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ABSTRACT 

A commercial insurance company in the Czech Republic provided data on critical illness 

insurance. The survival analysis was used to study the influence of the gender of an insured 

person, the age at which the person entered into an insurance contract and the region where 

the insured person lived on the occurrence of an insured event. The main goal of the research 

was to investigate whether the influence of explanatory variables is estimated differently 

when two different approaches of analysis are used. The two approaches used were (1) the 

Cox proportional hazard model that does not assign a specific cause, such as a certain 

diagnosis, to a critical illness insured event and (2) the competing risks models. Regression 

models related to these approaches were estimated by R software. The results, which are 

discussed and compared in the paper, show that insurance companies might benefit from 

offering policies that consider specific diagnoses as the cause of insured events. They also 

show that in addition to age, the gender of the client plays a key role in the occurrence of such 

insured events. 
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INTRODUCTION 

Survival data analysis is an area of statistics that estimates the amount of time that is likely to 

elapse before a certain event occurs. Models for this type of analysis have often been applied 

to medical data, and many scientific books and research articles have reported on the results. 

This article focuses on the application of survival analysis models to data on insurance 

transactions; such studies are much less common than those on medical data. 

The most common use of survival analysis in the insurance industry is for contract failures. For 

instance, the analysis of customer survival time in an insurance company after a policy 

cancellation was introduced by Guillen et al. [13]. The Cox proportional hazards model was 



used in [17] to investigate China's residential mortgage life insurance prepayment risk 

behaviour. The dataset of Danish households with multiple insurance policies was studied in 

Ref. [5]. Haugen and Moger investigated corporate customers holding multiple contracts for 

automobile insurance with the same insurance company. They used the shared gamma frailty 

model to study the time-lapse of single-car policies [16].  

The competing risks approach was used by Mihaud and Dutang [22]. They modelled the 

duration of a life insurance contract through the subdistribution hazard model developed by 

Fine and Gray. Applications of competing risks models for insurance data can also be found in 

the following articles. Dang investigated the insolvency outcomes of U.S. property-casualty 

insurers from 1998 to 2010 [9]. He fitted the competing risks models with time-dependent 

covariates for five specific insolvency outcomes. The performance of the Federal Housing 

Administration mortgage program and privately insured home purchase mortgages relative to 

uninsured mortgages was investigated by Park [23]. He used, besides the Kaplan–Meier 

survival estimate, the subdistribution hazard model. 

The main goal of the presented paper was to study the influence of explanatory variables on 

the occurrence of an insured event and to investigate whether estimates of the effects of 

covariates differ when they are made using different approaches (Cox proportional hazard 

and competing risks approach). The following explanatory variables were used in the analysis: 

the gender of the insured person, the age at which the person entered into an insurance 

contract, and the region where the insured person lived. Interesting results were obtained in 

particular in the case of gender variable. The results also confirm that the age of the client, of 

course, plays a significant role in the occurrence of the insured events. However, the 

competing risks approach has again yielded some interesting results in this case. 

The remainder of the article is organized as follows. In the Methodology section, the used 

approaches are described and discussed. The data are introduced and described in the section 

Data. Explanatory variables and used models are listed in section Models. Section Results 

contains and describes the estimated results of the used models. Finally, the results and the 

conclusions drawn from them are summarized in the section Summary and Conclusions. 

 

METHODOLOGY 

When there is a single outcome of interest or the outcome of interest is not distinguished by 

a specific cause, the Cox proportional hazards model provides a suitable method for 

accommodating covariate information. The model, with its unspecified baseline hazard 

function, was proposed by Cox in 1972 [7]; he introduced the notion of partial likelihood and 

went on to consider it in great detail in 1975 [8]. A detailed review of the model and its 

extension is provided in Ref [31]. The Cox model of the hazard at time 𝑡 for the 𝑖-th individual 

is given by the equation 
ℎ𝑖(𝑡) = exp(𝜷𝐗) ℎ0(𝑡),                                                        (1) 

 
where ℎ0(𝑡) is the baseline hazard function of the unspecified form. There is a direct 

correspondence between the effect of a covariate on the hazard of the outcome and the effect 

of a covariate on the incidence of the outcome due to the following relationship: 

𝑆(𝑡) = 𝑆0(𝑡)exp(𝜷𝐗),                                                             (2) 



where 𝑆(𝑡) is a survival function and 𝑆0(𝑡) is a baseline survival function [1, 2]. Thus, making 

inferences about the direction of the effect of a covariate on the hazard function permits one 

to make equivalent inferences about the direction of the effect of that covariate on the 

incidence (or probability of occurrence) of the outcome. This direct correspondence allows 

interpretation without an exact specification of whether a risk denotes the hazard of an event 

(i.e., the rate of occurrence of the event for those still at risk of the event) or the incidence of 

the event (i.e., the probability of the occurrence of the event) [1, 2]. 

