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Abstract: The current demand for remote work, remote teaching and video conferencing has brought
a surge not only in network traffic, but unfortunately, in the number of attacks as well. Having re-
liable, safe and secure functionality of various network services has never been more important.
Another serious phenomenon that is apparent these days and that must not be discounted is the
growing use of artificial intelligence techniques for carrying out network attacks. To combat these at-
tacks, effective protection methods must also utilize artificial intelligence. Hence, we are introducing
a specific neural network-based decision procedure that can be considered for application in any flow
characteristic-based network-traffic-handling controller. This decision procedure is based on a convo-
lutional neural network that processes the incoming flow characteristics and provides a decision;
the procedure can be understood as a firewall rule. The main advantage of this decision procedure
is its depiction process, which has the ability to transform the incoming flow characteristics into a
graphical structure. Graphical structures are regarded as very efficient data structures for processing
by convolutional neural networks. This article’s main contribution consists of the development and
improvement of the depiction process using a genetic algorithm. The results presented at the end of
the article show that the decision procedure using an optimized depiction process brings significant
improvements in comparison to previous experiments.

Keywords: artificial neural network; genetic algorithm; software defined networking; industrial
networks; cybersecurity

1. Introduction

The unprecedented increase in demand for remote work, remote teaching and video
conferencing has brought a surge not only in network traffic, but unfortunately, in the
number of attacks as well. According to [1], these attacks have surged by 800%. Having
reliable, safe and secure functionality of various network services has never been more
important.

Cybersecurity covers three different fields: traditional network security, which deals
with protecting physical communication links and networking devices; network monitoring
and threat detection; and protection against cybercrimes, such as ransomware attacks and
identity theft [2].

1.1. Communication Networks Threats

Attacks on communication networks are increasingly sophisticated such that they
even use artificial intelligence (AI) in combination with machine learning and automation.
These technologies make attacks faster, broaden their impacts and make them more difficult
to detect, especially if masking is used to conceal the attack. Tools for launching AI-based
attacks can be easily downloaded, and because their use requires no deep knowledge, such
attacks can be initiated by practically anyone. Finally, modern Internet of Things (IoT)
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devices, which are now widely used in various situations, present a tempting target for
attackers. These devices have very limited protection capabilities but often collect sensitive
data of very high value.

1.2. AI-Based Cybersecurity

The field of cybersecurity in communication networks has never faced such challenges
as those that exist today. Traditional network protections offer only very limited defense
against threats utilizing AI [3]. To combat these attacks, effective protection methods must
also utilize AI.

1.2.1. Advantages of AI-Based Protection

Use of AI can significantly increase attack detection rates to nearly 100% when com-
bined with threat intelligence and machine learning [4]. AI can also provide much better
performance in all related functions. According to one survey [5] that analyzed 603 U.S.
organizations, that superiority includes the areas of threat analysis (69%), containment of
infected end devices (64%) and identification of application security vulnerabilities (60%).
AI is able to cope with the large amounts of relevant data. Moreover, according to the
same study, AI in combination with machine learning can detect even previously unknown
threats (so-called zero day attacks) with success rates of up to 63%. Finally, AI can reduce
labor hours by as much as 75%, especially in the areas of analyzing vulnerabilities, securing
networks and reacting to false positive detection [5].

1.2.2. Disadvantages of AI-Based Protection

AI-based cybersecurity solutions have disadvantages, as well. First, achieving proper
functionality requires rigorous training of the AI. Such training can be accomplished only
on a large set of clean data. These data have to provide sufficient variability to allow optimal
learning. For data to be clean, it must be possible to assume that they contain no unwanted
traffic patterns that could be misused by an attacker. This could lead to a so-called AI-proof
attack that would not be recognized by the protection solution. Unfortunately, the extent
of the data does not allow manual checking and detailed verification of its content.

A second disadvantage consists of the immense demands placed upon computational
hardware resources. AI uses demanding algorithms that require considerable capacity.
Finally, the initial configuration and subsequent maintenance might require deeper knowl-
edge and more work than do traditional network protection tools.

1.2.3. Summary

In conclusion, there exists a consensus [6–8] that AI works best when combined with
traditional protection methods and when it is deployed to assist humans but not with the
intention of replacing them completely.

