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Abstract: Ground Penetrating Radar (GPR) has been used recently for diagnostics of the railway
infrastructure, particularly the ballast layer. To overcome ballast fouling, mechanized ballast cleaning
process, which increases track occupancy time and cost, is usually used. Hence it is of crucial
significance to identify at which stage of track ballast life cycle, and level of fouling, ballast cleaning
should be initiated. In the present study, a series of in situ GPR surveys on selected railway track
sections in Czechia was performed to obtain railway granite ballast relative dielectric permittivity
(RDP) values in several phases of railway track lifecycle. GPR data were collected in the form of
B-scan, and time-domain analysis was used for post-processing. The results indicate (i) change of
railway ballast RDP in time (long term); (ii) a dependency of ballast fouling level on RDP; and (iii) the
RDP change during the ballast cleaning process, thus its efficiency. This research aimed to provide
new perspectives into the decision-making process in initiating the mechanized ballast cleaning
intervention based on the GPR-measured data.

Keywords: ground penetrating radar (GPR); relative dielectric permittivity (RDP); railway ballast
fouling; granite ballast; mechanized ballast cleaning; railway infrastructure

1. Introduction

Increasing service frequencies for railway freight and passenger along with the high
safety, sustainability, and reliability requirements, railways necessitate optimized strategic
planning and decision-making for the maintenance activities, which should be figured out
based on extensive and reliable fault detection methodologies. Conventional diagnostic
methods are destructive, economically inefficient, and cause traffic constraints increasing
the track occupation time. In contrast, railway infrastructure administrators target the task
of optimizing the diagnostic inspection intervals and following maintenance works, to
diminish the financial costs and track occupation time. Therefore, non-destructive testing
(NDT) techniques have been increasingly used lately.

Qian et al. [1] developed a non-intrusive technique, as a fundamental element of
Railroad Infrastructure 4.0, to determine the distribution of ballast pressure under the
sleeper using the bending moment profile across the concrete sleeper, and the estimated
rail seat loads as inputs, to compute the state of ballast support employing an optimization
algorithm. Tamrakar et al. [2] used spectral analysis of surface wave technique (SASW)
to estimate the mechanical properties of ballast and evaluated the complications in the
implementation of the SASW method for characterization of ballast and foundation soil or
subgrade. Mvelase et al. [3] employed laser technology to examine the influence of railway
ballast roundness on shear strength resulting in improved in situ quality evaluations in
regards to ballast layer maintenance or replacement. Schmidt et al. [4] stated that the
outcomes of the constant head permeability experiments in combination with a novel
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imaging technology for ballast will give insights to decision-makers in the determination
of the time as to when ballast should be cleaned. Calibration [5] and application [6] of Time
Domain Reflectometry (TDR) test probes were performed for determination of moisture
variation in the railway infrastructure layers.

Ground Penetrating Radar (GPR), as another NDT technique, has steadily been in use
in diagnostics of the railway infrastructure recently [7,8]. This method is still not the most
routine tool implemented to evaluate the status of the railway infrastructure, however, it
is being utilized to a greater extent due to its numerous benefits such as time efficiency,
reduced costs, rapid fulfilling of surveys, continuous data acquisition of long sections, and
the non-destructive principle [9]. Moreover, competent use of GPR brings forward the
advantages of prioritizing the sections requiring urgent interventions, insights on the rates
of ballast layer deformation, and enhanced strategical planning for mechanized operations
(e.g., tamping and undercutter/ballast cleaning machines) [10]. GPR applications on
railway infrastructure comprise detecting the thickness of the layers [11–13], moisture
trapped areas [14], congested pipes, utility networks, culverts, other buried objects, and
the required diagnosis of the railway infrastructure status.

The basic tasks of the ballast layer are to bear the railway axle loads from the super-
structure, transmit those to the infrastructure, and facilitate water draining [15]. Railway
ballast progressively degrades because of cyclic loading and weathering impacts. So-called
ballast fouling (contamination of ballast) develops as the air voids between the ballast
stones are replaced by finer-sized fouling materials. Ballast fouling takes place when ballast
stones break down and/or ingress of other materials occurs either from the surface of
ballast or from the ballast layer bottom [16]. To discharge the substandard finer materials
from the ballast layer, mechanized ballast cleaning is commonly used with the machinery
called ballast-cleaners and/or undercutters, which undertake screening of existing ballast
and removing of the spent material with the capability of the addition of new standard
clean ballast to maintain the required ballast quantity and profile. However, this vital
intervention, which is generally performed before tamping, is time-consuming and expen-
sive. Thus, it is of crucial significance to identify at which step of track ballast life cycle,
level of fouling, and mechanized ballast cleaning should be initiated and is most favorable
costwise. In order to attain this critical knowledge, long-term and recurring investigations
of the status of railway ballast are required.

1.1. Mechanized Ballast Cleaning Activity on Railways

The ballast layer is anticipated to address several requirements for safe, secure, and
sustainable railway operations, such as homogeneous load-bearing capability, high re-
silience to loads from each direction (vertical, transversal, and longitudinal), to keep track
in place, enabling elementary fixing and flexibility of track geometry, and immediate
draining of water. The pollution of the ballast layer (i.e., ballast fouling) occurs when fine
particles (up to 22.5 mm) within the ballast layer fill the air voids. Among reasons for ballast
fouling, there exist, mechanical breakdown of the ballast aggregates caused by dynamic
forces, dirt, and dust from the surface and sublayers, railway traffic contamination, and
interventions such as tamping and packing of sleepers. All these mechanisms lead to
water drainage disability, reduction in the internal friction, differential settlements, stress
increment in the ballast layer, and the formation of clogged portions in the ballast layer.
The aim of mechanized ballast layer cleaning is to screen and eliminate finer material from
the ballast layer and to reestablish the required characteristics of the ballast layer. When
ballast fouling level reaches over 30% of the ballast aggregates’ total weight, the ballast
layer cleaning process should be initiated [17].