The term competing risks implies that a person may experience one of a set of different events 

or outcomes. In time-to-event analyses, the occurrence of one of the possible events often 

precludes the occurrence of other possible events. For example, in critical illness insurance, 

the occurrence of the insured event due to cancer precludes the occurrence of the event due 

to another disease. Two different methods are usually used in the presence of competing 

risks: the cause-specific hazard method [24] and the subdistribution hazard method [12]. Both 

methods account for competing risks, but they do so by modelling the effect of covariates on 

different hazard functions. Consequently, each model has its unique interpretation [2]. 

The cause-specific hazard approach was proposed by Prentice et al. [24] and discussed in Refs. 

[10, 18, 25]. The cause-specific hazard function for the 𝑖-th individual from 𝑗-th cause is 

defined as 

ℎ𝑖𝑗(𝑡) = lim
∆𝑡→0

Prob(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑗|𝑇 ≥ 𝑡)

∆𝑡
 ,                               (3) 

where 𝐷 is a variable denoting the type of event that occurred. The cause-specific hazard 

function denotes the instantaneous rate of occurrence of the 𝑗-th event in subjects who are 

currently event-free (i.e., in subjects who have not yet experienced any of the different types 

of events). 

The regression model for the so-called subdistribution hazard function was introduced in 1999 

and has been designated the Fine and Gray model by its developers [12]. Generalization of 

this model was provided by Scheike and Zhang [27], and a suitable package in R software was 

also described by them [28]. The subdistribution hazard function for the 𝑖-th individual from 

the 𝑗-th cause is defined as 

𝜆𝑖𝑗(𝑡) = lim
∆𝑡→0

Prob(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑗|𝑇 ≥ 𝑡 ∪ (𝑇 < 𝑡 ∩ 𝐽 ≠ 𝑗))

∆𝑡
 .                (4) 

The subdistribution hazard function denotes the instantaneous risk of failure from the 𝑗-th 

cause in subjects who have not yet experienced an event of type 𝑗. In this case, the risk set 

includes those who are currently event-free, as well as those who have previously experienced 

a competing event. This differs from the risk set for the cause-specific hazard function, which 

includes only those who are currently event-free.  

The subdistribution hazard model has also been described as a cumulative incidence function 

(CIF) regression model. The CIF for the 𝑗-th cause is defined as 

CIF𝑗(𝑡) = Prob(𝑇 ≤ 𝑡, 𝐷 = 𝑗).                                                     (5) 

The function CIF𝑗(𝑡) denotes the probability of experiencing the 𝑗-th event before time 𝑡 and 

before the occurrence of a different type of event. Thus, the subdistribution hazard model 

allows one to estimate the effect of covariates on the CIF for the event of interest, and it 

permits one to recover a relationship similar in form to that described in Equation (2). Thus, if 

a covariate is associated with an increase in the subdistribution hazard function, it will also be 



associated with an increase in the incidence of the event. There is a one-to-one relationship 

with the CIF for the subdistribution hazard but not for the cause-specific hazard [1]. When 

using the cause-specific hazard model in the presence of competing risks, it is incorrect to infer 

that a given variable is associated with an increased or decreased incidence of the event of 

interest because Equation (2) does not hold in the presence of competing risks [23, 27]. This 

is because one must account for the effect of covariates on the cause-specific hazard function 

of each of the different types of events when determining their effect on the CIF for the event 

of interest [19]. 

There are two key questions that arise when using competing risks regression models: (1) 

Which covariates affect the rate at which events occur? (2) Which covariates affect the 

probability of an event occurring over time? [1] According to Lau et al., cause-specific hazard 

models are better suited for studying the cause (reason) of the occurrence of the event [21]. 

The reason is that the cause-specific hazard function denotes the instantaneous rate of the 

primary outcome. Thus, regression coefficients from the cause-specific hazard model can be 

interpreted as the relative effect of the corresponding covariate on the relative increase in the 

rate of occurrence of the primary event in subjects who are currently event-free [2]. On the 

other hand, Koller et al. suggested that the subdistribution hazard method was preferable 

when the focus was on estimating the actual risk and prognosis [19]. Furthermore, the 

subdistribution hazard method may be of great interest if one is interested in the overall 

impact of covariates on the incidence of the outcome of interest, even when predictions of 

incidence are not of direct interest [2]. 