1.3. Integration of AI-Based Cybersecurity Protection

The basic approach to integrating an AI-based cybersecurity protection system into a
traditional communication network utilizes a dedicated general device, such as a server or
networking device, based on traditional x86 CPU architecture and an open UNIX-based
operating system. Such a device provides a flexible platform for implementing the system.
As networking devices of traditional networks typically use proprietary software and
custom hardware, they cannot in this case be used for the system integration.

1.3.1. Software-Defined Networking

Software-defined networking (SDN) is a viable paradigm that combines general
networking devices with a software-based controller and allows integration of traditional
networking. This concept is based on physical separation of the forwarding plane—which
remains on general networking devices—and placing the control plane in the form of a
software application (termed an SDN controller) in a dedicated server.
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The SDN controller manages all networking functions by delivering instructions to
networking devices while providing centralized network management to system opera-
tors. The controller can be extended by custom-made applications to achieve a required
functionality, such as cybersecurity.

1.3.2. Use of SDN to Integrate AI-Based Protection

The programmability of SDN allows extension of the controller with AI-based protec-
tion functionality, as demonstrated in [9]. This functionality does not require dedicated
hardware devices and can be updated at any time. This leads to a more robust and
comprehensive solution than does the approach of traditional networks and utilizes dedi-
cated hardware devices and proprietary software [10]. SDN can be used for all areas of
cybersecurity, from anomaly detection to threat mitigation.

1.4. Related Work

State-of-the-art research in the area of AI-based SDN protection can be classified into
several fields: anomaly detection, protection against (D)DoS (Distributed Denial of Service),
and performance.

1.4.1. Anomaly Detection

The key functionality of a protection system consists of the ability to detect anomalies
and to provide effective network monitoring. A large amount of traffic requires the
detection to be fully automated. Use of SDN offers a unique advantage in terms of traffic
statistics. These statistics are automatically collected on all SDN-enabled networking
devices and can be utilized for anomaly detection, as was presented in [11]. This approach
eliminates the need to utilize dedicated devices for performing sampling-based detection,
and therefore reduces cost and simplifies the network topology.

Collected statistics can be used to classify data flows and to perform filtering actions,
such as blocking the traffic. This was researched in [12], where the authors developed a
framework called ATLANTIC. That framework combined information theory and machine
learning to calculate deviations in flow table entropy and to perform automated mitigation.

Collecting statistics on networking devices has two significant limitations. Firstly, the
data are aggregated, and secondly, they are available only for lower networking layers
(not the application layer). This flaw can be mitigated by forwarding the traffic via the
SDN controller. This was demonstrated in the SDN-based firewall developed by Qiumei
et al. [13]. The application layer firewall used supervised machine learning in combination
with a typical binary classification problem to filter the traffic. The firewall achieved a
relatively high detection accuracy of 96.79% and very low average latency of 0.2 ms.

1.4.2. Protection against (D)DoS

Availability is one of the most important aspects in relation to computer networks.
Attacks on availability try to disrupt the service by overwhelming the device or software
resources. This makes the service inaccessible for legitimate users. These attacks can
be classified into traditional DoS attacks, where only a single attacker is pursuing the
attack, and distributed versions ((D)DoS), where the attacker utilizes a large number
of devices (often previously compromised devices—so-called zombies) to carry out the
attack. Protection against these attacks is very complicated and typically does not provide
100% reliability.

The first step of every protection is to detect the attack. Bhushan et al. [14] described
use of SDN in a cloud environment for this detection with very low communication and
computation overheads. A more advanced detection of (D)DoS and port scan attacks was
described in [10]. This solution used a combination of two detection methods: discrete
wavelet transform and random forest.

The second step is to take an automated mitigating action, dramatically shortening
what would otherwise be a slow response time attainable by human operator. A combi-
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nation of SDN together with network functions virtualization (NFV) was used for this
purpose in [15]. Those authors used threshold-based classification, and on this basis
a filtering action was taken such that the corresponding packets were dropped with a
probability ranging from 10% to 100%. Another approach to automated protection was
described in [16]. Those authors developed a framework called ArOMA that integrated
traffic monitoring, anomaly detection and mitigation. This solution fully utilized the SDN
advantage to integrate all these functions without the need for a dedicated hardware device
or installation of specific software.

