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Abstract: The potential of nanomaterials use is huge, especially in fields such as medicine or industry.
Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways
ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances
in cells, including reactive oxygen species (ROS), participating in physiological and pathological
cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl
radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in
particular that are very specific and selective for given ROS. In addition, due to the involvement of
ROS in a number of cellular signaling pathways, understanding the principle of ROS production
induced by nanomaterials is very important. For defense, the cells have a number of reparative and
especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione.
Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by
the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a
review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione
depletion, including an overview of approaches for the detection of ROS levels in cells.

Keywords: reactive oxygen species; oxidative stress; glutathione; nanotoxicity; cell injury; fluorescence
probes

1. Introduction

Molecular oxygen (O2) has a significant effect on numerous chemical reactions and
biological processes. O2 reductions are one of the most critical electrocatalytic reactions
that function in electrochemical energy conversion [1]. Free radicals contain an unpaired
electron mostly bound to oxygen atoms. Conversely, the group of compounds named
reactive oxygen species (ROS) also contains molecules without an unpaired electron, e.g.,
hydrogen peroxide [2,3]. Thus, the group of ROS also contains oxygen free radicals such as
superoxide or hydroxyl, alkoxyl, peroxyl, and nitroxyl radicals [4,5]. The production of
ROS is commonly linked with mitochondria, where the electrons are transferred through
the respiratory chain to O2 forming water [6,7]. Mitochondrial ROS production depends on
many factors such as the membrane potential of mitochondria [8], concentration of mito-
chondrial respiratory substrates, or a type of cells [9]. Mitochondria are the most important
sources of superoxide and hydrogen peroxide in mammalian cells. The production of these
ROS occurs mainly on the mitochondrial respiratory complex I and III [7,10]. In addition
to mitochondrial complexes, ROS is also produced in mammalian cells by the participa-
tion of other enzymes such as flavoproteins [11] and other enzymes involved in nutrient
metabolism [12]. As ROS plays important roles in the regulation of cell death processes,
i.e., apoptosis [13] or necrosis [14–16], their pathological roles have been identified in a
number of diseases including cancer and other age-related degenerative processes [17,18].
Given their deleterious effects, ROS production is usually finely tuned by ROS-scavenging
systems [9].
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Nanomaterials (NMs) exhibit great potential for use in the biomedical, optical, and
electronic fields [19–23]. However, nanomaterials have been considered as potentially
toxic due to their unique properties. They have extremely high surface-to-volume ratios,
making them very reactive and catalytically active [24]. Their toxic potential in cells is
also supported by their small size, enabling them to easily penetrate cell membranes [25].
TiO2 is one of the most commonly used nanomaterials in the chemical industry (e.g.,
cosmetics and pigments) [26]. In addition to white lead properties, TiO2 can be very active
in photocatalytic reactions with organic compounds, providing the formation of ROS
including •OH, O2

•−, H2O2 [27]. In addition to TiO2, other nanomaterials of different
chemical compositions can produce ROS. The overview of NMs capable of ROS production
is summarized in Table 1 including the lifetime.

Table 1. Overview of nanomaterials capable of ROS production [28].

Nanomaterial Produced ROS ROS Half-Life

ZnO [29], SiO2 [29], TiO2 [30],
CuO [31], Ag NPs [32] Superoxide O2

•− 10−6 s

ZnO [33], TiO2 [34], CuO [35] Hydroxyl
radical

•OH 10−10 s

Polystyrene NPs [36], Au NPs [37],
TiO2 [38], ZnO [39], Ag NPs [40]

Hydrogen
peroxide H2O2 Stable (x.s, min)

TiO2 [41], Ag NPs [42], FeO [43] Singlet oxygen 1O2 10−6 s

Nanomaterials or nanoparticles (NPs) can expose transition metals on their surface,
which can generate ROS through Fenton or Haber-Weiss reactions [44]. During these
reactions, hydrogen peroxide is reduced in the presence of transition metals (Fe2+, Cu+)
to form a highly active and toxic hydroxyl radical. Thus, the role of nanomaterials in
ROS-mediated cell damage is significant and ROS production induced by NMs can lead
to the modulation of various intracellular pathways, e.g., NF-κB, caspases, MAPK, etc.,
involving the activation of cell death processes [45,46].

In this study, we aimed to provide a recent and detailed view on ROS production
induced by nanomaterials. The importance of our review can be also supported by the
role of increased ROS levels that can lead to glutathione depletion and to the activation of
cellular signaling pathways, resulting in changes in cellular metabolism, cell damage, or
even in cell death.