The following predictors (covariates) were used in the analysis: the gender of the insured 

person, the age at which the person entered into an insurance contract, and the region where 

the insured person lived. In connection with the variable age, it should be noted that it was 

considered as a factor (containing four age groups – see below) in the model, and it was fixed 

to the age at the conclusion of the insurance contract. On the other hand, when the 

dependence of the hazard function on continuous explanatory variables (or more generally 

on a variable that takes a wide range of values) to be modelled, we should consider whether 

it is appropriate to include that variable as a linear term in the model [6].  If the age was 

considered as a continuous linear term in the model (or at baseline hazard function), then the 

effect of changing age can be ignored in a survival model due to the structure of partial 

likelihood [30]. However, if there is evidence that the effect of age on risk is nonlinear, the 

situation is somewhat more complicated. In this case, it is possible to incorporate fractional 

polynomials into the model (see Ref [26] for details) or to use one of a wide range of mortality 

models (see, for example, Refs. [3, 4, 11]. 

The results presented here are in accordance with the recommendations given in [20] for all 

causes of the outcome (i.e., no specific cause is distinguished) and for both the cause-specific 

hazard method and the subdistribution hazard method (i.e., competing risks approach). As 

pointed out in [2], such a practice enables a complete understanding not only of the effects of 

prognostic factors but also of the absolute risks of the different outcomes in the study sample. 

Therefore, in addition to the results obtained for all causes by applying the Cox model and 

published in [32], both types of competing risks models (i.e., the cause-specific hazard model 

and subdistribution hazard model) were applied to the insurance data. The results of these 

models are discussed and compared. 



 

DATA 

A commercial insurance company in the Czech Republic provided data on critical illness 

insurance. This type of insurance is offered as a supplement to life insurance if the policyholder 

is an adult under the age of 65 years or as a separate insurance contract for persons under 18 

years of age. The insurance covers the risk of 31 critical illnesses such as cancer, heart attack, 

and stroke. If the client is diagnosed with any of these diseases, the client will receive the 

agreed sum insured. The insurance indemnity is paid only once, and after its payment, the 

insurance contract expires. The diagnosis of one of the critical diseases resulting in an insured 

event, therefore, excludes the occurrence of a different critical illness as an insured event. 

This fact justifies the use of methods suitable for competing risks. 

After a client purchased a critical illness policy from the company in our study, there was a 3-

month waiting period during which the company would not pay a claim for that client if an 

insured event occurred. Critical illnesses that arose as a result of extreme sports or alcohol or 

drug use were excluded from the critical illness insurance policies. 

The analysed dataset in our study contained clients who entered into insurance contracts from 

July 1, 1997, to April 30, 2017. The date of the start and eventual endpoints of each policy 

were known. If the endpoint was reached on or before April 30, 2017, its cause was known. 

The endpoint could be the date that an insured event occurred or the date that the policy was 

terminated by the client or insurance company. For the purposes of this analysis, however, 

only the occurrence of an insured event was considered as the endpoint. Other causes of 

termination of the insurance contract or policy in force were deemed to be censored cases. 

Therefore, each policy's duration (in days) was calculated to analyse the time to the endpoint 

(i.e., to the occurrence of an insured event). Due to the above-mentioned 3-month waiting 

period, policies that had been in force for less than three months were removed from the 

dataset. In addition to the policy duration, we also had information about the gender and age 

of the policyholder and the region in which the policyholder lived. This allowed us to 

investigate the influence of the gender of the insured person, the age at which the person 

entered into the insurance contract, and the region of residence of the insured person on the 

insured event's occurrence.  

The dataset contained data for 231,046 persons, and the number of insured events in the 

monitored period was 1,045. A crucial assumption made when using the Cox model is that of 

proportional hazards. Hazards are said to be proportional if the ratios of hazards are 

independent of time. The hazard proportionality assumption was tested by the so-called zph 

test based on Schoenfeld residuals developed by Grambsch and Therneau [17]. The 

assumption of hazard proportionality was not rejected for the variables of gender and region, 

but it was rejected for the variable of age. For this reason, the dataset was stratified into two 

groups: clients under age 18 years and clients 18 years of age and older. The subset of clients 

under age 18 years had 91,083 clients with 114 insured events. The subset of clients who were 

18 years old or older had 139,963 persons with 931 insured events. One can see that there 

was a large disproportion in the number of insured events, given the total number of clients 

in these two groups, and this led to a rejection of the proportional hazard assumption. 



Therefore, only the data for individuals 18 years of age and older were analysed by the survival 

models and considered in this paper. 

