel and Pd/C as HDH catalysts.
It was found that HDH of halogenated benzenes or halogenated phenols using 120 mg Ra-
Ni is usually more rapid in case of application 20 mg Pd/C under otherwise same reaction
conditions. Beside this, the tested catalysts differ in hydrogenolytic scission reactivity of
Ar–X.
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4.2. Utilization of Raney Al–Ni Alloy in HDH Processes

Another simply available HDH system applicable for Ar–X contaminated wastewater,
serve alloys or bimetals containing electropositive metal and nickel applied as HDH
catalyst.

For effective HDH of Ar–Xs, the Raney Al–Ni alloy was broadly studied in alkaline
aqueous solution contaminated with Ar–X. Raney Al–Ni alloy is commercially simply
available and low-cost. This alloy contains 50 wt% of Al and 50 wt% of Ni bound in the
form of Al3Ni and Al3Ni2. Different bases such as NaOH or KOH [88–104], alkali metal
carbonates [89,94,95], NaF [100] or some alkaline salts of complexing agents [91,101] were
proved for HDH processes. It was observed that Raney Al–Ni alloy is, especially in diluted
aq. NaOH or KOH, a very effective and universal HDH agent enabling quantitative HDH
of Ar–Br, Ar–Cl compounds at elevated temperature [89,90,95,96,99,102,104] or even at
room temperature [81–94,98,103].

According to the mentioned articles studying Al–Ni alloy HDH properties, the above-
mentioned Al–Ni alloy is a quite robust HDH agent in diluted aqueous solutions of alkali
metal hydroxides. Raney Al–Ni alloy was reported as an applicable reduction agent
for complete HDH of halogenated anilines [88,91], (poly)chlorinated benzoic acids [100],
chlorinated benzenes [88], mono- and dichloro-biphenyls [95,97], polybrominated diphenyl
ethers [89], (poly)halogenated phenols or polyhalogenated bisphenol A [89,90,92,100,101],
chlorinated benzils [103] and halogenated benzophenones [96].

HDH is accompanied by reduction of other reducible functional groups, carbon-carbon
bond cleavage or hydrogenation of aromatic ring, especially at elevated temperature. HDH
of chlorobiphenyls produces biphenyl together with phenylcyclohexane [95,97] using
excess of Al–Ni at temperature above 60 ◦C (Scheme 19).
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Scheme 19. HDC of monochlorobiphenyls using Raney Al–Ni alloy in hot aqueous alkali metal
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Tetrachloro- or tetrabromo-bisphenol A are converted into a mixture of nonhalo-
genated phenols and cyclohexanols using Al–Ni even in 1% aqueous alkali metal or alkali
earth metal hydroxide at a temperature 60 ◦C or higher [89] (Scheme 20).
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Halogenated benzil is reduced to the mixture of 1,2-diphenylethane, 1-cyclohexyl-2-
phenylethane and 1,2-diphenylethane [104] in 1% aqueous KOH at 90 ◦C (Scheme 21).
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Scheme 21. Raney Al–Ni alloy based HDH of polyhalogenated benzil in hot aqueous alkali metal
hydroxide solution [104].

Under the same reaction conditions, chlorinated benzophenones are reduced to dicy-
clohexylmethane, benzylcyclohexane and diphenylmethane [96].

At least (poly)halogenated anilines, (poly)chlorinated benzenes, (poly)chlorinated
benzoic acids and polyhalogenated phenols are selectively reduced, however, to the corre-
sponding nonhalogenated aromatic compounds at room temperature using a low excess of
Al–Ni alloy in 1–2% aqueous NaOH or KOH solutions, as we observed [88,91–94,98,103].

In case of 2,4,6-tribromophenol, the interconnection of HDH with subsequent biodegra-
dation of produced phenol was tested after removal of insoluble part of Raney Al–Ni alloy
(Al3Ni2) and coagulation/flocculation of insoluble Al(III) hydroxide [92] (Scheme 22).
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In case of Chlorophene, the HDC reaction is accompanied by formation of 2-benzylcyclo
hexanol even at room temperature [94] (Scheme 23).
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Only in the case of 2-chlorophenol, KF instead of the corresponding hydroxide was
proved as an applicable base for complete HDH after 2 h of action of a high excess of
Al–Ni alloy (10 g Al–Ni per 50 mg of 2-CP mixed with 40 mmol KF) [100]. In contrast, this
configuration of HDH enables recycling of the huge excess used and during HDC process
undissolved Al–Ni after washing of the produced insoluble AlF3 layer from Al–Ni surface
with Ca(OH)2 suspension.