2. Reactive Oxygen Species
2.1. Superoxide

Superoxide radical is formed during enzymatic and non-enzymatic reactions in biolog-
ical systems [1,47]. In atoms and molecules, paired electrons occur usually as antiparallel,
which strongly limits the oxidation properties of O2. After one-electron reduction of molec-
ular oxygen, the superoxide radical (O2

•−) forms. This reaction is thermodynamically very
unfavorable and the interaction of O2 with another paramagnetic center is important for
overcoming spin restriction [48]. Although the reactivity of O2

•− is mild, the crucial role of
superoxide is that it enables the formation of other ROS (Figure 1), playing important roles
in the pathology of various diseases.

Superoxide radical (O2
•−) is formed mainly in mitochondria and its reactivity with

biomolecules is relatively low. Superoxide can be produced after the reaction of molecular
oxygen with divalent metals catalyzing a single-electron reduction under their simultane-
ous oxidation (equation 1).

O2 + Fe2+ → O.−
2 + Fe3+ (1)
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Figure 1. Formation of reactive oxygen species. Abbreviations: SOD = superoxide dismutase; MPO 
= myeloperoxidase; O2 = oxygen; 1O2 = singlet oxygen; O2●− = superoxide; H2O2 = hydrogen peroxide; 
●OH = hydroxyl radical; HOCl = hypochlorous acid; and hν = radiation. ROS colored in red are free 
oxygen radicals. 
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can be generated, i.e., at Complexes I and III [59,60]. 
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Q10 are known, i.e., Qi and Qo. Superoxide production is located in Qo. When antimycin 
A is added as an inhibitor of the Qi site, O2●− production increases [62], while the addition 
of a myxothiazole inhibitor for the Qo site decreases ROS production [63]. Under physio-
logical conditions, the production of ROS in Complex III depends on the ∆Ψ. The rate of 
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Figure 1. Formation of reactive oxygen species. Abbreviations: SOD = superoxide dismutase; MPO = myeloperoxi-
dase; O2 = oxygen; 1O2 = singlet oxygen; O2

•− = superoxide; H2O2 = hydrogen peroxide; •OH = hydroxyl radical;
HOCl = hypochlorous acid; and hν = radiation. ROS colored in red are free oxygen radicals.

Another formation can be catalyzed by enzymes including xanthine oxidase, lipoxy-
genase, or cyclooxygenase [49]. The superoxide radical may exist in two possible forms:
either in the form of O2

•− at physiological pH or as a hydroperoxyl radical (HO2
•) at

low pH levels [50]. Hydroperoxyl radical penetrates better through phospholipid bilayers
compared to the charged form O2

•− [28,51]. The superoxide radical may react with another
superoxide radical to form hydrogen peroxide and O2 (equation 2). The reaction is cat-
alyzed by the enzyme superoxide dismutase (SOD) [52,53]. A product of the dismutation
reaction is H2O2 which becomes an important factor in the formation of the most reactive
ROS, i.e., hydroxyl radical (•OH) [54].

O2 + O.−
2 + 2H2O Cu, Zn, Mn−SOD→ H2O2 + O2 (2)

The mitochondrial electron transport chain (ETC) has been attributed to the role
as the main ROS generator in cells. When transporting electrons, some of the electrons
from the ETC can reduce molecular oxygen to O2

•− [55]. The resulting O2
•− is rapidly

dismissed by mitochondrial superoxide dismutase (Mn-SOD) forming H2O2 [56]. Mito-
chondrial ETC consists of several electron transporters (flavoproteins, proteins containing
iron and sulfur, ubiquinone, and cytochromes) with redox potentials ranging from −0.200
to +0.600 V [57,58]. According to the respective redox potentials, the individual electron
carriers are arranged in individual complexes of the respiratory chain I–IV. Electrons that
are transported into the respiratory chain as reducing equivalents of NADH or FADH2
enter the ETC through mitochondrial Complexes I and II. Then, the electrons are trans-
ferred through ETC to Complex IV which reduces O2 to H2O. From the thermodynamical
perspective, all these electron transport systems could transfer the electrons directly to O2
to form O2

•−. However, there are only two major sites of the respiratory chain where ROS
can be generated, i.e., at Complexes I and III [59,60].

In Complex I, a reaction occurs between O2 and the reduced form of the flavinmononu-
cleotide (FMN), leading to production of O2

•−. The amount of reduced FMN depends on
the NADH/NAD+ ratio [61]. In Complex III, two specific binding sites for coenzyme Q10
are known, i.e., Qi and Qo. Superoxide production is located in Qo. When antimycin A is
added as an inhibitor of the Qi site, O2

•− production increases [62], while the addition of a
myxothiazole inhibitor for the Qo site decreases ROS production [63]. Under physiological
conditions, the production of ROS in Complex III depends on the ∆Ψ. The rate of O2

•−

formation may increase exponentially with increasing ∆Ψ. This directly correlates with the
fact that due to ∆Ψ fluctuations, the transport of electrons from heme bL to heme bH slows
down, which then increases superoxide generation [64].