Efficient detection and mitigation of (D)DoS attacks will be especially important in
future large-scale networks integrating IoT devices. As presented by the authors of [11],
utilization of SDN and automatically collected statistics stored on networking devices is
more efficient and can achieve greater detection accuracy than traditional sampling-based
detection methods.

1.4.3. Performance

SDN is based on software processing, which, by its nature, is always slower than is
hardware-accelerated processing of traditional networking devices. On the other hand,
SDN provides features that can eliminate slower software processing. This includes
proactive insertion of flow rules and use of hardware-accelerated tables for storing and
using these rules.

The first issue was analyzed in [17], where the author determined that use of default
reactive insertion of flow rules increases latency by 4 ms in typical network scenarios.
Use of the proactive method reduced the overall latency to 0.1 ms.

Research on utilizing hardware-based tables for storing firewall rules on networking
devices was reported in [18]. This approach achieved a 23-fold better performance over
a typical software-based firewall. It is important to consider the limited capacity of these
hardware-based flow tables, as this can be insufficient in large-scale networks such as IoT
and clouds. This was addressed in [19], where the authors presented an algorithm for
distribution of security policies in these scenarios.

2. Materials and Methods

As we specified in Section 1.3, the programmability of SDN allows us to extend the
SDN controller with an AI-based protection functionality. One of the obvious applications
of AI is the advanced traffic handling, and consequently, automated filtering during an
SDN-based firewall’s operation. The AI element functionality is often supposed to work as
a decision element. In most cases, the AI element helps to determine one of the decision
states according to incoming flow characteristics.

In this article, we introduce a specific neural network-based decision procedure
that can be considered for application in any flow characteristic-based traffic handling
controller. For the sake of being concise and transparent, we consider the decision element
state space to be composed of the following items: allow, block, forward to selected
ports, application layer inspection and four levels of quality of service (QoS) settings
(low, normal, high and critical). For the same reason, we consider only L4 communication,
as described in Section 3.2.1. Nevertheless, the decision element, which includes other
possible communication protocols and an extended set of items in the state space, can be
developed using the same procedure.

Therefore, in order to demonstrate the idea of this contribution, we aim to develop a
decision procedure capable of making a decision based upon the incoming flow charac-
teristics defined by both source and destination IPv4 addresses and also by the amount
of traffic expressed as packets per second. Each IP address is composed of four octets,
which are used as unique inputs. In addition, source and destination port numbers are
considered as relevant inputs. Hence, 11 inputs specify the decision.
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While regarding artificial neural network as an engine for the decision procedure,
we will describe briefly below three hypotheses to develop the traffic handling controller
described above.

2.1. Feedforward Neural Network Applied Directly to Map Input–Output Dependency

During the past three decades, feedforward multilayer neural networks with dense
layers have proven themselves to be specifically competent for input–output mapping
problems. If a feedforward neural network meets specific conditions [20,21], it is able to
solve any input–output problem to any degree of accuracy. Hence, in this case, a feedfor-
ward neural network is supposed to determine the decision state from the incoming flow
characteristic as shown in Figure 1.

��
��

�
��
�

�	�



��


�


���
�������

�
�
��



	���

�
�	�



��



�


���
�������

�
�
��



	��


���
�

�
�
�
�
��

�



��

�
�
�
�


	
�
�
�


�
��



���

�
�
�
��

	

��

��

� �
 ��

��� ��� �� 
� ����

� �� ���
 ���� �� 
� ����

�
��� �� �� � ������

��� ��� �� ��

� �� ���
 ���� �� ��

Figure 1. Feedforward of a neural network to a determined decision state. The normalization block
provides the transformation of the input characteristics to a normalized range in order to ensure
similar contributions from every input.

This hypothesis is closely dealt with in the authors’ previous works [9,22] and is used
here for the purpose of comparing the results.