Ballast cleaning intervention can be regarded as one of the physically most challenging
activities in maintaining and reconstructing the railway infrastructure [17]. The efficiency
of the mechanized cleaning process has an explicit impact on the overall standard of main-
tenance and reconstruction works. Therefore, considering the ballast cleaning activity as
a complex intervention rather than the cleaning activity itself might enable analyzing it
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better. This complicated process involves ballast excavation, ballast screening and remov-
ing the fine grains and spent ballast, putting the reusable, good performing ballast stones
back in track, and clearing of obstructed areas with fine grains along with adjustment of
track alignment [18]. Recently, noticeable consideration is focused on the efficiency and
capacity of the ballast cleaning and undercutter machinery. The ever-increasing output
requirements resulted in an enhancement in the machinery design (particularly the ballast
screening capability has been enhanced and dimensions and speed of the ballast excavation
chains have been increased) with respect to ergonomic and environmental parameters [17].
Schilling [18] presented the track possession optimization program for track reconstruc-
tion with a comparative analysis of three different ballast cleaning technologies, whereas
Korolev et al. [19] discussed the technologies of ballast cleaning and analyzed the impact
of miscellaneous parameters on the implementation of the ballast cleaning technology for
reducing the operating costs for Russian railways.

According to Tzanakakis [20], ballast cleaning process is implemented in a range
varying from 12 to 15 years on a common railway mainline under intensive operation and
is performed along with other large-scale railway maintenance and reconstruction inter-
ventions. However, the necessity of ballast cleaning process is usually decided subjectively
by the chief district maintenance officer in real cases.

1.2. Ground Penetrating Radar

The term RADAR, dating back to the 1930s, is generated as an acronym for Radio
Detection and Ranging. GPR, which is a particular sort of radar system, has been employed
for over 50 years in probing, detecting, and visualizing underground and construction
materials [21]. Through the combination of Maxwell’s formulation of electromagnetic (EM)
theory and constitutive equations, one can attain the quantitative characterization of GPR
signals [22]. From the physical point of view, the prospects of employing the GPR method
are affected by the EM characteristics of the material under survey, which are basically
Relative Dielectric Permittivity (RDP) (alias dielectric constant, εr), magnetic permeability
µ, and electrical conductivity σ.

RDP portrays the capacity of the material to store and emit the electric charge gener-
ated by the EM field. RDP of a material can be characterized as the measure of electrostatic
energy reserved per volume. It is a figure demonstrating the speed of radar energy as
it goes through the medium. RDP values of particular materials might be found in the
literature, however, the composition of the in situ material in the lossy environment has to
be considered [23]. Electromagnetic Wave Velocity (EMWV), i.e., υr (m/s), is computed
from the two-way travel time (twt) of the EM signal (to and from the target). As per the
construction materials, it might be assumed that the GPR signal interacts negligibly with
the magnetic field in general. Based on this assumption, EMWV can be calculated from
Equation (1),

νr = c /
√
εr [m/s], (1)

where υr is relative EMWV, c is the speed of light, and εr is RDP [24]. Once the EMWV of
the material is known, the thickness/depth of the material of interest can be obtained via
Equation (2),

d = νr * twt/2 [m], (2)

where d is the thickness/depth of the object/interface and twt is the two-way travel time
of EM signal to and from the object/interface of interest [24].

Figure 1 illustrates a radargram (both A-scan and B-scan) where twt differences
between the maximum reflection amplitudes of air/ballast interface and the ballast bottom
can be observed. (In Figure 1, a metal plate interface was used to collect a distinctive
reflection from the ballast base). Those time intervals are used in Equation (2) in order to
obtain EMWV in the case of known depth. Then using Equation (1), one can back-calculate
the RDP value.
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Figure 1. Schematic presentation of air/ballast interface and ballast/bottom interface (from 2 GHz
air-coupled antenna) (adapted from [25]).

1.3. Railway Ballast Assessment by GPR

According to Selig and Waters [26] ballast layer might be grouped in four zones as
follows:

• Crib—the portion of ballast between the sleepers;
• Shoulder—the ballast aggregates between the edge of the sleeper and down to the top

of the sub-ballast layer;
• Top ballast—the upper portion of the ballast aggregates where tamping intervention

is often performed.
• Bottom ballast—the lower portion of the ballast aggregates supporting the

whole structure.

Ballast fouling can display variations along the track, introducing changes in both
RDP values and layer thicknesses. Clean ballast possesses a lower value of the average
RDP since it has a higher volume of air voids (RDP value of air equals 1). Ballast fouling
can be caused by five mechanisms as follows (the percentage of occurrences are given
for each mechanism in parenthesis): ballast breakdown (76%), ingress of granular layers
beneath the ballast layer (13%), ingress of fines from ballast surface (7%), penetration of
materials from subgrade (3%), and degradation in sleepers (1%) [26].

Although there exist many fouling indicators, the fouling index proposed by Selig
and Waters [26] is the most commonly applied one. Percentage passing values of certain
sieves are summed up to find out the fouling index using Equation (3).

FI = P0.075 + P4.75, (3)

where FI is the fouling index, P0.075 and P4.75 symbolizes the percentage of materials,
respectively, passing the sieve sizes of 0.075 and 4.75 mm.

Foun [27] used another fouling index called percentage void contamination (PVC)
obtained from laboratory GPR testing to develop a method for detailed ballast cleaning
plans. Moreover, other fouling indexes, such as the effective degree of fouling, D-bar
method, relative ballast fouling, the percentage of fouling, and PVC were comparatively
referred to by Anbazhagan [28].

The information on RDP values addresses a significant part of determining ballast
thickness and status. RDP value is hugely reliant on the water amount as well as the
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fouling level of the ballast layer. However, a precise examination of these phenomena
still represents an arduous task for GPR railways investigations [29]. Lalagüe [30] gave an
overview of the published RDP values of granite ballast under several varying cases (clean
ballast in dry and moist conditions as well as fouled ballast in dry and moist conditions) in
the studies of various researchers. In Table 1, an extended version of published RDP values
of granite ballast under several different conditions can be seen.

Table 1. Relative dielectric permittivity (RDP) values of granite railway ballast under several different
conditions in published literature.

