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ABSTRACT: Organoselenium compounds with perspective
application as Se precursors for atomic layer deposition have
been reviewed. The originally limited portfolio of available Se
precursors such as H2Se and diethyl(di)selenide has recently been
extended by bis(trialkylsilyl)selenides, bis(trialkylstannyl)selenides,
cyclic selenides, and tetrakis(N,N-dimethyldithiocarbamate)-
selenium. Their structural aspects, property tuning, fundamental
properties, and preparations are discussed. It turned out that symmetric four- and six-membered cyclic silyl selenides possess well-
balanced reactivity/stability, facile and cost-effective synthesis starting from inexpensive and readily available chlorosilanes, improved
resistance toward air and moisture, easy handling, sufficient volatility, thermal resistance, and complete gas-to-solid phase exchange
reaction with MoCl5, affording MoSe2 nanostructures. These properties make them the most promising Se precursor developed for
atomic layer deposition so far.

■ INTRODUCTION

Atomic layer deposition (ALD) belongs to chemical vapor
deposition (CVD) techniques that allow deposition of nano-
scale thin-film layers.1 The deposition is based on sequential self-
terminating gas−to-solid phase reactions between a gaseous
precursor containing deposited atom(s) and a substrate.2 Since
the substrate surface possesses only a certain number of
functional groups, the ALD reaction is self-limiting, and the
deposition is terminated as soon as the surface is completely
covered. This featuremakes the ALD process highly controllable
and allows adjusting the film thickness by a number of cycles. In
contrast to other deposition techniques, ALD is a very efficient
tool for performing deposition on variably shaped surfaces such
as nanoparticles or nanotubes.3 Easy combination of different
precursors during ALD is another important and very handy
feature, which allows the preparation of multilayered structures.
A simplified ALD process is outlined in Figure 1. The first step

involves transport of the desired precursor into the reaction
chamber via a stream of an inert gas or vacuum, and its reaction
with the substrate forms the first atomic layer. Excess of the
precursor and eventual byproducts are removed by purging the
chamber, whereupon the (second) precursor may be loaded to
form an additional layer. Whereas the proper combination of
precursors accounts for the composition of the resulting layered
material, the number of cycles controls its thickness.
Contrary to the aforementioned advantages, gas-to-solid

phase reaction represents the main ALD’s drawback. In
principle, the used precursor must fulfill three basic criteria:

• Volatility to provide sufficient vapor pressure.
• Thermal resistance to withstand temperature used during

the deposition (generally above 100 °C).
• Reactivity with the substrate and the second precursor.

In addition, the desired precursor should also possess:

• Chemical resistance toward air and moisture for easy
handling.

• Noncorrosive nature including byproducts, especially in
relation to ALD equipment.

• Low toxicity.

Last, but not least, the precursor should be produced using
cost-effective and large-scale synthesis and should be easily
purified. Finding a trade-off between these properties is
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Figure 1. Schematic representation of the ALD process.
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generally not trivial. Despite the fact that ALD has been known
for more than 50 years, its potential began to be exploited only
relatively recently along with the boom of materials chemistry
and industrial needs.4 Especially the microelectronics industry is
currently significantly influenced by the ALD development. 2D
transition-metal dichalcogenide (TMD) monolayers of general
formula MX2, where M stands for transition metal atom (mostly
IV to VII group) and X is a chalcogen (S, Se, Te), are greatly
prepared with the aid of ALD.5 TMDs possess a direct band gap
and, therefore, very interesting optical and electrical properties
accompanied by relative thermal robustness. Hence, TMDs are
frequently used as transistors, light emitters/detectors, or
electrodes for Li batteries.6 In addition, ALD-prepared nano-
particles such as nanoflakes found numerous applications in
photocatalysis7 or hydrogen evolution reaction.3

Organoselenium Precursors for ALD. In contrast to the
well-known ALD of sulfides, metal selenides are much less
explored including only Cu, Zn, Ge, Sr, Mo, Cd, In, Sn, Sb, W,
Pb, and Bi. When comparing toMoS2,MoSe2 possesses inherent
metallic nature, higher electrical conductivity, narrowed
bandgap, layered structure with larger interlayer spacing, higher
optical absorbance and resistance to photocorrosion, and larger
electrochemically active edges. Unfortunately, selenium pos-
sesses only a limited portfolio of Se precursors 1−3 suitable for
ALD (Figure 2).