The specific cause of each insured event was also known (i.e., the specific diagnosis of critical 

illness). There were 21 different causes (of the 31 covered by insurance), but 16 of them did 

not reach an incidence of 1%. Five diagnoses reached an incidence of 2% or more, and 

together these diagnoses accounted for over 96% of all occurrences of insured events (see 

Table 1). The most common diagnosis was cancer at more than 70% of all occurrences. The 

next most common diagnosis was a heart attack (>11%), stroke (⁓8%), benign brain tumor 

(⁓4%), and coronary artery disease requiring operation (>2%). Therefore, two groups of causes 

(diagnoses) were created (see Table 1): cancer (labelled Cancer in the table) and all other 

diagnoses (labelled Other). 

 

MODELS 

In accordance with the recommendations in [20], two different approaches to the outcome of 

interest (i.e., the occurrence of the insured event) were used. The first approach does not 

assign a particular cause to the insured event, and the second one does assign a specific cause 

(i.e., diagnosis of a critical illness). The results of the competing risks approaches were 

obtained via the cause-specific hazard model and subdistribution hazard model and were 

compared with the calculations of the first approach, the Cox model, published in Ref. [32]. 

The influence of the gender of the insured person, the age at which the person entered into 

the insurance contract, and the region where the insured person lived at the time of 

occurrence of the insured event were investigated. The Cox model of the hazard at time 𝑡 for 

the 𝑖-th individual is in this case given by the equation 
ℎ𝑖(𝑡) = exp(𝛽1𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽2𝐴𝑔𝑒𝑖 + 𝛽3𝐺𝑟_𝑅𝑒𝑔𝑖𝑜𝑛𝑖) ℎ0(𝑡),                     (7) 

where ℎ0(𝑡) is a baseline hazard function of unspecified form. The variables 𝐺𝑒𝑛𝑑𝑒𝑟𝑖, 𝐴𝑔𝑒𝑖  

and 𝐺𝑟_𝑅𝑒𝑔𝑖𝑜𝑛𝑖  are the categories of explanatory variables (see below) for the 𝑖-th individual. 

In the competing risks approach, the cause-specific hazard model is the most direct. Two 

separate Cox models are developed for each cause of occurrence of an insured event, in our 

case, one for cancer and one for the other group of critical diagnoses (see Table 1). The 

following two models for the cause-specific hazard function are 
ℎ𝑖𝑗(𝑡) = exp(𝛽1𝑗𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽2𝑗𝐴𝑔𝑒𝑖 + 𝛽3𝑗𝐺𝑟_𝑅𝑒𝑔𝑖𝑜𝑛𝑖) ℎ0𝑗(𝑡),                (8) 

where ℎ𝑖𝑗(𝑡) is the hazard of the insured event for the 𝑖-th individual from the 𝑗-th cause (𝑗 =

1 means cancer, 𝑗 = 2 means the other causes) and ℎ0j(𝑡) is the baseline hazard function for 

the 𝑗-th cause. 

The subdistribution method provides an alternative approach to modelling covariate data with 

competing risks. It uses the subdistribution hazard for modelling the effects of covariates on 

a specific cause of a considered event analogously to the Cox proportional hazard model, 

which in our case led to the model 

𝜆𝑖𝑗(𝑡) = exp(𝛽1𝑗𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽2𝑗𝐴𝑔𝑒𝑖 + 𝛽3𝑗𝐺𝑟_𝑅𝑒𝑔𝑖𝑜𝑛𝑖) 𝜆0𝑗(𝑡),                  (9) 

where 𝜆𝑖𝑗(𝑡) is the subdistribution hazard function of the insured event for the 𝑖-th individual 

from the 𝑗-th cause (𝑗 = 1 means cancer, 𝑗 = 2 means the other causes) and 𝜆0𝑗(𝑡) is the 

baseline subdistribution hazard function for the 𝑗-th cause. However, increased attention 

must be paid to interpreting the results of competing risks models, especially to the different 

constructions of the risk set (see the section on Methodology). 



Because of the categorical (factor) explanatory variables, each parameter 𝛽𝑖𝑗 for 𝑖 = 1, 2, 3 is 

represented by 𝑞 − 1 estimated parameters, where 𝑞 means the number of categories of 

corresponding explanatory variables. The variable 𝐺𝑒𝑛𝑑𝑒𝑟 included two categories (𝑞 = 2). 