Ballast
Condition

References

Clark et al.
[31]

Sussmann
[32]

Leng and
Al-Qadi

[33]

Artagan
and

Borecky
[34]

C
le

an

Dry clean 3.00 3.60 3.25 3.09
Moist clean 3.50 4.00 4.59

Saturated clean 26.90 26.40 25.50

Fo
ul

ed Dry fouled 4.30 3.70 3.77 3.85
Moist fouled 7.80 5.10 5.21

Saturated fouled 38.50

As indicated by Maturana et al. [35], the presence of reflectors within the ballast layer,
the attenuation, indistinguishable ballast bottom interface, and decline in the EMWV owing
to various reasons influence the GPR signal in the ballast layer. GPR surveys repeated in
regular time intervals facilitate the estimation of the status and degradation pace of the
ballast layer, which might assist to optimize the overall maintenance action plan through
effective scheduling of required short, medium, and long-term maintenance activities with
remarkable savings associated with cost and time [35]. As also mentioned in a recent
article by Artagan and Borecky [34], numerous scientists, partially or wholly, handled
the evaluation of railway ballast fouling and thickness using several attributes of GPR
signal in their researches [7,28,33–49]. GPR tests were performed on a model rail line track
of various ballast states utilizing antennas with different frequencies in the work by Su
et al. [39]. In view of the investigation of the handled data, the impact of antenna frequency,
water amount in the ballast layer, the influence of geotextile discernible by radar, and the
distinction in RDP values were examined and assessed.

In their case study, Keogh et al. [50] created and executed a complex framework for the
aim of non-destructive investigation of railway ballast and sleeper conditions, where they
modeled the effective in situ RDP of railway ballast according to the volumetric weighted
sum of the RDP values of the railway ballast components. This model anticipated a decline
in EMWV values (10–30%) in the ballast layer during its fouling interaction.

Jack and Jackson [11] monitored variations in the status of the ballast layer to organize
the collected GPR data into the stretches associated with the corresponding variations
in the ballast layer status. In another study by Gallagher et al. [12], the GPR method
was utilized to determine the interface between ballast and subgrade along with the
level of ballast fouling. Hugenschmidt [13] expressed that the use of GPR had an edge
over the conventional methods for ballast condition evaluation, leading to a minimized
quantity of test-pits required, and also identified the railway segments where material from
underlying layers infiltrated into the ballast layer. In a recent experimental research by
Tosti et al. [8], RDP values of clean ballast were compared between different types and
frequencies of the antennas in order to identify critical elements most applicable for the
railway ballast GPR surveys. To assess the degree of ballast fouling utilized in Portuguese
railway lines, laboratory experiments were undertaken on various materials utilizing
different antennas [29,44]. The consolidated effect of varying fouling levels and diverse
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water contents was examined. Sussmann et al. [51] carried out both laboratory and field
tests in order to estimate RDP values of railway track ballast through a mixing model.

Several studies employed the EMWV values in converting the time axis to the depth
axis in GPR data for the ballast layer. Hugenschmidt [13] suggested an average EMWV
value of 14 cm/ns for the ballast layer after comparison of ground truth data with the GPR
data, whereas 13 cm/ns for the ballast layer was calculated in the research by Jack and
Jackson [11]. Intervals of EMVW values changing from 12 to 21 cm/ns and from 0.8 to
1.2 cm/ns were used, respectively, for clean and fouled ballast in the research by Göbel
et al. [52].

Artagan et al. [53] determined the effect of water content within the granite ballast
layer for the clean and fouled conditions by collecting GPR data in the laboratory. Clean
granite ballast in saturated conditions was reported to have an RDP value of 25.5, while
the mean RDP value of clean drained granite ballast was discovered to reflect almost
identical values (3.09) with the clean dry ballast. As the fouling levels increased, so did the
RDP values.

Besides, other aspects of GPR analysis of railway ballast have come to the interest of the
researchers such as the use of frequency-domain analyses [7,38,40], analytical modeling [54]
and numerical simulations [46,55,56]. Moreover, considerable efforts are directed into
coupling GPR with other NDT techniques in railway ballast evaluation. Fontul et al. [57]
expressed seismic waves, GPR, electric resistivity, and gravimetry as the fundamental NDT
geophysical methods for railway infrastructure assessment. Comprehensive overviews on
the GPR-based applications for condition monitoring of railway ballast can be found in a
couple of works [10,58,59].

It might very well be perceived from the mentioned literature above that GPR is a
favorable instrument to evaluate the status of railway ballast and the associated degree of
fouling utilizing determined RDP/EMWV values. It is worth mentioning that test pits are
required for calibrating the RDP/EMWV values as recommended in the literature above.

Although extensive research has been carried out on GPR-based determination of the
state of the railway ballast recently, these studies are mostly limited to the then-current
condition of the ballast layer. To the best of authors’ knowledge, no study exists mon-
itoring the condition change of ballast layer by GPR just before and after mechanized
cleaning process. Moreover, there are a few studies [60,61] monitoring long-term change of
ballast layer.

Therefore, the presented article focused on identifying the status of the railway granite
ballast layer and finding out the variation in fouling levels before and after the mechanized
ballast cleaning intervention by means of the GPR-measured RDP values of the ballast
layer. In situ RDP values of the granite ballast layer obtained in this study provide
additional literature data for that particular type of ballast material. The partial goals
were to determine the long-term variation of RDP and EMWV particularly before and
after the mechanized ballast cleaning activities and to describe the dependency between
the collected GPR data and the fouling levels. To accomplish the set goals, repeated
surveys (long-term monitoring over a total period of 4 years) at various stages of the track
lifecycle in several sections of a real railway track were performed with miscellaneous GPR
antenna configurations. Ground truth data were collected and analyzed in the laboratory.
Time-domain analysis was used to process the data and compute the RDP values at
different stages of railway ballast economic life. Then, quantification of the influence of
the mechanized ballast cleaning on the condition of the railway ballast layer was obtained
using GPR.