It was observed that alkaline salts (alkali metal borate or phosphate) inhibit HDH
process utilizing Al–Ni alloy. This inhibition is likely caused by the formation of insoluble
Al(III) salts which cover active Al–Ni surface. Alkali metal salts (of citric or ethylenedi-
aminetetraacetic (EDTA) acid) which enables both corrosion of metallic Al and formation of
soluble Al(III) salts enables complete HDH, as was observed [91] and citations herein, [101].

For complete HDH of halogenated anilines and phenols, the effective molar ratio
of reactants NaOH (or KOH):Al (used as Al–Ni alloy):Ar–X is 10:2:1. This ratio enables
complete HDH of Ar–Xs until 120 min under vigorous stirring at room temperature. On
the other hand, we observed that in case of halogenated anilines the quantity of Al–Ni can
be significantly decreased after addition of glucose [93]. Used glucose inhibits dissolution
of metallic Al in alkaline aqueous solution and caused formation of Ni nanoparticles, as
we documented. We suppose that formation of nanoparticles Ni saturated with H2 enables
effective HDH of halogenated anilines [93].

The application of glucose enables decrease of Al–Ni alloy quantity in case of re-
active Ar–Xs, such as brominated anilines and 3-chloro- or 2-chloro-anilines but not 4-
chloroaniline [93]. These mentioned reactive Ar–Xs are simply hydrodehalogenated even
using Devarda’s Al–Cu–Zn alloy, as we published earlier [88]. HDH of hardly reducible
chlorinated compounds such as 4-chloroaniline or other polychlorinated aromatic com-
pounds is not promoted by the addition of glucose, as we described earlier [91]. In this
context the hardly reducible compounds (4-chloroaniline, etc.) are not hydrogehalogenated
even using Devarda’s Al–Cu–Zn alloy [88,91]. The effective HDH of 4-chloroaniline or
other hardly reducible Ar–Xs at room temperature requires the reductive action of Raney
Al–Ni alloy bound in Al3Ni. The mentioned crucial role of Al–Ni we explained as HDH of
adsorbed Ar–Xs on Al3Ni/Al3Ni2 surface immersed in diluted aqueous NaOH solution
working as a galvanic couple composed by soluble Al anode and stable and catalytically
active Ni cathode [88,98].

The applicability of Raney Al–Ni alloy was successfully tested including the treatment
of contaminated water streams on a pilot plant scale [103].

4.3. Ni-Based Bimetals Applied in Transfer HDH

For effective HDH treatment, applicable for degradation of Ar–Xs in contaminated
water, several research teams have tested monometallic (Al, Fe, Mg, Zn) [4,105–107] or
bimetallic reduction systems prepared by plating of electropositive metal surfaces with Pt
or Pd (Pd/Zn, Pt/Fe, Pd/Fe, Pd/Mg, Pd/Al) [108–112].

Applying non-plated electropositive metals, the kinetic of HDH in Ar–Xs is slow even
when using nanoparticles. This means that effective HDH requires a significant excess of
the used electropositive metal [4,105–108].

The performance of bimetallic HDH systems for Ar–Xs is usually explained by the
dissolution of electropositive zero-valent metal with the production of nascent hydrogen
and the functioning of precious metal (commonly from platinum group metals (PGMs) as a
HDH catalyst [109–112]. PGMs used for plating of electropositive metals as HDC catalysts
are quite sensitive to poisoning and very expensive [6,7,109–112].

Due to these reasons, cheaper bimetallic reductants have been examined in recent
years based on Ni in the role of HDC catalysts for plating of electropositive metals Ni/Fe
and Ni/Zn [108,113–121]. It was even reported by Cheng et al. [122] that addition of
micronized Ni(0) could re-activate zerovalent iron particles that have lost their reduction
activity.
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The accepted model describing mechanism of action of Fe/Ni bimetal in HDH pro-
cesses involved utilization of accelerated corrosion of metallic iron especially on Fe-Ni
local galvanic couples as the first step. Dissolution of iron is accompanied by formation of
hydrogen which is adsorbed on Ni surface. The produced Ni nano and/or micro- particles
satured with hydrogen subsequently work as the HDH agent [113–121]. This mechanism
is supported by the observation that compounds producing insoluble Fe-salts (for example
humic acids [113] inhibit the HDH rate.