2.1.1. Role of Superoxide in Nanomaterial Toxicity

Damage to mitochondria and subsequent ROS leakage is a commonly accepted
mechanism of nanoparticles toxicity. Damaged mitochondria release O2

•− into the inter-
membrane space which can ultimately damage the cell [65]. Across different types of
nanomaterials, their involvement in the ROS generation can be found. Far more often
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than in size, their possible cytotoxic effects are chemically dependent. Despite the similar
size and crystal shape of ZnO NPs and SiO2 NPs, higher toxicity of ZnO NPs is observed,
where cell viability is reduced and O2

•− generation is reduced, due to which glutathione
(GSH) depletion occurs [29]. TiO2 nanoparticles generate O2

•− [30] both in solution and in
cells, and intracellular O2

•− reduces the expression of histone deacetylase 9 (HDAC9), an
epigenetic modifier [66]. Cellular internalization of TiO2 NPs has been shown to activate
macrophages and neutrophils contributing to the production of O2

•− by the NADPH
oxidase [67]. Oxidative stress induced by excessive O2

•− production is an important mech-
anism of the CuO NPs toxicity [31]. CuO NPs can enter HepG2 cells, where they are capable
of inducing cellular toxicity by generating O2

•− leading to GSH depletion [68]. Activation
of mitogen-activated protein kinases (MAPKs) and redox-sensitive transcription factors
was demonstrated, suggesting that MAPK pathways and redox-sensitive transcription
factors could be major factors of CuO NPs toxicity [69].

Analysis of mouse fibroblasts and human hepatocytes revealed that an increase in
ROS levels induced by Ag NPs is accompanied by a reduction of mitochondrial membrane
potential, release of cytochrome c into the cytosol, JNK activation, and translocation of
Bax to mitochondria [32]. After exposure to Ag nanoparticles, GSH depletion occurs in
liver cells, which is directly related to ROS production [70]. Ag NPs appear to induce DNA
damage through a mechanism involving ROS production.

2.1.2. Methods for the Detection of Superoxide
MitoSox

Hydroethidium (HE) is a selective O2
•− detection probe (Figure 2) that reacts very

rapidly to changes in O2
•− concentration, forming a red fluorescent product with

2-hydroxyethidium cation (2-OH-E+). Hydroethidine is a reduced form of ethidium that
can be oxidized to ethidium in cells. The resulting ethidium intercalates nucleic acids and
significantly increases its fluorescence, emitted at 610 nm (excitation = 535 nm) [23,71].
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Figure 2. Detection of superoxide using MitoSox fluorescent probe. Abbreviation: O2
•− = superoxide.

A new hydroethidine analog was synthesized for the purposes of O2
•− detection,

which is produced in mitochondria. This analog carries a charged triphenylphosphonium
residue (Mito-HE; Mito-Sox Red). As the phosphonium residue is positively charged
and surrounded by three lipophilic phenyl groups, it penetrates very easily through cell
membranes, mainly through the inner mitochondrial membrane [72]. After they cross
the cell membranes, they accumulate in mitochondria depending on the negative ∆Ψ [73].
Importantly, redistribution of MitoSox from mitochondria is dependent on decreasing
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∆Ψ based on various stimuli, which may not be ROS. For this reason, the use of MitoSox
is a semi-quantitative test. Very important is the fact that MitoSox is transferred from
mitochondria to the cytoplasm. Here, the supply of nucleic acids is higher and the in-
creasing fluorescence is independent to mitochondrial ROS production, which may distort
the results of individual measurements. The formation of MitoSox oxidation products in
mitochondria may result in changes of values, which may reduce the passage of other Mi-
toSox molecules into the mitochondria and generally affect measurements due to decreased
MitoSox and ROS concentrations that are not produced by breathing chain breakage. The
fluorescent product emits radiation at 580 nm with excitation at 540 nm [74–76].

1,3–Diphenylisobenzofuran

The 1,3-diphenylisobenzofuran (DPBF) probe is a molecule that, when incorporated
into liposome phospholipids, acquires fluorescent properties. It is used for the detection of
O2
•− and 1O2. After reaction with oxygen radicals, it produces a decrease of fluorescence,

thus the fluorescence rates correlate inversely with increasing concentrations of O2
•− and

1O2 [77,78]. The reaction of DPBF with ROS such as singlet oxygen, hydroxyl, alkoxy
and alkyl peroxy radicals gives 1,2-dibenzoylbenzene. In contrast, only reaction with
H2O2 produces 9-hydroxyanthracen-10-(9H)-one. This product can be detected using
fluorescence spectroscopy, NMR spectroscopy, or HPLC [79].

2.2. Hydroxyl Radical

The hydroxyl radical is a neutral form of the hydroxide ion. It belongs among the
most reactive ROS because it can react with a variety of organic and inorganic compounds
including DNA, proteins, and lipids, resulting in serious cell damage. The hydroxyl radical
may be formed as a product of the Fenton or Haber–Weiss reaction [80–83].