2. Survey Site and Equipment Used

Due to the particular interest in the utilization of two types of ballast cleaners, the
site of Čáslav to Kutná Hora railway section in Czechia, where the maintenance and
reconstruction activities were planned, was selected in this study. The picked railway
section is under operation for both passenger and freight trains with a double-track railway
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line with ballast aggregates made of granite. The mentioned railway section constitutes
a portion of a cross-country track, which additionally serves for the European TEN-T
(Trans-European Transport Networks) railway line within the global passenger and freight
network with a design maximum track speed of 120 km/h. At the beginning of the
reconstruction activities, R 65 and S 45 rails, which were encountered partially in the
sections, were all altered with 60 E2 type rails. Existing SB8 and SB8P sleepers, which were
laid 60 cm apart from one another, were controlled and retained. The fastening system of
type K was observed, checked, and maintained in track. Although the design thickness
of the ballast layer was 350 mm under the sleepers, 300 mm ballast layer thickness was
observed in some of the portions of the surveyed railway track after opening test pits.
However, as a result of the reconstruction activities, the ballast layer was adjusted to be
constantly 350 mm thick beneath the sleepers. Eight railway track sections, each 50 m long,
were surveyed close to the four level crossings set out in the railway line direction from
Čáslav to Kutná Hora, numbered as P2 (km 279,223), P3 (km 281,182), P6 (km 283,747), and
P8 (km 286,468). All of these eight sections under investigation were situated in proximity
and on both sides of the mentioned level crossings, as depicted in Figure 2. Table 2 provides
the mileage of these sections.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 24 
 

 

 

Figure 2. Surveyed railway level-crossings displayed on the map (mapy.cz overlay). 

In 2014 and 2017, GPR data were obtained with GSSI systems. For all 2018 GPR surveys 

described in this study, the RIS Hi-Pave GPR system developed by IDS GeoRadar com-

pany was used. A manual GPR survey trolley, with polyamide wheels and the skeleton 

made of glass-fiber reinforced plastic square profiles, was employed. Two types of GPR 

antennas were used in the surveys; (i) 2 GHz Horn air-coupled antenna (HN-2000) and 

(ii) 400/900 MHz dual-frequency ground-coupled antenna (TR DUAL-F 400/900). As per 

data acquisition, K2 Fast Wave software from IDS was operated, whereas ReflexW soft-

ware was exploited for GPR signal processing and data interpretation. Figure 3 displays 

the GPR assembly along with the antennas and the auxiliary equipment used in the sur-

veys. 

 

Figure 3. Ground Penetrating Radar (GPR) trolley designed for the surveys (air-coupled antenna 

in diagonal orientation). 

3. Track Surveys, Laboratory Tests, and GPR Data Processing 

The present study covered both field and laboratory tests. The GPR field surveys 

were adjusted according to the timetable of the rehabilitation activities in the construction 

Figure 2. Surveyed railway level-crossings displayed on the map (mapy.cz overlay).

Table 2. Survey sections stationing and length.

Level Crossing Section Start Mileage
(km)

End Mileage
(km) Length (m)

P2
U1 279.150 279.200 50
U2 279.250 279.300 50

P3
U1 281.100 281.150 50
U2 281.200 281.250 50

P6
U1 283.675 283,725 50
U2 283.775 283.825 50

P8
U1 286.400 286.450 50
U2 286.500 286.550 50

The RM 79 ballast cleaner/undercutter unit covered reconstruction and maintenance
interventions at P2 and P3 sections, whereas the RM 900 unit was utilized in the reconstruc-
tion activities at P6 and P8 sections.

In 2014 and 2017, GPR data were obtained with GSSI systems. For all 2018 GPR
surveys described in this study, the RIS Hi-Pave GPR system developed by IDS GeoRadar
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company was used. A manual GPR survey trolley, with polyamide wheels and the skeleton
made of glass-fiber reinforced plastic square profiles, was employed. Two types of GPR
antennas were used in the surveys; (i) 2 GHz Horn air-coupled antenna (HN-2000) and
(ii) 400/900 MHz dual-frequency ground-coupled antenna (TR DUAL-F 400/900). As per
data acquisition, K2 Fast Wave software from IDS was operated, whereas ReflexW software
was exploited for GPR signal processing and data interpretation. Figure 3 displays the GPR
assembly along with the antennas and the auxiliary equipment used in the surveys.
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diagonal orientation).

3. Track Surveys, Laboratory Tests, and GPR Data Processing

The present study covered both field and laboratory tests. The GPR field surveys
were adjusted according to the timetable of the rehabilitation activities in the construction
site. The start and end points of the abovementioned sections (Figure 2 and Table 2) were
determined by spraying a dye of recognizable color either on the rails or the sleepers. A
digital measuring wheel was used to measure distances. Moreover, in order to distinguish
the start and end points of the sections in the GPR data, aluminum foil pieces were placed
in these positions. All laboratory tests were performed in the Educational and Research
Centre in Transport (University of Pardubice).

3.1. In Situ GPR Surveys

GPR data for the first two stages were obtained in 2014 and 2017 by the state railway
administrator Správa železniční dopravní cesty (SŽDC) and they were processed and
interpreted to reveal the conditions of the railway track sections. Following GPR surveys
undertaken in 2018 represent three more stages to compare the ballast layer status before
and after the maintenance intervention works. At first, GPR data were collected from all
the sections before any reconstruction activities were initiated. Then, the surveys were
performed just after the ballast cleaning process, prior to the tamping and fixing of other
geometric parameters. Finally, the ultimate conditions of all sections were surveyed when
all the reconstruction activities were completed in all of the sections. During the GPR
surveys (in 2018) and over 14 days prior to them, no precipitation was recorded in the site,
and the temperature was changing from 20 to 25 ◦C. All these stages were numbered from
1 to 5 below:

1. Surveys undertaken by SŽDC in 2014
2. Surveys undertaken by SŽDC in 2017
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3. Surveys carried out before any reconstruction activities began (12 October 2018)
4. Surveys carried out just after the ballast cleaning process (17 October 2018)
5. Surveys carried out in the final state after all the reconstruction activities were com-

pleted (19 October 2018)

Particular phases of the surveyed track sections are depicted in Figure 4.
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(phase 5).