Apart from the above-mentioned, in the case of HDH of pentachlorophenol, the
authors used sole nano iron or mixture of nickel and iron nanoparticles instead of plated
Ni/Fe and compare HDH based on the size of the added nickel nanoparticles. The authors
observed an increase of HDH with a decreased size of Ni and no HDH in the case of sole
Ni nanoparticles application without the addition of nano Fe [115].

Ni/Fe bimetallic (nano)particles are quite popular and broadly tested in recent years
due to sufficient efficiency, simple preparation and low cost together with low toxic-
ity of iron [113–120]. This was demonstrated as effective for HDH of chlorinated phe-
nols [113,115,121], DDT [114], the anti-inflammatory drug Diclofenac [116], polychlorinated
biphenyls [117], polybrominated diphenyl ethers [119] and chlorinated nitrobenzenes [120]
at room temperature.

The choice of pH is quite problematic because metallic iron corrodes mainly in a
neutral or acidic aqueous solution, but the HDH reaction is promoted by the addition of a
base which removes produced HX [113–121].

In case of HDH of DDT Fe/Ni bimetal caused only partial HDC in the CCl3 group of
DDT structure [114] and authors suggested reductive effect of both Fe(OH)2/Ni or Fe/Ni.
The source of reductant depends on pH. While in acidic reaction mixture Fe/Ni as main
active HDH reagent is assumed, in alkaline solution Fe(OH)2/Ni seems to be predominant
HDH agent [114] (Scheme 24).
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Liu et al. elucidated the decrease of 2,2′,4,4′-tetrabromodiphenylether HDH reaction
rate with increasing pH by the formation of insoluble iron (hydr)oxides on Fe/Ni surface
which inhibit further corrosion of Fe0 and the production of hydrogen fundamental of
the HDH process [119]. Even using optimal HDH conditions, the authors only identified
partially debrominated products (4-bromodiphenylether and 2-bromodiphenylether) [119].

Ghauch et al. demonstrated that even Fenton-like oxidation is promoted by Fe/Ni
bimetal in the case of aerobic treatment of the Diclofenac solution which is documented
by the determination of hydroxylated Diclofenac in the obtained reaction mixture using
LC-MS [116]. In contrast, when oxygen was excluded in the reaction mixture during
Fe/Ni-based HDH, only products of HDC were observed after Fe/Ni treatment [116].

Lin et al. observed the enhancement of the HDH rate during pentachlorophenol
reduction induced by Fe/Ni with the co-action of cationic surfactant [118]. The authors
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explained this observation by an increase of the specific surface area of Fe/Ni particles in
co-action with the cationic surfactant and the higher adsorption rate of pentachlorophenol
in this manner prepared Fe/Ni particles and their stabilization [118].

5. The Role of HDH for Application of Halide as Protecting and Directing Group

The above-mentioned Ni-based HDH methods seem to be suitable, not only for detox-
ification of Ar–Xs containing waste or treatment of polluted water streams, but especially
these effective at room temperature for removal of halogen used as the protecting, respective
directing, group in aromatic chemistry of organic fine chemicals syntheses [3,123,124].

Applying broadly used electrophilic aromatic substitution reaction is linked with the
problem of selective introduction of functional group(s) with the aim to obtain aromatic
compounds with the desired chemical structure. The desired orientation of bound sub-
stituent(s) may be achieved by blocking the most reactive position in the aromatic ring of
the substrate, the carrying out desired substitution reaction followed finally by the removal
of the protective group.

Ni-based HDH could be the method of choice for room-temperature and selective
removal of halogen used as the protective group including possibility of deuteration for the
syntheses of 2- or 3-substituted anilines or acetanilides [124,125], 2,6- or 3,4-disubstituted
anilines [125,126], 2-substituted benzoic acids [3,124] (Scheme 25), 2-substituted ben-
zonitrile [124], hydroxydiphenylmethanes [124], hydroxydiphenyls [124], 2-substituted
phenols [123–125], 2,4- or 2,5-disubstituted phenols [123–125], 2,5-disubstituted quino-
line [125].
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6. Available Methods for Recycling of Spent Ni Catalysts