The Fenton reaction is based on the reaction between H2O2 and Fe2+. Iron is an
essential component of many proteins involved in the transport or metabolism of oxygen
due to its ability to undergo cyclic oxidation and reduction. Iron has to be present for the
ongoing synthesis of iron-containing proteins. As such, it can directly lead to the formation
of free radicals, which can cause cellular damage of large extent. The reaction of Fe2+ with
H2O2 produces an oxidized form of iron (Fe3+), as well as •OH and OH− (Equation (3)).

Fe2+ + H2O2 → Fe3+ [
H2O−2

]
→ OH− + •OH (3)

O.−
2 + H2O2 → O2 + OH− + •OH (4)

Another possible reaction to form •OH is the Haber–Weiss reaction. In this reaction,
less reactive O2

•− and H2O2 react with each other (Equation (4)). As in the case of the
Fenton reaction, very toxic •OH is formed. Very unfavorable thermodynamic conditions
are applied to this reaction, in which the rate constant in the aqueous solution is close to
zero. The presence of a transition metal catalyst is required to ensure the reaction. The iron
atom serves as the catalyst. Both reactions produce highly reactive •OH, which ultimately
severely damages cells [84–87]. The Fenton reaction can be used to induce apoptosis in
cancer cells, where •OH is formed on a copper ion [88,89].

2.2.1. Role of Hydroxyl Radical in Nanomaterial Toxicity

TiO2 and ZnO NPs are widely used in cosmetics and industry [22]. Under the influence
of UV radiation, ZnO NPs generate reactive oxygen species such as •OH or H2O2, causing
GSH depletion [33,90]. The rate of •OH generation and the total photocatalytic activity
depends on the physical properties of the nanomaterial used, e.g., TiO2 NPs [34]. Cu
NPs play an important role as a cofactor in a number of enzymes such as cytochrome c
oxidase [91]. However, they exhibit significant toxicity and can induce ROS production,
including largely reactive •OH. Copper can catalyze electron transfer (Cu2+ and Cu+). This
can give rise to O2

•− reduction to H2O2 in cells, leading to GSH depletion [35]. Other
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particles that induce •OH production include Fe3O4 [92], silica nanoparticle [93], and silver
nanoparticles [94].

2.2.2. Methods for the Detection of Hydroxyl Radical

Terephthalic acid (TA) can be hydroxylated in presence of •OH to give the highly
fluorescent product 2-hydroxy-TA [95]. TA has a configuration of two carboxylate anion
(COO−) side groups attached to a six-carbon ring at positions 1 and 4 to form a structurally
symmetrical compound. Reaction of •OH with any of the four unsubstituted carbons will
form only one hydroxylated product, 2-hydroxy-TA (2-OH-TA). TA is non-fluorescent,
whereas 2-OH-TA is highly fluorescent. Neither TA nor 2-OH-TA is present in tissues
physiologically. In addition, none of them is known to be involved in cellular functions,
thus they exhibit no cellular toxicity [96].

Fluorogenic spin probes can be used to detect •OH. Their signal can be detected
both fluorometrically and using EPR spectroscopy. The rhodamine nitroxide probe is a
non-fluorescent substance reacting quantitatively with •OH (Ex/Em = 560/588 nm) [97].

The HKOH-1 probe was designed for better uptake and longer retention in cells. The
HKOH-1 probe has excellent sensitivity, selectivity, and extremely rapid turn-on response
toward •OH in live cells in both confocal imaging and flow cytometry experiments [98].

2.3. Singlet Oxygen

Singlet oxygen (1O2), the highest energy state of molecular oxygen, has been exten-
sively studied to oxidize toxic persistent organic contaminants [99]. Singlet oxygen is a
highly reactive form of oxygen. It is produced during photochemical reactions or even
physiologically in the respiratory chain of mitochondria. In excitation, molecular oxygen is
excited to the first state (1∆g) and then to the higher excited state (1∑g). In the first excited
state, O2 has two counter-spin electrons in a π orbital, while in the second excited state, O2
has one counter-spin electron in two π orbitals [100,101]. The first excited state is highly
reactive. 1∆g 1O2 is also produced physiologically, e.g., in the activation of neutrophils and
macrophages [102,103]. It is a highly potent oxidizing agent that can cause fatal damage of
DNA [104] or cell death [105,106].

Singlet oxygen reacts with several biological molecules including DNA, RNA, lipids,
sterols, and especially proteins [107]. Amino acid residues of proteins can react with 1O2
by direct chemical reaction or physical quenching. Physical quenching causes de-excitation
of the singlet state of oxygen proved in proteins through the interaction with tryptophan
residues [108].