Data collection and configuration parameters were set in K2 Fast Wave software.
Calibration of the odometer was also performed to precisely record the length of the
surveyed track and to control the trace-interval distance, which was undertaken by going
through a reference line of a known distance.

As per the GPR data from the SŽDC surveys (Stage 1 in 2014 and Stage 2 in 2017),
profiles (B-scans) were extracted for all the eight sections from the continuous radargrams
collected then. In all three stages of measurements performed in 2018 (i.e., stages 3, 4, and
5), for each one of the eight survey sections, one profile (B-scan) through the center of the
track axis was collected. GPR antenna configurations and survey advancing directions
were decided with respect to the selected coordinate system. Then, for each frequency of
antennas, time windows, i.e., time axis ranges were picked. The estimated EMWV (cm/ns)
value in the surveyed material was then entered as an initial input. Dependent on this
value, the maximum thickness of the ballast layer, from where the reflected pulse could
be recorded, was computed preliminarily using Equation (2). The number of samples per
trace was set to 512 and 1024. Time window values were selected as 20 and 60 ns, respec-
tively, for 2 GHz air-coupled antenna and for ground-coupled dual frequency antenna
(400/900 MHz). Horizontal spacing of 0.02 m was selected for the surveys. In the SŽDC
surveys, the step between traces was set to 0.25 and 1 m, respectively, in 2014 and 2017.

As an essential calibration base for GPR data processing, the existing thickness of
the ballast layer under the sleepers was measured to compute the RDP values and hence
the EMWV values. In this respect, two test pit locations were selected where the ballast
condition was expected to be most representative for the track sections under investi-
gation. The first in the P6U1 section was opened by an excavator, whereas the second
trench was dug conventionally in the P2U2 section. Both of the test-pits are shown in
Figure 5. The extracted material from the trenches has been properly marked and taken to
the laboratories for relevant tests.
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Figure 5. Ground truth data (in sections P2U2 & P6U1).

For the sake of clarity, the survey profiles in all of the sections were always executed
in the advancing stationing direction. For each section, GPR data were collected using two
different configurations of the air-coupled antenna. First, the longitudinal configuration
(long axis of the antenna parallel to track axis) was used to practically determine the
sleepers, which partially mask the reflections from the bottom of the ballast layer. Then,
the air-coupled antenna was positioned diagonally to diminish the impact of the reinforced
concrete sleepers on the GPR signal and to enhance the perceivability of the reflected
signals from the ballast bottom interface. For the ground-coupled antenna, orientation was
the same for all surveys.

3.2. Laboratory Tests

Two sets of tests were conducted on the collected field ballast aggregates: (i) percentage
of fouling and (ii) gradation test of fouling material.

Sample #1

The first sample was extracted from section P6U1, where it was supposed to be most
representative for the ballast condition in the second half of the reconstructed railway track
sections. For this, 92.140 kg of material was taken from this test-pit, where Table 3 presents
the weight of coarse material and finer fouling material, which were distinguished using
a caliper.

Table 3. Total weight of ballast material categorized as fine and coarse material for sample #1.

Material Fraction Weight Percentage

Coarse fraction 31.5–63 mm 79.240 kg 86%
Fine fraction < 31.5 mm 12.900 kg 14%

Total material 92.140 kg 100%

By proportioning the weight of fouling material (grain size less than 31.5 mm) with
the total material weight, the percentage of fouling according to Equation (4) was found
as 14%.

Percentage of fouling = wfine /wtotal, (4)

where wfine and wtotal, stand, respectively, for the weight of fine fouling material and the
total weight of material.

Gradation test was carried out for fine material (finer than 31.5 mm) and quotients of
19.67 % and 1.21% were obtained, respectively, for the sieve sizes of 4.75 and 0.075 mm.
Hence the fouling index was computed as 20.88% according to Equation (3), matching the
fouled ballast category according to Selig and Waters [26].

Sample #2

The second sample was extracted from the opened trench in the P2U2 section, where
water drain ditches were not observed, which brought forward the question of whether
this area is anomalously contaminated owing to the inadequate draining of water from
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the sections. From this test-pit, 47,331 kg of material was collected, where the weights of
coarse and finer fouling material are displayed in Table 4.

Table 4. Total weight of ballast material categorized as fine and coarse material for sample #2.

Material Fraction Weight Percentage

Coarse fraction 31.5–63 mm 31.551 kg 66.66%
Fine fraction <31.5 mm 15.780 kg 33,34%

Total material 47.331 kg 100%

As a result of the calculation of the proportion of the weight of fouling material (grain
size less than 31.5 mm) and the total weight of the material, the percentage of fouling (from
Equation (4)) was obtained as 33.34%. This figure verifies the assumption with regard to
the visual inspection that ballast cleaning is significantly required for this section because
of the lacking water drain ditches.

Gradation tests were undertaken for fine material (size finer than 31.5 mm). Propor-
tions of 39.92% and 2.57% were attained respectively, for the sieve sizes of 4.75 mm and
0.075 mm, yielding a fouling index of 42.49% (Equation (3)) which falls into the highly
fouled ballast category according to Selig and Waters [26].

The gradation tests for fine materials were carried out thrice for sample #1 and sample
#2. Average gradation curves can be seen in Figure 6 for both samples. Sieve opening sizes
are marked in Figure 6 together with the input values (0.075 and 4.75 mm) for calculating
the fouling index value by Selig and Waters [26].
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3.3. GPR Data Processing

Raw data are monitored and interpreted according to the in situ visual observations
and the ground truth data. An example of a preliminary interpretation is given in Figure 7.
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Figure 7. Preliminary interpretation of raw data from 2 GHz air-coupled antenna for section P2U1 at stage 4 with
longitudinal orientation (a) raw data (only dewow filter is applied) (b) initial interface picking based on in situ visual
observations and the ground truth data.

In comparison with the air-coupled antennas, ground-coupled antennas, particularly,
with low frequencies provide lower resolutions to determine surface and interface positions
very precisely in twt axis, especially in the case of the fouled ballast layer which corresponds
to Stage 3 (measurements on 12 October 2018).