2.2. A Convolutional Neural Network and Depiction Applied to Map Input–Output Dependency

With current possibilities in hardware acceleration of parallel computing, convolu-
tional neural networks (CNNs) are considered to constitute a leading topology among
neural networks. In addition to dense layers of classical feedforward neural networks,
CNNs include a convolutional layer that extracts features from the input signal. A good
summary of CNNs can be found in [23]. A list of well-known CNN topologies is sum-
marized in [24]. Therefore, in this case, a convolutional neural network is expected to
determine the decision state from the incoming flow characteristic, as demonstrated in
Figure 2.
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Figure 2. A convolutional neural network to determine the decision state. The depiction block
provides the transformation of input characteristics to a specific 2D array (image); it carries input
characteristics in a defined way.

It is a generally accepted feature of CNNs that the performance is particularly efficient
when applied to multidimensional data processing. Image processing can be mentioned
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as one of the most recognizable such examples [25]. Hence, it seems to be efficient to
find an operation that transforms 11 inputs (incoming flow characteristics) into a two-
or three-dimensional structure, preferably a graphical figure. This operation is further
referred to as depiction. A polar line chart is one of the suggested transformations, as
demonstrated in Figure 3.

Figure 3. A visualization of multidimensional data in a 2D polar plane. In this demonstration,
a 6-dimensional vector [1, 0.2, 0.8, 0.6, 0.8, 0.4] is visualized. The distance of a point from the center
of the object represents a value. The angles are distributed evenly in a counter-clockwise direction.

This hypothesis, and the previous one, is analyzed in the authors’ earlier work [22]
and is used here for the purpose of comparing the results.

2.3. Convolutional Neural Network with Optimized Depiction Procedure Applied to Map
Input-Output Dependency

This hypothesis is an expansion of the previous one and is the point of this contribu-
tion. We expect that the depiction procedure stated above strongly affects the accuracy
of the decision determination. Therefore, it should be optimized in order to provide an
ideal medium that supplies incoming flow characteristics to the CNN. In this contribution,
we propose an approach for depiction procedure optimization as shown in Figure 4. The ap-
proach involves repeated CNN training utilizing the data obtained by various depiction
procedures. The procedure itself, meanwhile, is tuned according to the performance of the
trained CNN.
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Figure 4. Depiction process optimization.
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This hypothesis is defined in detail in the following section. The testing experiments
are then presented, and the results are then compared to those from other approaches at
the end of the article.

2.4. Depiction Procedure Optimization

The key step of this contribution is to determine the optimal procedure for depiction.
In our case, the process of depiction was supposed to transform 11 values of incoming flow
characteristics into a 2D array suitable for processing by the CNN. In addition, the process
was meant be quick enough to be used in SDN. Therefore, after pilot testing of several
approaches, we decided to apply a depiction procedure based on planar rotation of annuli
of the original medium image, since this geometric transformation can be implemented in a
very efficient way. To be specific, the medium image was divided into homocentric annuli.
The number of annuli equaled the number of parameters. Then, each annulus was rotated
depending on the value of the corresponding parameter. An example of four parameters is
depicted in Figure 5.

Figure 5. Demonstration of the depiction of multidimensional data in 2D. In this demonstration,
a 4-dimensional vector [0.2, 0.4, 0.8, 0.4] is visualized. A medium image (middle image) is divided
into four annuli (left image) and each annulus is rotated depending on the value of the corresponding
parameter. The resulting image is on the right.

The quality of depiction is strongly affected, however, by the entity of the medium
image. In other words, a correctly defined medium image will provide a much more
readable input to the CNN than will a random medium image. On the other hand,
the "correctness" of the medium image is not directly observable and must be determined
by evaluating the performance of the whole decision element. Hence, the medium image
pattern is the subject of optimization.

As the image pattern, which affects the CNN, should be the result of the optimization
process, it would be difficult to adapt classical techniques from mathematical optimization
to provide the optimal solution. On the other hand, the family of stochastic population-
based optimization techniques (evolutionary algorithms) seems to be a perfect fit, because
these techniques do not demand derivative evaluation or a gradient of objective function.
To justify this selection, in the following paragraphs, we briefly review evolutionary
algorithms applied in cybersecurity.