2.3.1. Role of Singlet Oxygen in Nanomaterial Toxicity

Reactive oxygen species are formed by the reaction of photoinduced binding electrons
with oxygen molecules. After the release of photoinduced electrons, valence band holes are
formed on the surface of TiO2 NPs that cannot oxidize water [109]. Another type of ROS that
occurs during photocatalytic reactions on the surface of TiO2 NPs is 1O2 (Figure 3) [41]. Nano-
materials that can induce singlet oxygen production also include Ag NPs [42]. Nanomaterials-
bound generation of 1O2 can be also used in the treatment of tumors [43]. An activatable
system has been developed that enables tumor-specific 1O2 generation, based on a Fenton-like
reaction between linoleic acid hydroperoxide (LAHP), tethered on FeO NPs and Fe2+ ions
released from FeO NPs under acidic pH conditions [43]. After increased production of 1O2 in
cells, the intracellular concentration of GSH decreases [110–112].

2.3.2. Methods for the Detection of Singlet Oxygen

The DPAX-1 fluorescent probe (9-[2-(3-carboxy-9,10-diphenyl)-anthryl]-6-hydroxy-3H-
xanthen-3-one) has been used to detect 1O2 forming endoperoxide as a reaction product.
The probe is based on 9,10-diphenylanthracene (DPA), conjugated to fluorescein. The high
quantum yield and wavelength of the excitation radiation are suitable for biological appli-
cations [113]. The DMAX 9-[2-(3-carboxy-9,10-dimethyl)anthryl]-6-hydroxy-3H-xanthen-3-
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one has been also used to detect 1O2. The DMAX probe reacts much more specifically and
faster with 1O2 compared to the DPAX-1 probe [114].
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Other approach for singlet oxygen detection are amino-functionalized nanoparti-
cles covalently linked to Singlet Oxygen Sensor Green® (SOSG) which is an anthracene-
fluorescein dye. The fluorescence of the SOSG molecule is inhibited by photoinduced
intramolecular electron transfer. When anthracene is endoperoxidized in the presence of
1O2, the electron transfer is blocked and fluorescein self-fluorescence is restored [115].

2.4. Hydrogen Peroxide

Hydrogen peroxide is formed directly through SOD-catalyzed dismutation from
superoxide [116]. It belongs among ROS but it is not a free radical. The relatively long
lifespan and size of H2O2 allows it to pass through cell membranes to different parts of
the cell, which facilitates signaling reactions [117]. It causes cell damage at concentrations
higher than 100 nM. Concentration of H2O2 in the range of 1–10 nM acts physiologically in
the process of redox signaling [116]. It does not cause direct DNA damage but DNA damage
is ensured due to •OH presence, which arises from H2O2 in the presence of transition
metal ions [118]. Enzymes eliminating H2O2 include catalase, glutathione peroxidase, and
peroxiredoxins [119].

In peroxisomes, the main metabolic process producing H2O2 is the β-oxidation of
fatty acids through acyl-CoA-oxidase. Other enzymes involved in the formation of ROS
include urate oxidase [120], D-aspartate oxidase [121], or xanthine oxidase [28].

2.4.1. Role of Hydrogen Peroxide in Nanomaterial Toxicity

Most nanomaterials that induce the production of O2
•− also induce the produc-

tion of H2O2. In a study [36], colorectal cancer cells were exposed to polystyrene NPs
(20 and 40 nm) with two surfactants (amino and carboxylic acid). After the exposure of
cells to polystyrene NPs, a decrease in cell viability was observed and the induction of
the apoptosis process was reduced by decreased H2O2 production by catalase. In another
study [37], the authors observed a decrease in intracellular GSH concentration after the
exposure of cells to 8 nm Au NPs. Subsequently, it was found that there was a decrease
in mitochondrial membrane potential (∆Ψ) and cell apoptosis deepened after 48 h of in-
cubation of cells with Au NPs. Then, a decreased mitochondrial GSH concentration and
increased H2O2 production were observed. Other nanomaterials capable of induction of
H2O2 formation are e.g., TiO2 NPs [38], ZnO NPs [39], and Ag NPs [40].
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2.4.2. Methods for the Detection of Hydrogen Peroxide
2′,7′-Dichlorodihydrofluorescein

The 2′,7′-dichlorodihydrofluorescein (DCFH) probe is a specific indicator of the pres-
ence of H2O2. The diacetate form of DCFH (DCFH-DA) has been used to detect ROS in
cells due to its ability to penetrate cell membranes. Two acetate groups are hydrolyzed by
intracellular esterases after DCFH-DA transfer into cells. Then, the presence of peroxidases
is important for the oxidation of DCFH by H2O2. Other agents capable of oxidizing DCFH
include hematin or cytochrome c [122,123] which may increase the fluorescence of the
probe without any H2O2 production [124]. DCFH can be also oxidized with H2O2 in the
presence of Fe2+ but this is most likely due to the formation of •OH. In contrast, O2