RDP and thus EMWV computations were based on the known thickness values of
the ballast layer where Equations (1) and (2) were used. In the present study, used data
processing functions included low frequency removal (dewow), time-zero and antenna
bumping corrections, gain function, band-pass filtering, background removal, and running
average filters. Dewow function was used to remove masking impacts of intrinsic lower
frequency content in each antenna [62]. Move start time and correct max phase functions in
ReflexW were employed for air-coupled antenna, respectively, to provide a static correction
in time direction and compensate antenna bumping to bring the surface reflection in a
horizontal position. Additionally, the gain function (with varying parameters) frequency
was employed depending on the attenuation features of the material under survey to
magnify the reflections in order to compensate for possible damping or geometric spreading
losses. A band-pass filtering (band pass Butterworth in ReflexW software) was utilized
within 1.5 times of the central frequency [63] for each antenna in order to enhance the signal
to noise ratio by cutting off the side bands to avoid noise resulting from encompassing
environment and hereditary loss of the GPR signal [7]. Background removal tool was
utilized to discharge background noise with the aim of raising the signal-to-noise ratio. In
this regard, the aim was to eliminate temporarily consistent noise from the whole B-scan
and enable the signals visible, which were previously covered by this noise. Running
average tool was then used to visualize horizontal interfaces in a more emphasized manner
removing the trace-based clutter. An example of the abovementioned data processing
scheme is given in Figure 8 for section P8U1 at stage 3 (before cleaning) in diagonal
orientation of 2 GHz antenna.
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Figure 8. Data processing scheme for section P8U1 at stage 3 (before cleaning) in diagonal orientation of 2 GHz antenna:
(a) raw GPR data, (b) dewow filter applied, (c) after move start time filter and after correct max phase applied, and (d) after
band pass filter (Butterworth), background removal, gain, and running average processing steps.

Table 5 present the post-processing parameters used for each nominal frequency of
the antenna used in the surveys.

Table 5. Post-processing parameters used for different frequencies.

Post-processing Step
Parameters According to the

Nominal Frequency
400 MHz 900 MHz 2000 MHz

Time-zero correction According to the surface reflection twt
De-wow (ns) 2.5 1.1 0.5

Correct max phase tool – – Surface reflection
twt frame

Band-pass filtering
(Low pass–high pass in MHz) 100–700 225–1575 500–3500

Background removal Whole line/distance range
Running average (# of traces) 3 3 3

Near-field zone effect should be noted here in the case of ground-coupled antennas.
This case happens owing to the powerful EM field within the vicinity of the antenna
covering a radius of approximately 1.5 times the wavelength of the central frequency
developed by EM energy transmitted from the surface of the antenna. This zone is larger
in the case of ground-coupled antennas (since they usually operate with lower frequencies)
than in the case of air-coupled antennas often operating with higher central frequencies.
Therefore, surface reflection determination is more challenging in the case of ground-
coupled antennas than the air-coupled one in this study and the differences in RDP values
might stem from the near zone effect in the case of ground-coupled antennas.

A devoted data processing flow was used taking into account the intervals and the
width of the sleepers to ensure that RDP computations would be made in the picked traces
positioned precisely within the cribs, which would avoid the obstructive impacts of the
reinforced concrete sleepers in the GPR signals. For this purpose, a text file was formed
including the computed trace spacings corresponding to the start and the end points of
each crib. Those trace spacings were identified in compliance with the monitored sleepers
from the GPR radargrams, intervals, and the width of the sleepers. Then, this text file
was incorporated into the abovementioned processing flow, which enabled to obtain RDP



Remote Sens. 2021, 13, 1510 14 of 23

values only in the crib regions. Moreover, 228 traces were assessed in each phase, and RDP
values were calculated.

4. Results

According to the preliminary visual inspection in section P2, substandard outcomes
were anticipated because of the lacking water drainage utilities particularly in P2U2, hence
the substandard status of the ballast layer was assumed. The computed values for the
EMWV values were unexpectedly and relatively high, even in the stage before ballast
cleaning. At this point, it might be presumed that, although there is a significant rate
of finer size material (33.34%) obtained through the laboratory experiments (sample #2),
there was not any moisture observed in the trackbed. It is obvious that as a result of
the reconstruction/maintenance activities, the overall state of the railway substructure
was enhanced, which is supported by the RDP/EMVW values in Figure 9. Particularly
between phases 3 and 5, EMWV values raised by 19.3% and 34.4% in the P2U1 and P2U2
sections, respectively.
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Figure 9. The change of Electromagnetic Wave Velocity (EMWV) and RDP values during the lifecycle
of the railway track in section P2.

A generally decent state of the ballast layer was foreseen in the P3 section, which was
affirmed both by the SŽDC surveys (phases 1 and 2) and all 2018 surveys (phases 3, 4, and
5). The drainage utilities were working properly. Obviously, as a result of the intervention
activities, enhancement can be observed in the substructure also displayed in Figure 10.
Specifically, between phases 3 and 5, the EMWV values increased by 24.1% and 21.6% in
the P3U1 and P3U2 sections, respectively.

The P6 section was identified by the existence of bothersome vegetation (particularly
in P6U1), revealing a high trapped moisture ratio in the railway infrastructure. This
situation might stem from a handful of reasons such as substandard draining of the
railway substructure, the existence of swampy spots, and/or the water existing beneath
the substructure. Despite the percentage of fines obtained by laboratory experiments in
this section (14%) is lower than the one found in section P2 (33.34%), water existed in
the trackbed apparently, as also verified by the EMWV/RDP values collected by GPR
before the ballast cleaning process. This situation was also affirmed by the distinctive
reflections at deeper points at P6U1, which may result from the existing aquifer areas. It
is evident that as a result of the mechanized ballast cleaning action coupled with other
reconstruction/maintenance activities, the ballast layer state is upgraded, which might
also be seen in Figure 11. EMWV values raised by 34.4% and 20.3% in the P6U1 and
P6U2 sections, respectively, in comparison of the phases between 3 and 5. It is also
worth mentioning the abnormal pattern from phases 3 to 5. More explicitly, in phase 4, a
higher EMWV value was found than the one in phase 5. It is probable that the combined
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utilization of the RM 900 VB ballast cleaner/undercutter and Unimat 08-275/3S tamping
machine contributed to a hoed ballast layer (thus the bulk density was decreased). It is also
significant to consider the precise timing of GPR data collection (as to the point that if the
survey occurred just after ballast cleaning or during tamping operation cycles).
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Figure 10. The change of EMWV and RDP values during the lifecycle of the railway track in
section P3.
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Figure 11. The change of EMWV and RDP values during the lifecycle of the railway track in
section P6.