The 𝐴𝑔𝑒 variable was made up of four categories (𝑞 = 4): 18 to 30 years, 31 to 40 years, 41 

to 50 years, and over 50 years. As background for the variable 𝐺𝑟_𝑅𝑒𝑔𝑖𝑜𝑛, it should be noted 

that the Czech Republic is divided into 14 territorial administrative regions: Central Bohemia 

(STC), Hradec Kralove (HKK), Karlovy Vary (KVK), Liberec (LBK), Moravia–Silesia (MSK), 

Olomouc (OLK), Pardubice (PAK), Plzen (PLK), Prague (PHA), South Bohemia (JHC), South 

Moravia (JHM), Usti nad Labem (ULK), Vysocina (VYS), and Zlin (ZLK). In our study, we formed 

categories of the variable 𝐺𝑟_𝑅𝑒𝑔𝑖𝑜𝑛 based on groups with different rates of risk of an insured 

event (without distinguishing the specific cause of the insured event; i.e., based on the results 

of the Cox model) [35]. According to the rate of hazard, we set up three groups of regions (𝑞 =

3): Group 1 contained the regions of Liberec, Pardubice, Prague, and Zlin, where the hazard 

rate was the lowest; group 2 included the nine regions of Central Bohemia, Hradec Kralove, 

Moravia–Silesia, Olomouc, Plzen, South Bohemia, South Moravia, Vysocina, and Usti nad 

Labem; and group 3 contained only one region, Karlovy Vary, which had the highest hazard 

rate of occurrence of an insured event. The categories of corresponding explanatory variables 

with the lowest hazard rate (again based on the approach that did not specify a cause of the 

critical illness) were determined as reference categories; they were male for the variable 

𝐺𝑒𝑛𝑑𝑒𝑟, 18 to 30 years for the variable 𝐴𝑔𝑒, and group 1 for the variable 𝐺𝑟_𝑅𝑒𝑔𝑖𝑜𝑛. 

The R software (package survival [29] and package cmprsk [15]) was used to test the 

proportional hazard assumption, estimate the CIFs, and estimate all the above-mentioned 

regression models. 

 

RESULTS AND DISCUSSION 

Because the influence of gender, age, and region of residence of the insured person was 

investigated, the frequency tables of these explanatory variables were calculated (𝐺𝑒𝑛𝑑𝑒𝑟 in 

Table 2, 𝐴𝑔𝑒 in Table 3, and 𝐺𝑟_𝑅𝑒𝑔𝑖𝑜𝑛 in Table 4). In addition to the absolute frequency of 

each category of the corresponding variable, the percentage ratios of the individual absolute 

frequencies were calculated. These ratios are presented for the two diagnostic groups (cancer 

and other - connected with the competing risks approach) as well as for both groups together 

(cancer plus other - Cox model approach). 

Analysis of the insurance data showed that an insured event did not occur for most clients; 

they were considered censored cases (see the columns labelled Censored in Tables 2 to 4). 

Even so, some interesting results can be seen. For example, regarding gender, we can see that 

if a cause was not specified, the percentage ratios were similar for males (0.64%) and females 

(0.68%) but that if a cause was specified, the percentage ratios differed greatly (see Table 2). 

Indeed, the statistical test for the evaluation of differences between proportions rejected the 

hypothesis of equality of these proportions for both the cancer group and the other diagnosis 

group (p-value < .0001). On the other hand, this hypothesis was not rejected if we did not 

assign a specific diagnosis (p-value = .342). There was a different situation in the case of the 

age groups, where the ratio increased with increasing age for all three case groups (cancer, 

other diagnoses, and cancer plus other diagnoses; see Table 3). Regarding the statistical 

significance of the proportion differences, the statistical test rejected the hypothesis of 



equality for all possible pairs of age groups (p-value < .0001) except for the age groups 41 to 

50 years and over 50 years (p-value = .714 for cancer, .365 for other diagnoses, and .421 for 

cancer plus other diagnoses). The regions are listed in Table 4 according to their increasing 

ratios (without assigning a specific cause of the insured event in the column for cancer plus 

other diagnoses), and they form the three groups mentioned above (see the section titled 

Models).  The proportions of these three groups were calculated and compared with each 

other, showing that all hypotheses of equality were rejected at a level of significance of .05.  

Regarding the influence of these variables on the occurrence of the insured event, we can see 

that the proportion differences among categories were the highest for the age variable, so 

that, not surprisingly, age had the most significant influence. However, it is essential to note 

that this simple approach did not take into account the duration of the insurance contract, 

which was related to the amount of the insurance premium paid by the client until the insured 

event occurred. That is why survival analysis should be used to account for the duration. 