•−

is unable to oxidize the DCFH probe [125]. In the presence of visible light or ultraviolet
radiation, a DCF photoreduction can occur (Figure 4). The fluorescent product exhibits
fluorescence at 522 nm (excitation at 498 nm).
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The oxidation of the probe produces a semichinone radical (DCF•−) that, when reacted
with O2, gives rise to O2

•−. Dismutation of O2
•− produces H2O2 that then artificially

increases the oxidation of DCFH. The oxidation of DCFH results in the formation of a
fluorescent product DCF exhibiting strong fluorescence. However, this reaction can increase
the fluorescence intensity of the DCF product and give false-positive results [126–128].
In the case of the measurement of ROS production in tested nanomaterials, the form of
DCFH-DA has been mostly used in ZnO2 NMs [33,129–132] and TiO2 NMs [133–136].

Amplex Red

Amplex Red (N-acetyl-3,7-dihydroxyphenoxazine) is a non-fluorescent molecule that
can be specifically oxidized by H2O2 in the presence of horseradish peroxidase (HRP) to
the highly fluorescent resorufin product (Figure 5), EX/EM 563/587 nm [137]. At excessive
H2O2 concentrations, the fluorescent product resorufin can be further oxidized to non-
fluorescent resazurin [138]. Amplex Red reacts with H2O2 stoichiometrically. It can also
be used for the detection of O2

•− in a mixture with SOD converting O2
•− to H2O2. The

background fluorescence during the measurement is very low and the fluorescent product
is very stable. These features increase the sensitivity of the measurement. Significant loss
of fluorescence may be due to the oxidation of resorufin to the non-fluorescent resazurin
product that can be catalyzed by HRP [139,140].
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HyPer Ratiometric Sensor

The H2O2 concentration can be measured using the expression of a HyPer genetically
encoded ratio sensor. HyPer consists of the bacterial H2O2-sensitive transcription factor
OxyR, fused to the circular fluorescent protein YFP. Cysteine oxidation of the OxyR moiety
induces a conformational change that results in an increase in YFP fluorescence intensity
excited at 500 nm and a decrease in YFP emission excited at 420 nm. This reversible change
can monitor the intracellular concentration of H2O2 [141].

Pentafluorobenzenesulfonyl Fluoresceins

Perhydrolysis of acyl resorufins is a reaction that acts as a fluorescent indicator for
the determination of H2O2. This method is based on deprotection rather than oxidation,
which enables the fluorescence of resorufin and fluorescein. The selectivity of this method
for H2O2 detection is higher compared to DCFH. For the above reasons, pentafluoroben-
zenesulfonyl fluoresceins have been proposed as selective fluorescent probes for H2O2
detection. Importantly, sulfonates are more stable to hydrolysis than esters. Fluoresceins
have high fluorescence yields and the pentafluorobenzene ring increases the reactivity of
sulfonates with H2O2 [142].

Europium Ion

The method is based on the binding of Eu3+-tetracycline [Eu (tc)] linked to propane-
sulfonic acid (MOPS) in an aqueous solution to H2O2. After binding, a strongly fluorescent
complex ([Eu (hp) (tc)]) is formed (λEX/EM = 390-405 /616 nm). The increase in fluorescence
is up to 15x after H2O2 binding and it is strongly dependent on the pH value. The increase
in fluorescence is most pronounced at the physiological pH environment. The fluorescence
of the probe [Eu (tc)] is not affected by ammonium, chloride, sulphate, or nitrate ions.
However, citrate and phosphate can interfere with the assay [143].

Homovanilic Acid

Recently, homovanillic acid (3-methoxy-4-hydroxyphenylacetic acid) has been in-
creasingly used instead of scopoletin for H2O2 detection in mitochondria. In contrast
to the fluorescent scopoletin indicating the presence of H2O2 by a fluorescence decrease,
homovanillic acid becomes a fluorescent through H2O2-induced oxidation in the presence
of HRP [144]. The product of this reaction is a highly fluorescent dimer 2,2′-dihydroxy-3,3′-
dimethoxydiphenyl-5,5′-diacetic acid [145]. In the following Table 2, an overview of all
described fluorescent probes for ROS detection are summarized.
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Table 2. Overview of fluorescent probes for the detection of ROS [79,95,97,98,114,115,137,141–143,145].