There was also unwanted vegetation in section P8, similar to section P6 (yet, to a lower
extent). Obviously, mechanized ballast cleaning and reconstruction activities led to an
improvement in the trackbed condition as can be also followed in Figure 12. EMWV values
raised by 11.6% and 39.6% in the P8U1 and P8U2 sections, respectively, between survey
stages of 3 and 5. Such high improvement in the case of P8U2 section might be associated
with the drainage of water achieved by cleaning process.
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Figure 12. The change of EMWV and RDP values during the lifecycle of the railway track in
section P8.

There were no meaningful variations at P2 and P3 between the survey phases of 1,
2, and 3, however, more obvious changes at P6 and P8 were observed. This may occur
because of the presumed higher moisture content at P6 and P8—where the different GPR
signal attenuation based on the antenna frequency should be considered. Variations noticed
between the GPR survey phases 3 (prior to ballast cleaning) and 5 (final state) match with
and even surpass the values in the literature, which might occur due to GPR data collection
in the final phase immediately after the completion of the mechanized ballast cleaning
operation. Data from the survey stage 4 provide complementary values to characterize the
ballast cleaning process since all reconstruction activities at this stage include an enormous
number of non-measurable cycles in the track infrastructure (recurring vertical alignment
variation and supply of new ballast material while tamping process was being undertaken).
Due to the ongoing reconstruction/maintenance activities, no entrance was allowed into
the P8 section during phase 4.

The condition of the ballast layer was upgraded in all of the sections. The most
noteworthy enhancement was found in the P8U2 section, whereas the least improvement
was observed in the P8U1 section. This might be because of the existing water before ballast
cleaning process in both sections of P8. However, in addition to the standard new ballast
material, the leftover/residual material (finer and broken-down material from the bottom
of the wagon) was also spilled into the track after cleaning in section P8U1 particularly.
This resulted in an unmanageable fraction fill and a higher extent of dust particles, which
was clearly monitored visually in situ. Significant improvements were also observed in the
P2U2 section, where higher preliminary ballast fouling was visually detected, compared to
P2U1. An analogy can be recognized between P6U1 and P6U2 sections, where the existence
of water in these sections was recorded (greater in P6U1 than in P6U2).

Differences between the values measured by SŽDC (phase #1 in 2014 and #2 in
2017) and 2018 surveys (from #3 to #5) occurred potentially by dissimilar antenna criteria
from variant GPR providers. Any information regarding ballast layer interventions and
reconstruction activities was not found between 2014 and 2018 in the surveyed tracks.
Obviously, in phases 4 and 5, the EMWV values are significantly different from phase
#3, which endorses the eligibility of the mechanized ballast layer cleaning process. In
general, the aggregate features of the ballast layer were homogenized and enhanced in the
maintained section. The percentage improvement values in EMWV values between phases
3 and 5 for each section are indicated in Table 6 (EMWV values are rounded up to three
decimal places in Table 6). An average value of 25.7 % improvement in EMWV values has
been achieved using the conventional intervention methods of mechanized ballast cleaning
(Table 6).
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Table 6. Percentual increase in Electromagnetic Wave Velocity (EMWV) values during the mainte-
nance works between phase 3 and phase 5.

Track
Sections

EMWV before
Ballast Cleaning
Phase #3 (cm/ns)

EMWV in the Final
State

Phase #5 (cm/ns)

Percentage
Improvement

P2U1 0.153 0.182 19.3
P2U2 0.142 0.190 34.4
P3U1 0.142 0.177 24.1
P3U2 0.148 0.180 21.6
P6U1 0.140 0.188 34.4
P6U2 0.150 0.180 20.3
P8U1 0.156 0.175 11.6
P8U2 0.152 0.213 39.6

Average Improvement in all surveyed track sections 25.7

Changes in EMWV values in each section corresponding to GPR survey phases 1, 3, 5
are displayed in Figure 13.
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5. Discussion

Based on in situ observations and laboratory tests of the materials taken from the
site, and the values published for that particular type of ballast (granite) in various
studies [31–34,51,52], authors suggest fouling categories based on RDP/EMWV inter-
vals in Table 7. It should be noted that the suggested values apply solely to the local
conditions of railway track sections surveyed in the present study and the parameters
(frequency and orientation) of used GPR equipment.

Table 7. Suggested fouling intervals for granite railway ballast.

Fouling
Category

Interval for
EMWV (cm/ns)

Interval for
RDP

Clean 1 ≥16 ≤3.52
Slightly fouled 1 13–16 3.52–5.33
Highly fouled 1 9–13 5.33–11.11

Unrecommended for traffic 1 <9 >11
1 Colors represent the fouling categories based on RDP/EMWV values as they are also used in Table 8.
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Table 8. RDP values of granite ballast layers for each section and survey phase (colors correspond to Table 7).