As mentioned above, the results for the competing risks approaches were compared with the 

results for the approach that did not assign a specific cause to an insured event (i.e., a 

diagnosis of a critical illness). Thus, the results of the Cox model (i.e., no particular cause 

assigned) are once more presented first [32]. Estimations of the coefficients of the Cox 

proportional hazard model with their statistical significance (p-values), hazard ratios, and 

corresponding confidence intervals are shown in Table 5.  

We can see from Table 5 that the time to occurrence of the insured event was not statistically 

significant (the p-value of .678 was greater than the determined level of significance of .05) 

for male and female insured persons. This means that the risk of critical illness was comparable 

for males and females (hazard ratio, 1.028; confidence interval contains 1.00). As expected, 

the situation was different for the explanatory variables 𝐴𝑔𝑒 and 𝐺𝑟_𝑅𝑒𝑔𝑖𝑜𝑛. In particular, 

age plays a significant role in the risk of critical illness. Based on the hazard ratios, we can see 

that the age category of 31 to 40 years had a risk of occurrence of a critical illness that was 

more than twice as much as that of the reference age category of 18 to 30 years. For insured 

persons aged 41 to 50 years, the risk was more than five times greater than the reference 

category of 18 to 30 years, and for people over 50 years, it was more than ten times higher. 

In the case of the region of residence, the differences were not so large. The lowest risk of an 

insured event was in the first group, the region encompassing Liberec, Pardubice, Prague, and 

Zlin (interestingly, these are not neighbouring regions). The highest risk was in the third group, 

Karlovy Vary, where the risk of occurrence of critical illness was almost twice as large as in the 

first group. The other nine regions, which form the second group, had similar risks of an 

insured event, but this risk was only a little higher (⁓1.3 times) compared with the first group.  

As already mentioned in the section on Methodology, there was a direct correspondence, 

thanks to Equation (2), between the effect of a covariate on the hazard of the outcome and 

the effect of a covariate on the incidence of the outcome. This direct correspondence allowed 

a looser interpretation without an exact specification of whether the risk denoted the hazard 

of an event or the incidence of the event. 

Now, we focus on the results of the competing risks approaches, which can be seen for the 

cancer group in Table 6 (cause-specific hazard model) and Table 7 (subdistribution hazard 

model) and for the other diagnoses group in Table 8 (cause-specific hazard model) and Table 

9 (subdistribution hazard model). We must keep in mind that the interpretation of the results 



of the cause-specific hazard model and the subdistribution hazard model is different (see 

Methodology). It is worth noting that the estimated regression coefficients of the cause-

specific hazard model and subdistribution hazard model were essentially the same for the 

corresponding diagnoses (compare Table 6 with Table 7 and Table 8 with Table 9). They were 

caused by a large number of censored cases in the dataset. Once this is taken into account, 

the differences mentioned above in constructing the risk set were not manifested so much. 

Therefore, we can say that the considered variables had a similar effect on the cause-specific 

hazard and on the relative incidence of a given outcome. However, keep in mind that there is 

a one-to-one relationship with the incidence of an outcome (through the CIF) for the 

subdistribution hazard but not for the cause-specific hazard. That is why the CIFs are also 

presented for the cancer group and the other diagnosis group in Figure 1. We can see (from 

Figure 1) that there was an almost linear increase in incidence in the first 4,400 days (–12 

years) after the insurance policy went into effect. The rate of this growth was much higher for 

the cancer group; however, cancer incidence was almost twice as high as the incidence for the 

other diagnosis group. 

Regarding the explanatory variables of the regression models, we can say that the influence 

of gender, unlike for the Cox model, was statistically significant and different for cancer and 

other diagnoses. For cancer, the risk of occurrence was 1.5 times higher for females than for 

males. For the other diagnoses, the risk of the event was significantly lower for females than 

for males (0.53 times).  

Results for the age variable corresponded to those obtained by testing the proportion 

differences for both the competing risks approach and the approach that did not assign a 

cause to a critical illness. For both groups of diagnoses considered, the risk increased with the 

increasing age of the policyholder. However, the rate of growth was different. For cancer, the 

increase in risk with increasing age was not as rapid as for the other diagnoses. For example, 

the risk of occurrence of cancer was approximately 8.5 times higher for clients over 50 years 

of age than for clients from 18 to 30 years of age, but it was more than 16 times higher from 

one group to the other for other diagnoses. A closer comparison of the results of the 

regression models and the results of the proportion differences shows one interesting detail 

concerning the comparison of age groups of 41 to 50 years and over 50 years. As mentioned 

above, the proportion differences of these two age groups were not statistically significant in 

all three cases (cancer, other diagnoses, and cancer plus other diagnoses), which could lead 

to the merging of these two age groups. All regression models, however, suggest different 

results based on non-overlapping confidence intervals of hazard ratios. Therefore, all 

regression models were re-estimated for the reference age group of 41 to 50 years to support 

this proposition (the resulting tables are not presented here). The statistically significant 

difference of the hazard ratios for the age group of 41 to 50 years and the age group of over 

50 years was confirmed.  