Elemental selenium represents the simplest precursors;
however, due to its low volatility, the ALD process generally
requires temperature above 200 °C.8 Only ZnSe and CdSe were
deposited from the elemental selenium so far. H2Se (1) seems to
be an ideal Se precursor due to its gaseous nature at room
temperature, which makes it volatile, mobile, and also useful for
large-scale deposition.9 However, its toxicity is a major
drawback. A deposition of sulfide layers using less toxic H2S
and subsequent exchange is also an option to avoid usingH2Se.

8a

Diethyl(di)selenides Et2Se (2) and Et2Se2 (3) are organo-
selenium compounds commonly used in CVD. However, their
wider utilization in ALD is hindered by a relatively strong C−Se

bond, which undergoes slow cleavage, generally assisted by H2,
O3, or plasma.10

Bis(trialkylsilyl)selenides (4), first reported by Pore et al. in
2009,11 represent one of the most promising and widely used
groups of organoselenium compounds for ALD. The high
reactivity of a triethyl derivative ((Et3Si)2Se) with various metal
halides has been demonstrated by depositing Bi2Se3, ZnSe,
In2Se, CuSe, and Cu2Se thin films. Bis(trialkylsilyl)selenides
proved to be well-suited for fast exchange reaction with metal
chlorides (hard−soft Lewis acid−base pair), forming volatile
and noncorrosive trialkylsilyl chloride, which is easily removed
by purging. A general synthesis of 4 (Scheme 1) involves in situ

preparation of lithium or sodium selenide (either by direct
reaction of Li and Se or by treating elemental Se with super-
hydride (LiBHEt3) − methods B and A). The latter procedure
proved to be much faster and provides higher yield of 4 but is
also more expensive.
We have further extended the original Pore’s work by

systematically investigating property tuning of 4 by alkyl
variation (Scheme 1).12 Four derivatives of 4 bearing trimethyl-,
triethyl-, tri-isopropyl-, and tert-butyldimethylsilyl groups were
prepared in the yields of 50−90% by employing both in situ
generations of Li2Se. An addition of BF3·OEt2 significantly
accelerated the reaction of Li2Se with trialkylsilyl chlorides
R1

2R
2SiCl. Thermal properties of 4 studied by DSC and TGA

proved their sufficient volatility and stability. Bis(trimethylsilyl)-
selenide in combination with MoCl5 were successfully applied
for deposition of MoSe2 crystalline flakes on fused silica.13

Subsequent ALD with 4 and commercial Mo precursors MoCl5,
Mo(CO)6, and Mo(NMe2)2(NtBu)2 was attempted at different
substrates. It turned out that 4 undergoes exchange reaction with
MoCl5 to formMoSe2 nanostructures,

14 while the other twoMo
precursors proved to be ineffective. Moreover, the fundamental
properties of 4 can be significantly altered by the appended alkyl
chains.Whereas the trimethylsilyl derivative is a very volatile and
reactive Se precursor, which is redeemed by its low resistance
toward air and moisture, the tert-butyldimethylsilyl derivative
showed no ALD reaction with MoCl5 due to its high stability.
Bis(trimethylsilyl)selenide has further been used for coating 1D
TiO2 nanotube layers with molybdenum oxyselenide (Mo-
SexOy).

15 The MoSexOy and TiO2 interface allows efficient
charge transfer, and MoSexOy possesses narrow bandgap, which
makes MoSexOy-coated TiO2 nanotubes an efficient photo-
catalyst for methylene blue degradation. By properly controlling
the ALD process, 1D TiO2 nanotube layers were also
successfully covered by MoSe2 by using bis(trimethylsilyl)-

Figure 2. Overview of available Se precursors for ALD: (A) basic
selenium compounds, (B) bis(trialkylsilyl/stannyl)selenides, (C) cyclic
silylselenides, and (D) SDMDTC. R stands for an alkyl.

Scheme 1. In Situ Generation of Li2Se and Synthesis of
Bis(trialkylsilyl)selenides 4a

aDPA = diphenylacetylene.
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selenide and MoCl5. The prepared MoSe2/1D TiO2 nanotube
heterostructures showed outstanding photo- and electro-
catalytic activities for degradation of organic pollutants and
hydrogen evolution reaction.16

A replacement of silicon by tin in 4 represents another
structural tuning enabling bis(trialkylstannyl)selenides 5.12 The
synthetic strategy toward 5 is similar to that of 4 but is limited to
commercially available trialkylstannyl chlorides (Scheme 2).