2.5. Work Related to Applications of Evolutionary Algorithms in Cybersecurity

Evolutionary algorithms, together with other soft computing techniques, have proven
themselves to have great potential in the cybersecurity field. Even articles older than
10 years describe evolutionary algorithms to provide successful and efficient tools, espe-
cially in detecting intrusion [26–28]. In these works, evolutionary algorithms were used for
deriving classification rules. In other cases, evolutionary algorithms were used instead to
select optimal parameters of some core functions within which other methods were used
to derive the rules [29].

In more recent works, there has been a focus especially on (D)DoS protection sys-
tems developed using evolutionary algorithms and other artificial intelligence techniques.
The advantage of these systems lies in their ability to learn from current data. Hence,



Appl. Sci. 2021, 11, 2012 8 of 23

these systems are able to prevent attacks even if the attackers implement different traffic
patterns [30,31].

A different domain is addressed in [32,33]. Dennis Garcia et al. provide a cybersecurity
project for developing network defense strategies through modeling adversarial network
attack and defense dynamics in peer-to-peer networks via coevolutionary algorithms.

Apart from the mentioned usages, evolutionary algorithms are used in addressing
many of today’s most recent issues within networking, such as routing, quality of service,
load balancing, bandwidth allocation and channel assignment [34,35].

2.6. Genetic Algorithm for Medium Image Pattern

A genetic algorithm (GA) is probably the most commonly encountered member of the
evolutionary algorithms family. It is a stochastic search method for finding a near optimum
solution based on a natural selection process and genetics [36]. The GA uses a population
of chromosomes representing possible solutions to the problem. In each generation, the GA
creates a new set of possible solutions by selecting chromosomes according to their level of
fitness. The selected chromosomes are then bred together using genetic operators, mainly
crossover and mutation. This iterative process is expected to lead to better solutions.

The particular parts of the GA, and how we implement them to solve our problem,
are summarized below. Note that each step depends on many tunable parameters. As it
would be impossible to set each of them analytically, most of them are selected based on
limited pilot studies performed during the experiments.

2.6.1. Solution Representation

As mentioned above, each chromosome represents a possible solution to the problem.
We want to determine an optimal pattern of a medium image for the depiction procedure.
Hence, the chromosome is represented by a 2D square array with 110 rows and columns.
We believe that this size is a compromise reached by considering computational complexity
and gains in accuracy. In addition, this size can be processed by all the selected CNNs
(see Section 3.2). Each cell in a 2D array is filled by a value in the range < 0, . . . , 255 >.
Therefore, this array can be visualized as an 8 bit grayscale image.

2.6.2. Fitness Evaluation

Each chromosome in the population needs to be evaluated by its fitness level in order
to perform selection. In our case, the chromosome represents a medium image for depiction
procedure. This procedure affects the input into the CNN, and consequently, the perfor-
mance of the CNN. Therefore, each individual was evaluated by the performance of the
CNN trained using our dataset (see Section 3.2.1), transformed using a specific depiction
procedure. The process of evaluation is shown in Figure 6. The final fitness was evaluated
as the mean value of the best performances of each particular CNN. The performance is
defined as a categorical cross entropy loss function.

Apparently, the fitness evaluation procedure is a very stochastic process, especially due
to the CNN’s training. Therefore, we decided to train three well-established CNNs in one
evaluation. Each CNN was trained five times. Hence, 15 training processes were performed
during one fitness level evaluation. We expected this to be sufficient for suppressing
the stochasticity of the procedure. As CNNs, we selected LeNet-5 [37,38], AlexNet [39]
and VGG-16 net [40]. Note that because the fitness level is based on some kind of loss
function, lower fitness means a better chromosome.
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Figure 6. The fitness evaluation of a chromosome. A chromosome is used for the depiction proce-
dure. Then, after CNN training, the CNN’s performance is computed over the testing set, and this
performance is used as the fitness level.

All the parameters are summarized in Table 1.

Table 1. Parameters of CNN training for fitness evaluation.