Regarding the regions of residence, the differences were again not so significant. Unlike the 

results of the approach that did not assign a specific cause, there was no statistically significant 

difference in the risk of an insured event between the first and second groups of regions (for 

both cancer and other diagnoses). A significantly higher risk was seen in the Karlovy Vary 

region (third group), and the risk was slightly larger for the other diagnoses than for cancer. 
 



 

SUMMARY AND CONCLUSIONS 

The data on critical illness insurance provided by a commercial insurance company were 

analysed. First, the dataset had to be divided into two age groups, one for persons under 18 

years of age and one for persons 18 years of age or older. The reason for the stratification was 

the enormous disproportion in the number of insured events (relative to the total number of 

clients in the group) in these two groups. This proportion was more than five times greater for 

clients who were 18 years of age or older. Therefore, having persons younger than 18 years in 

the portfolio of a critical illness insurance company is very beneficial for the company. 

Two different survival analysis approaches were used for groups of adults (i.e., clients 18 years 

of age or older), and the results obtained were compared. If the specific cause of an insured 

event was not taken into account, the Cox model was estimated; otherwise, the competing 

risks approach was used. In that case, two models were evaluated: the cause-specific hazard 

model and the subdistribution hazard model. In general, these two models have different 

interpretations and can lead to different regression coefficients. In our case, however, this 

situation did not occur, mainly because of the large number of censored cases. Two groups of 

diagnoses were differentiated in case of competing risks approach, cancer, and other 

diagnoses. These groups were formed because more than 70% of the diagnoses were cancer.  

Interesting results were obtained, especially regarding gender. If the cause of the insured 

event was not taken into account, there were no differences between males and females in 

the risk of occurrence of the insured event. If the competing risks approach was used, 

however, totally different results were obtained. For cancer, the risk was significantly greater 

for females, but the risk was significantly lower for females in case of other diagnoses.  

Regarding age, the risk increased with the increasing age of the client, regardless of the 

approach used. However, the dynamics of this growth were different. If the competing risks 

approach was used, the increase in the risk for cancer was not as rapid as for other diagnoses. 

This was mainly due to the low incidence of diagnoses of other causes in the reference age 

group of 18 to 30 years. Justification of the use of survival analysis was confirmed, among 

other things, by the demonstration of a statistically significant difference between the age 

group of 41 to 50 years and the age group of over 50 years. This difference has not been 

demonstrated by using a simpler approach. 

In the case of regions of residence, the risk differences between the used approaches 

(including the differentiation of causes within the competing risks approach) were not as great 

as in the case of age. Regardless of the method, only the region of Karlovy Vary stood out in a 

negative sense. 

Possible recommendations for the insurance company can be formulated as follows. Continue 

to offer this type of insurance to children and young people. Begin to deal also with products 

that consider either cancer only or all other diagnoses except cancer as the cause of an insured 

event. The latter policies could be offered with a significant discount on insurance premiums. 

For products that focus on a specific diagnosis, it would be appropriate to distinguish between 

males and females. For the country size of the Czech Republic, extending the model to include 

the client's regional affiliation is not necessary because the differences between the regions 

are not so significant. Using a sophisticated statistical method can reveal some interesting 

details about insurance statistics. 
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Table 1 Frequency table of the diagnoses 

Diagnosis Frequency Percent Cause Frequency Percent 

Cancer 665 71.43 Cancer 665 71.43 

Heart-attack 104 11.17 

Other 266 28.57 

Stroke 73 7.84 

Benign brain tumor 35 3.76 

Coronary artery operations 21 2.26 

Various other 33 3.54 

Total 931 100  931 100 

 

 

Table 2 Frequency table of gender 

Variable 
Frequency 

Ratios from frequencies (in %) 

Gender Censored Cancer Other  Cancer + Other 

Female 75408 99.32 0.57 0.11 0.68 

Male 64555 99.36 0.36 0.28 0.64 

 

 

Table 3 Frequency table of age 

Variable 
Frequency 

Ratios from frequencies (in %) 

Age Censored Cancer Other  Cancer + Other 

18-30 46078 99.78 0.18 0.04 0.22 

31-40 45944 99.47 0.37 0.16 0.53 

41-50 29535 98.81 0.84 0.35 1.19 

over 50 18406 98.73 0.87 0.40 1.27 

 

  