Unfortunately, thermal properties of 5 revealed lower
volatility and thermal stability but higher stability toward air
and moisture as compared to 4. The most volatile trimethyl-
stannyl derivative was successfully used for deposition of MoSe2
flakes (Figure 3). Further elaboration with bis(trialkylstannyl)-
selenides 5 revealed their alternative preparation, which utilizes
inexpensive and readily available hexamethyl(butyl)ditin or
tributyltin hydride (Scheme 3).17

The synthesis outlined in Scheme 3 is operationally very
simple, excludes solvent, and provides 5 in high yield without
further purification.
In general, bis(trialkylsilyl)selenides possess high gas-to-solid

phase reactivity toward metal halides, which is unfortunately
accompanied by their low resistance toward air and moisture
and, therefore, is difficult to handle. Hence, further synthetic
attempts were focused on the development of a Se precursor
with improved stability and persistent reactivity. Very recently,
cyclic silylselenides 6−8 were prepared and tested as ALD
precursors.18 These include four-, five-, and six-membered
cycles, whose preparation is shown in Scheme 4. The synthesis

utilizes lithium selenide (Li2Se) as a reactive intermediate, which
undergoes reaction with readily available and inexpensive di-
isopropyldichlorosilane, 1,2-bis(chlorodimethylsilyl)ethane,
and 1,2-dichlorotetramethyldisilane to afford 6, 7, and 8,
respectively.
TGA and DSC analyses of 6−8 revealed volatility similar to

linear analogues 4, but the stability and handling were
significantly improved. These derivatives may be stored for
several months and even withstand ambient conditions for
several hours. Subsequent gas-to-solid phase reaction with
MoCl5 revealed the facile formation of MoSe2 layers of different
quality. As revealed by XPS, the layer produced from ethyl-
bridged 7 showed residual Mo−Cl bonds coming from an
incomplete ligand exchange reaction.18a On the contrary,
application of symmetric four- or six-membered cyclic selenides
6 and 8 afforded MoSe2 of high quality.18b These compounds

Scheme 2. Preparation of Bis(trialkylstannyl)selenides 5

Figure 3. Representative SEM top-view images of MoSe2 nanostruc-
tures deposited on planar TiO2 foils (except SEM image b deposited on
TiO2 nanotube layers) using (Me3Si)2Se (a,b),11,15 (Me3Sn)2Se
(c,d),11 and cyclic silylselenides 6 (e,f)18b and 8 (g,h).18a

Scheme 3. Improved and Cost-Effective Synthesis of 5

Scheme 4. Synthesis of Cyclic Silylselenides 6−8 and
Straightforward Synthesis toward 6
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represent first ALD precursors with more than one Se atom. The
remaining drawback of silylselenides and their easy and wide
application in ALD may be seen in their synthesis, utilizing
organometallic species to generate Li2Se. Hence, we have
recently developed a straightforward preparation of 6, which
starts from elemental selenium and di-isopropylchlorosilane
(Scheme 4). The main benefits of 6 are as follows: (i) small and
symmetric structure; (ii) sufficient vapor pressure and thermal
resistance; (iii) high and complete gas-to-solid phase exchange
reaction with MoCl5; (iv) improved resistance toward air and
moisture; (v) facile synthesis from inexpensive starting
materials, which excludes solvent; (v) easy purification
(filtration and crystallization); (vi) facile large-scale production;
and (vii) a solid compound with easy manipulation and
transport. All organoselenium compounds are considered as
potentially toxic and, therefore, should be manipulated in a well-
ventilated fume hood.
In 2019, Sarkar et al. reported atomic layer deposition of

Sb2Se3 using commercially available tetrakis(N,N-dimethyldi-
thiocarbamate)selenium 9 (SDMDTC, Figure 2).19 Its volatility
seems to be high enough at 150 °C; however, TGA showed its
decomposition above 165 °C, which indicates a very narrow
ALD window. Interestingly, SDMDTC is the only tetravalent
selenium compound used as a Se precursor for ALD so far, but
its reactivity toward other metal precursors is not known yet.

■ SUMMARY AND OUTLOOK
Significant progress in organoselenium compounds applicable as
Se precursors for ALD has recently been encountered. The
initially very limited portfolio of useful Se precursors such as
H2Se and Et2Se (Et2Se2) has been extended by novel
organoselenium compounds including bis(trialkylsilyl/stannyl)-
selenides and cyclic silylselenides. Besides the well-investigated
linear bis(trimethylsilyl)selenide (4) and eventually analogous
bis(trimethylstannyl)selenide (5), cyclic selenides 6 and 8
possess well-balanced reactivity/stability, facile synthesis and
purification, and most importantly wide application potential in
ALD. Molybdenum(IV) selenide layers were successfully
deposited using the aforementioned precursors, as shown in
Figure 3.
In order to unravel the application potential of the novel

precursors 6 and 8, further ALD experiments are needed, and
these are ongoing in our research group.
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