Type of ROS Fluorescent Probe Excitation/Emission
Wavelengths

Superoxide MitoSox 535/610 nm
1,3–diphenylisobenzofuran 410/455 nm

Hydroxyl radical
Terephthalic acid 310/420 nm

Rhodamine nitroxide 560/588 nm
HKOH-1 500/520 nm

Singlet oxygen
DPAX-1 495/515 nm
DMAX 495/515 nm

Singlet Oxygen Sensor Green® 504/525 nm

Hydrogen peroxide

2′,7′-dichlorodihydrofluorescein 498/522 nm
Amplex Red 563/587 nm

HyPer ratiometric sensor 485/516 nm
Pentafluorobenzenesulfonyl fluoresceins 485/530 nm

Europium ion 400/616 nm
Homovanilic acid 312/420 nm

3. Role of Reactive Oxygen Species Induced by Nanoparticles in Cell Signaling

Nanomaterials are capable of interfering with cell signaling pathways. Recently, three
main pathways participating in the apoptosis process have been identified (Figure 6). The
first pathway is the direct NMs occupation of the FADD receptor. The second pathway is
the modulation of the function of mitochondria in the presence of NMs and the third is the
localization of NMs pacting in the endoplasmic reticulum. All of these pathways converge
upon caspase activation, thereby the mitochondria produce higher levels of ROS, increase
production of Bid protein, and activate Bax or Bak1 proteins, which can ultimately lead to
organelle damage, DNA cleavage, and cell death [146].
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The dynamic and rapid nature of ROS signaling is the result of ROS production and
removal. The balance between the production and removal of ROS is balanced due to their
interaction. This causes rapid changes in ROS levels [147]. ROS play an important role
in activating many cellular proteins and factors, e.g., NF-κB, MAPK, Keap1-Nrf2-ARE, or
PI3K-Akt [148,149].

The NF-κB family is a family of transcriptional proteins consisting of five members,
i.e., NF-κB1, NF-κB2, RelA, RelB, and c-Rel [150]. The activation of the transcription factor
NF-κB involves signal-dependent degradation of phosphorylated inhibitors such as IκBα.
The mechanism of NF-κB activation by H2O2 [151] or O2

•− [152] is different from the
activation in the presence of cytokines or mitogens. Serines 32 and 36 play a key role in the
activation of NF-κB by cytokines, while tyrosine residues 42 and serine/threonine in the
PEST domain of the IκBα protein play a key role in the activation by H2O2 [153]. H2O2
activates IκBα kinase without subsequent serine phosphorylation of IκBα. In contrast,
H2O2, similar to TNF, induces serine phosphorylation of the p65 subunit of NF-kB, leading
to its nuclear translocation [154]. Nanoparticles participate directly in the activation of the
factor NF-κB through increased ROS production which was confirmed by the translocation
of the high-mobility group box 1 (HMGB1) protein from the nucleus to the cytoplasm
observed in cells after exposure to silica nanoparticles [155]. Subsequently, HMGB1 binds
to the TLR4 receptor; this complex regulates the expression of the myeloid differentiation
factor and activates the NF-κB-signaling pathway.

In eukaryotic cells, signaling by MAPK kinases is very important. Various MAPK
pathways can be activated by different stimuli. Ultimately, activated MAPK pathways
coordinate gene transcription activation, acting in the regulation of protein synthesis, cell
cycle, cell death, and cell differentiation [156]. The MAPK cascade is composed of three
distinct signaling modules, i.e., the c-Jun N-terminal kinase cascade, the p38 MAPK cascade,
and the extracellular signal-regulated kinase ERK [157]. Several cellular stimuli activating
ROS production can also activate MAPK activation itself [158]. For instance, MAPK kinases
can be activated by H2O2 [159]. MAPK activation occurs by activating growth factor
receptors in several cell types [160]. Another mechanism of MAPK activation by ROS is
the inactivation of the MKP protein by its oxidation [161]. The physiological FEM protein
keeps the MAPK signaling pathway inactive. In addition to the activation of MAPK, the
JNK pathway is also activated during the oxidation of the FEM protein [162]. A number
of studies have demonstrated the activation of a variety of kinases by ROS, including
ASK1 [163], MEKK1 [164], c-Src [165], and EGFR [166]. These activated kinases ultimately
can activate the MAPK cascade [167]. Cerium oxide particles have been shown to activate
ROS production and to reduce SOD and glutathione peroxidase activities. This results in
increased phosphorylation levels of p38 MAPK as well as ERK1/2 and JNK [168]. The
nanoparticles that can damage cells through p38 MAPK activation are silica NPs [169,170],
polystyrene NPs [171], and TiO2 NPs [172]. Conversely, the exposure to Au [173] and iron
oxide [174] NPs causes the osteogenetic differentiation through the activation of relevant
genes by p38 MAPK.