Number of experiments 15
Input shape 110 × 110 × 1
Training algorithm ADAM algorithm
Initialization Normal distribution (mean = 0, std = 0.05)
Maximum epochs 50
Stopping criterion Maximum epochs reached
Learning rate α 0.001
Exponential decay rate 1 β1 0.9
Exponential decay rate 2 β2 0.999

2.6.3. Initialization

Population initialization is the starting point of the GA. During initialization, all chro-
mosomes in the initial population are set. We select the heuristic initialization method
as follows:

• 20% of chromosomes set as an array of random integer in range < 0, . . . , 255 >;
• 20% of chromosomes set as an array of random integer in range < 0, . . . , 63 >;
• 20% of chromosomes set as an array of random integer in range < 0, . . . , 127 >;
• 20% of chromosomes set as an array of random integer in range < 128, . . . , 255 >;
• 20% of chromosomes set as an array of random integer in range < 192, . . . , 255 >.

Each chromosome is then filtered by Gaussian filter, where the standard deviation σ is
set randomly in range < 0, . . . , 10 >.

Some examples of initial chromosomes are shown in Figure 7.
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Figure 7. Examples of initial chromosomes. The upper left image is an array of random integers in
range < 0, . . . , 255 > filtered by Gaussian filter σ = 7; the upper middle image is an array of random
integers in range < 192, . . . , 255 > filtered by Gaussian filter σ = 5; the upper right image is an array
of random integers in range < 0, . . . , 127 > filtered by Gaussian filter σ = 9; the lower left image is
an array of random integers in range < 128, . . . , 255 > with no filtration; the lower middle image
is an array of random integers in range < 0, . . . , 63 > with no filtration; the lower right image is an
array of random integers in range < 0, . . . , 255 > with no filtration.

2.6.4. Selection

Selection is that step of the GA where individual chromosomes are selected from
a population for breeding. We choose to use tournament selection. To be more specific,
n tournaments are arranged, where n is the number of chromosomes within a population.
Four chromosomes randomly selected from the population participate in each tournament.
Eventually, the winner of each of n tournaments is selected for breeding.

2.6.5. Crossover

Crossover is a genetic operator used to combine the genetic code of two or more parent
chromosomes to provide new (offspring) chromosomes. Crossover provides stochasticity to
the process by creating completely new chromosomes. In our case, where the chromosomes
are represented by grayscale images, the process of crossover is defined as follows:

• Get two parent chromosomes a and b from population;
• set α to a random value in range < −0.5, . . . , 1.5 >;
• limit α to a range < 0, . . . , 1 >;
• set number of crossover points to integer in range < 1, . . . , 10 >;
• for each crossover point:

– divide both parents a and b along the crossover point into rectangles a1, a2, a3, a4
and respectively b1, b2, b3, b4;

– set ci = αai + (1 − α)bi for i = 1, 2, 3, 4;
– set di = (1 − α)ai + αbi for i = 1, 2, 3, 4;
– set a as composition of c1, c2, c3, c4;
– set b as composition of d1, d2, d3, d4;

• return a, b as the result of crossover.

Note that there is the same probability for α to be at its limits or between them.
For better illustration of the crossover operation, some examples of crossovers are

shown in Figures 8–10.
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Figure 8. Parent images for crossover. The black edge of the second image is not present in the
chromosome. It just delineates the white body of the chromosome.

Figure 9. Offspring images for multiple crossover points and α = 0.

Figure 10. Offspring images for multiple crossover points and α between 0 and 1.

2.6.6. Mutation

Mutation is an operation in the GA to maintain genetic diversity within the population.
Selection and crossover naturally reduce diversity of chromosomes, and this could lead the
algorithm into an unwanted local optimum. Hence, mutation is an essential operator to
keep the diversity sufficiently high.

We implement two types of mutation, each performed on every chromosome with
probability 0.025. Both types of mutation are described below.

• Define a square subarray from a chromosome with random position and random size
(maximum number of rows and columns is 40). Create a subarray of the same size by
the initialization procedure defined in Section 2.6.3. Place the created subarray into
the position of the original subarray.

• Filter the chromosome using the Gaussian filter, where standard deviation σ is set
randomly in the range < 0, . . . , 10 >.

Two examples of the mutation procedure are depicted in Figure 11.
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Figure 11. Examples of mutations. The left image is the original chromosome; the middle image
represents the result of a first type of mutation; the right image represents the result of a second type
of mutation.