Table 4 Frequency table of regions  

Variable 
Region Frequency 

Ratios from frequencies (in %) 

Gr_Region Censored Cancer Other  Cancer + Other 

1st group 

PAK 5579 99.55 0.27 0.18 0.45 

PHA 10580 99.52 0.38 0.10 0.48 

LBK 4552 99.52 0.35 0.13 0.48 

ZLK 9964 99.51 0.39 0.10 0.49 

2nd group 

JHM 12922 99.42 0.43 0.15 0.58 

STC 10095 99.37 0.47 0.17 0.63 

ULK 7834 99.34 0.40 0.27 0.66 

JHC 8425 99.34 0.46 0.20 0.66 

VYS 7038 99.33 0.54 0.13 0.67 

PLK 8571 99.30 0.43 0.27 0.70 

HKK 7932 99.29 0.54 0.16 0.71 

OLK 11736 99.29 0.53 0.18 0.71 

MSK 27830 99.26 0.54 0.20 0.74 

3rd group KVK 6905 98.78 0.75 0.46 1.22 

 

 

Table 5 Estimations of the Cox proportional hazard model 

Variable 
Level of 
Effect 

Parameter 
Estimate 

p-value 
Hazard 
Ratio 

95% 
Lower CI 

95% 
Upper CI 

Gender female 0.027 0.678 1.028 0.903 1.170 

Age 31-40 0.822 0.000 2.274 1.806 2.864 

Age 41-50 1.680 0.000 5.367 4.307 6.687 

Age over 50 2.305 0.000 10.023 7.933 12.664 

Gr_Region 2nd gr. 0.240 0.008 1.271 1.064 1.519 

Gr_Region 3rd gr. 0.521 0.000 1.684 1.286 2.207 
 

  



Table 6 Estimations of the cause specific hazard model for the cancer 

Variable 
Level of 
Effect 

Parameter 
Estimate 

p-value 
Hazard 
Ratio 

95% 
Lower CI 

95% 
Upper CI 

Gender female 0.410 0.000 1.507 1.285 1.767 

Age 31-40 0.687 0.000 1.987 1.530 2.580 

Age 41-50 1.546 0.000 4.691 3.662 6.009 

Age over 50 2.147 0.000 8.558 6.558 11.169 

Gr_Region 2nd gr. 0.204 0.053 1.226 0.997 1.507 

Gr_Region 3rd gr. 0.376 0.027 1.456 1.044 2.029 
 

Table 7 Estimations of the subdistribution hazard model for the cancer 

Variable 
Level of 
Effect 

Parameter 
Estimate 

p-value 
Hazard 
Ratio 

95% 
Lower CI 

95% 
Upper CI 

Gender female 0.413 0.000 1.510 1.288 1.770 

Age 31-40 0.686 0.000 1.990 1.528 2.580 

Age 41-50 1.544 0.000 4.680 3.652 6.000 

Age over 50 2.141 0.000 8.510 6.508 11.130 

Gr_Region 2nd gr. 0.203 0.054 1.230 0.996 1.510 

Gr_Region 3rd gr. 0.373 0.027 1.450 1.043 2.020 
 

Table 8 Estimations of the cause specific hazard model for the other diagnoses 

Variable 
Level of 
Effect 

Parameter 
Estimate 

p-value 
Hazard 
Ratio 

95% 
Lower CI 

95% 
Upper CI 

Gender female -0.920 0.000 0.398 0.308 0.515 

Age 31-40 1.264 0.000 3.538 2.134 5.866 

Age 41-50 2.123 0.000 8.354 5.116 13.641 

Age over 50 2.801 0.000 16.457 9.893 27.376 

Gr_Region 2nd gr. 0.340 0.058 1.404 0.988 1.996 

Gr_Region 3rd gr. 0.828 0.001 2.288 1.419 3.687 
 

Table 9 Estimations of the subdistribution hazard model for the other diagnoses 

Variable 
Level of 
Effect 

Parameter 
Estimate 

p-value 
Hazard 
Ratio 

95% 
Lower CI 

95% 
Upper CI 

Gender female -0.923 0.000 0.397 0.307 0.514 

Age 31-40 1.263 0.000 3.535 2.132 5.862 

Age 41-50 2.118 0.000 8.317 5.094 13.578 

Age over 50 2.787 0.000 16.238 9.720 27.124 

Gr_Region 2nd gr. 0.338 0.059 1.402 0.987 1.992 

Gr_Region 3rd gr. 0.824 0.001 2.280 1.415 3.675 
 



 

Figure 1 Cumulative incidence functions for the cancer and the other diagnoses 