SECTIONS

#1 #2 #3 #4 #5

SZDC SZDC RDP before
Cleaning Process

RDP after
Cleaning Process

RDP after Handing Over the
Construction Site

23
September

2014

29 August
2017 12 October 2018 17 October 2018 19 October 2018

400 MHz
GSSI

400 MHz
GSSI

400 MHz
IDS

900 MHz
IDS 2 GHz IDS 400 MHz

IDS
900 MHz

IDS 2 GHz IDS 400 MHz
IDS

900 MHz
IDS 2 GHz IDS

P2
U1 4.31 4.39 3.65 3.65 4.31 3.09 3.42 4.13 2.20 2.68 3.44
U2 4.31 4.39 4.92 4.34 4.26 3.09 3.79 4.42 1.80 2.88 3.10

P3
U1 4.43 4.72 4.70 4.34 4.29 2.88 2.72 3.45 2.75 2.52 3.50
U2 4.43 4.72 3.85 4.26 4.29 2.93 3.36 2.96 2.72 2.57 3.11

P6
U1 5.68 6.19 4.85 4.68 4.35 3.73 4.29 3.41 2.33 2.57 2.80
U2 6.68 5.63 3.31 4.43 4.43 2.56 2.82 2.23 2.27 3.37 2.82

P8
U1 5.10 5.24 3.35 3.84 3.89 – – – 3.63 2.66 2.72
U2 5.24 5.56 3.73 3.98 3.91 – – – 1.99 2.04 1.94
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There did not exist any critical variations or patterns between the RDP/EMWV values
of the longitudinal and the diagonal arrangement of the air-coupled antenna during
GPR surveys. However, GPR data obtained from both orientations were utilized for
confirming one another and analyzing the locations of the identified interfaces and sleepers,
which was the preliminary intention for using various orientations. The comparison and
evaluation of the variations in the evaluated indicators were first undertaken in each
section independently for each survey stage, and then, all of the sections were analyzed in
comparison with one another.

During the GPR surveys, three central frequencies were used (400 MHz, 900 MHz,
and 2 GHz) for comparison of collected data. All computed RDP values are tabulated in
Table 8 for every section and survey stage, where the variations according to frequencies
and antennas can be clearly observed. Even though the RDP values calculated with the
GPR data collected with various antennas and frequencies were different, no direct reliance
of RDP/EMWV values on central frequency was found. Therefore, the figures (Figure 9,
Figure 10, Figure 11, Figure 12, and Figure 13) display the mean values of RDP and EMWV
for the frequencies used in the survey stages 3, 4, and 5.

A synopsis might be formulated with regards to the article's aim, i.e., what is required
to be figured out consecutively in the evaluation of the railway ballast layer states using
time-domain GPR analysis.

1. Determination of GPR survey conditions, equipment criteria, and settings,
2. Determination of a data processing flow on the basis of step 1, (time-domain),
3. Computation of RDP/EMWV values on the basis of steps 1 and 2, (time-domain),
4. Selecting the standard fouling indicator(s) for ballast material(s) and setting its threshold
5. Comparison/correlation of RDP/EMWV values from step 3 and standard fouling

indicator from step 4,
6. Decision-making as to when/whether the mechanized ballast cleaning intervention

should be initiated.

It should be examined whether the existence of water or fouling material is the reason
for the increasing RDP values. When the cause of the rising RDP values is water content,
then it is better to investigate that if it is a temporary case (e.g., due to a recent rain) or a
permanent one caused by draining incapability, etc. As a rule of thumb, GPR surveys are
not suggested to be undertaken in moist circumstances.

6. Conclusions

This paper presented the condition monitoring of the railway granite ballast layer
and identifying the variation of the degree of fouling by Ground Penetrating Radar (GPR)
technique prior to and following the mechanical ballast cleaning process in a real railway
line portion.

GPR surveys were undertaken in eight track sections with a total length of 400 m
(each 50 m) within the Čáslav-Kutná Hora railway track, using two types of antennas with
three dissimilar central frequencies and two different antenna orientations. GPR surveys
were performed thrice for each section at different stages of the lifecycle of the railway
track, specifically, prior to and following the mechanized cleaning activity of the ballast
layer. The time-domain analyses for recorded data in 2018 (phases #3, #4, and #5) and data
obtained from Správa železniční dopravní cesty (phase #1 in 2014, and phase #2 in 2017)
were performed. For the calibration, ground truth data were used.

Changes in relative dielectric permittivity (RDP) values between GPR investigation
phases 3 (prior to mechanized ballast cleaning) and 5 (final state), which are similar or even
greater than the ones in the literature (10–30%), were observed. This occurrence might
stem from the fact that the GPR survey was carried out in the final phase immediately after
the ballast cleaning process. An average value of 25.7% improvement in EMWV values,
which has been measured by GPR surveys, has been achieved using the conventional
intervention methods of mechanized ballast cleaning. In the laboratory, percentage of
fouling and the gradation tests for fine material distribution were conducted, and the
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fouling index was calculated. In view of the comparison between laboratory experiments
and GPR field surveys, it can be confirmed that the existence of trapped water within the
ballast layer has a considerably greater effect in the rise of RDP values (and in the decrease
in electromagnetic wave velocity (EMWV) values) compared to the case of ballast fouling
by infiltration of fine particles only. However, it should be noted that those two phenomena
are closely connected to each other.

On the basis of the GPR track surveys, laboratory experiments, and comparisons
with published values of RDP/EMWV for that particular type of ballast (granite), the
cleaning process could be, in the authors’ opinion, recommended launching approximately
at the time when relevant indicators lie in the interval of highly fouled category suggested
by authors in Table 7. It should be noted that the suggested values apply solely to the
parameters of railway track sections surveyed and the parameters of used GPR equipment
in the present study.

As a result, quantification of the influence of the mechanized ballast cleaning process
on the condition of the railway ballast layer using GPR technology has been achieved for
surveyed track sections. Improvement in the ballast layer status has been observed in all
sections after the mechanized ballast cleaning process. Moreover, in situ RDP values of
the granite ballast layer obtained in this study provide additional literature data for that
particular type of ballast material.

Integration of several NDT methods (e.g., GPR and TDR) for assessment of railway
infrastructure layers could task itself as a future work for a better understanding of the
ballast fouling and moisture retention mechanisms through data fusion.

This research provides new perspectives into the decision-making process in initiating
the mechanized ballast cleaning intervention based on the GPR-measured RDP/EMWV
values obtained in different life cycles of a real track segment. The results from this study
suggest that quantification of the efficiency of the mechanized ballast cleaning process can
be non-destructively obtained through GPR measurements.
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