Each of the above-mentioned HDH methods based on application of Ni catalysts is
limited with the durability of the applied catalyst. Even metallic nickel is much cheaper in
comparison with platinum metals-based catalysts (actual price about 20,000 USD/t), and
for sustainability of HDH methods the recycling of used Ni is required. For this purpose,
hydrometallurgical processes would seem to be suitable energy-saving alternatives to
the common pyrometallurgical ones [127–131]. Hydrometallurgical processing methods
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are environmentally friendly due to the low energy requirements, low gas emissions and
waste generations and complete recovery of the metals [127]. They are based mainly on
mineral acid leaching (hydrochloric, nitric or sulfuric acid) with appropriate co-action of
oxidant (hydrogen peroxide, persulfate, etc.) [127–132] (Scheme 26). The obtained refined
nickel salts such as nickel chloride, nitrate or sulfate are usually used for preparation of
Ni-based HDH catalysts and eventually reduced directly to metallic nickel by the action of
electropositive metal, NaH2PO2 or NaBH4 [51,60,63,128–131].
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7. Conclusions

Ni-catalyzed gas phase HDH was developed for reductive treatment of concentrated
streams of waste halogenated aromatic compounds (Ar–Xs) produced as by-products or
non-simply-recyclable mixtures such as distillation residue from the production of per-
chloroethylene, application of o-dichlorobenzene as the solvent, etc. The above-mentioned
Ni-based gas phase HDH method potentially enables subsequent recycling of the obtained
HDH products (Ar–Hs) as raw materials in organic technology. In the last years, however,
the occurrence of published articles dealing with gas phase Ni-based HDH is rare. Gas
phase HDH is included as part of soil remediation (REACH) technology, for example [133].
It was proved that standard supported Ni–Mo catalysts used for hydrodesulfurization
are effective even for HDC which offers broad utilization in reductive treatment of Ar–Xs
contaminants produced by pyrolysis of plastic waste [134].

It is possible that the necessity of special apparatus, application of catalyst and supply
of hydrogen disadvantages gas phase HDH as hazardous waste treatment method towards
incineration. The waste incineration is probably cheaper as non-catalytic thermal oxidative
technology consuming air oxygen and sometimes even natural gas as the supporting fuel.
On the other hand, incineration produces low quantities of toxic and thermodynamically
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stable organic by-products such as polyhalogenated dibenzo-p-dioxines and/or polyhalo-
genated dibenzofurans and polyaromatic compounds. Nevertheless, these stable organic
by-products are reactive enough for effective destruction via liquid phase HDH methods.
HDH in the liquid phase seems to be applicable for treatment of waste containing halo-
genated aromatic contaminants due to the lower temperature used with subsequent lower
detrition of the used Ni catalyst.

In the future, it is likely that new findings dealing with searching of the new suitable
supports and looking for synergistic effects of additional elements [18,33,135] for improve-
ment of catalytical activity, selectivity and catalyst stability could be expected in the area of
Ni-catalyzed HDH processes using gaseous hydrogen.

Special techniques were developed for transfer HDH of some Ar–Xs in organic sol-
vents using Ni-based complexes and reductants such as metal hydrides or Zn(0). These
techniques are demanding, however, on the high quantity of the used anhydrous solvents,
auxiliary compounds such as ligands (triphenylphosphine, 2,2′-bipyridyl or phenanthro-
line), proton sponges (pyridine) and due to this reason, cause poor atom economy, and
lack the opportunity for broader technological applications of these HDH techniques [132].
On the other hand, if used Ni(Ph3P)n HDH catalyst and used reductant were recyclable,
the above-mentioned techniques utilizing organic solvents working under homogeneous
conditions could be a promising detoxification method for treatment of waste Ar–Xs in the
near future.

Reductive degradation of Ar–Xs-based contaminants in alkaline aqueous solution or
mixed alkaline alcohol/water solution using Raney Al–Ni alloy seems to be ready for use
in treatment processes. The only limitation could be the complicated recycling of produced
Ni-waste which needs several hydrometallurgical steps with exceptional subsequent high
temperature treatment [100,130,131].

In contrast, the yet published application of Fe/Ni bimetals for Ar–Xs HDH seems to
be quite problematic, with inconsistent HDH results and often producing only partially
dehalogenated products. Other authors advert to unreplaceable role of Ni in iron-based
HDH [136]. Due to these reasons, even though Fe/Ni bimetal is a cheap reductant, it
should be more deeply investigated for HDH applications especially in HDH of mixtures
of Ar–Xs. Ni-based bimetals containing other electropositive metals such as Mg or Al
could in all probability be more profitable for efficient HDH of Ar–Xs in contaminated
wastewaters.

In conclusion, nickel as a cheap nonprecious metal with HDH efficiency impending to
platinum group metals in HDH reactions seems to be potentially broadly applicable for
significant decreasing of environmental impacts joined with the utilization of halogenated
aromatic compounds.
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