The tumor suppressor protein p53 induces apoptotic cell death in response to onco-
genic stress. Malignant progression is dependent on the loss of p53 function by mutations
in the TP53 gene itself or defects in signaling pathways. Phosphorylation of p53 regulates
the ability to activate the expression of apoptotic target genes [175]. Overexpression of p53
transactivates a number of p53 genes. Many of these genes encode redox active proteins in-
cluding enzymes (quinone oxidoreductase and proline oxidase) generating ROS. Ultimately,
this regulation of ROS production leads to oxidative stress that can induce apoptosis [176].
Increasing the intracellular concentration of ROS leads to the activation of the p38 protein,
which increases the expression and transcriptional activity of p53 [177]. The p53 protein
transcriptionally activates the PUMA gene encoding two proteins, PUMA-α and PUMA-β,
of similar activity. These proteins bind to Bcl-2 and integrate into the mitochondria, where
they induce the release of cytochrome c [178–180].
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Last but not least, ROS activate the JNK kinase pathway, which plays an important role
in the apoptosis process [4,181]. During intracellular ROS production, there is a permanent
activation of JNK [182]. This is due to the inactivation of MAPK phosphatases (FEM) by
oxidation of their catalytic cysteine in the presence of intracellularly accumulated H2O2.
Expression of catalytically inactive FEMs prolongs JNK activation [183].

4. Current Trends in the Evaluation of Nanotoxicity In Vitro

The number of studies focusing on nanotoxicity testing has been growing very rapidly
in the last two decades. The cause of that can be also found in the perpetual production of
new nanomaterials for its following use in industry or medicine. Conversely, especially in
medicine, nanomaterials raise some concerns regarding their cytotoxicity or biocompatibil-
ity. Thus, a number of scientific projects have been assessing the toxicity of the selected
nanomaterials and creating the risk management framework for the use of nanomaterials
in medical applications [184].

Recent studies on nanotoxicity have been using basic assays for the evaluation of
cell function changes, e.g., cell viability, membrane integrity, and enzyme activities mea-
surements. To estimate the oxidative status in cells, the levels of antioxidants can be
measured using a number of methods. In addition to the most frequently used methods,
other approaches have been used to characterize the cellular nanotoxicity recently. These
methods include scanning electron microscopy [185], liquid cell transmission electron
microscopy [186], atomic force microscopy [187], and hyperspectral and laser confocal
microscopy applied to cell-nanoparticles interactions [185]. All these microscopic methods
are very sensitive and specific, which allows for a very detailed description of the function
state of the cells after nanomaterials treatment. To understand the toxicity of nanomaterials,
we need to develop new and innovative methods that will provide us with information
about the changes in the intracellular environment after exposure to nanomaterials. In
addition, there is a need to develop methods that are fast, robust, and combine several
biological tests. In contrast to conventional assays using lipophilic fluorescent probes
detecting ROS levels, a nanoelectrode has been developed to study the toxicity of magnetic
nanoparticles. The nanoelectrode is composed of individual platinum nanoelectrodes with
a cavity at the tip. It is part of an upright microscope and is used to measure intracellular
ROS [188].

A further topic of interest in nanotoxicity testing is the use of newly developed rele-
vant biological models. In comparison to two-dimensional (2D) cultured cell lines, those
new biogical models ought to provide accurate predictions of nanomaterials effects in vivo.
Thus, some new scientific studies described the use of pulmonary fibrosis models [189], or-
gan on-chip technology bridging the differences between 2D in vitro and three-dimensional
(3D) in vivo models from skin, the lung, and the liver [190,191], or on-chip placenta mod-
els [192]. Despite advanced organ on-chip models, a number of concerns have to be solved
to ensure the comparability to living systems in obtained outcomes [193].

5. Conclusions

Currently, nanotechnology is considered to be one of the most attractive research topics
due to its huge application potential and commercial impact. Due to the large number
of newly manufactured nanomaterials, it is necessary to evaluate their possible cytotoxic
effects in men. At present, there is a large request to investigate thee potential acute and
chronic effects of nanomaterials especially in vitro in cells. Those studies can provide a
mechanistic view on nanomaterial cellular acting. However, the use of proper and relevant
bioanalytical methods for evaluating the nanomaterials effects in cells is necessary.

In this study, we aimed to provide a recent and detailed view on ROS production
induced by nanomaterials, especially considering the metalic nanoparticles. In cells, the
nanotoxicity can be mediated by a number of substances including ROS. Depending
on the composition and shape of a nanomaterial, a variety of ROS can be formed in
cells, i.e., O2

•−, 1O2, •OH, and H2O2. Thus, the importance of the present review can
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be recognized in the mechanistic description of a relation of nanomaterials of different
chemical compositions and ROS production. We provided the current knowledge of ROS-
mediated cellular nanotoxicity together with the possibilities of ROS detection in cells using
specific fluorescent probes. In addition, we summarized the detailed description of the
relationship between nanomaterials-mediated ROS production and glutathione depletion.
Altogether, the prooxidative action of nanomaterials can ultimately lead to the activation
of cellular signaling pathways, causing a change in cellular metabolism, cell damage, or
even cell death.
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