2.6.7. Elitism

Elitism in the GA is a procedure allowing the best chromosomes from the current
generation to migrate unaltered directly to the next generation. Elitism generally guarantees
that the solution quality of the best chromosome will not decrease over generations. In our
implementation, we simply migrated the best solution (one chromosome) from its current
population to the next generation. Note that the best chromosome still can be selected for
crossover and mutation, even if selected for elitism.

2.6.8. Optimization Flow

Considering the statements above, we design the optimization procedure in order
to obtain the ideal medium image for the depiction procedure. Note that all the steps,
especially fitness function evaluation, are computationally demanding, so we implemented
several heuristics to improve the probability of being successful. Specifically, we designed
the experiment as follows.

First, we initiated three encapsulated populations of 200 individual chromosomes.
Each population was evolved for 67 generations. Then, the 50 best chromosomes from
each encapsulated population, together with 50 freshly initiated chromosomes, were put
together to create a new population. This new population was evolved for the next 33
generations. The optimization procedure is shown in Figure 12.
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Figure 12. Optimization flow.

3. Results

In this section, we provide the process and results of the depiction procedure opti-
mization, and afterwards, results of the whole decision procedure design.

3.1. Depiction Procedure Design

We performed the optimization experiment according to the statements summarized
in the previous section. In Figure 13, a course of the fitness level is shown for a mean
chromosome and for the best chromosome from all populations. Several interesting points
are worthy of note. Through the first 67 generations, the fitness of the best individual
steadily declines. Then, after integration of all the populations, the fitness of the best
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chromosome falls steeply for several generations before eventually becoming constant.
This course indicates that the optimization process is set suitably and the number of
generations is sufficiently high. If we examine the course of the mean chromosome, we can
observe that the mutation operator ensures a sufficiently high diversity in the population
for the first 67 populations. The diversity then ascends, obviously because of freshly
initiated chromosomes. The diversity in the last 20–25 generations is conspicuously lower
(note the logarithmic scale on the y-axis). In addition, the stochastic process of neural
network training is still observable on both courses.

Generation

F
it
n
e

s
s

Best chromosome

Mean chromosome

Figure 13. Fitness course during genetic algorithm.

It is obvious that this optimization experiment could be run repeatedly for different
parameters. However, as mentioned above, it is computationally a very demanding
task. This one experiment ran for more than four months using three computers having
hardware-accelerated parallel processing. To be more specific, we used computers with
the following hardware specifications: processor—Intel Core i5-8600K (3.6 GHz); internal
memory—16 GB DDR4 (2666 MHz); video card—NVIDIA PNY Quadro P5000 16 GB
GDDR5x PCIe 3.0 (2560 CUDA cores); SSD—SATA M.2 512 GB. The experiments were
performed using Python 3.6 and TensorFlow 2.0.

The chromosome with the best fitness level at the end of the optimization process is
shown in Figure 14. This pattern is used as the medium image for the depiction procedure.

Figure 14. Optimized medium image.
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3.2. Decision Procedure Design

In this section, we aim to develop a CNN-based decision element for a decision
procedure according to Figure 2. This process is especially based on training and testing
of the implemented CNN. Feedforward CNNs consist of multiple layers arranged in a
feed-forward manner. The first layers (convolutional and max-pooling, typically combined
with ReLU) perform feature extraction from the input data. Then, several dense layers are
connected and the classification or decision is ensured by a soft-max activation function.

As the performance of the CNN is strongly affected by its structure, we decided
to include several well-known architectures for testing. Namely, Net1 and Net2 are the
simplest architectures. Both of these were adapted from [41]. In addition to these networks,
the following more complex and widely accepted topologies were selected: LeNet-5 [37,38],
AlexNet [39], VGG-16 net [40] and MobileNet [42]. Note that more advanced CNNs were
not included into this selection because of the strong need for computational efficiency.
More recent CNNs are generally much more computationally demanding.

3.2.1. Training Dataset

The dataset used simulates a highly utilized industrial network corresponding to
an electrical substation network [43] with control and management applications such as
SCADA and Distribution Management System. In order to make the solution reasonably
coherent, lower-layer industrial protocols such as GOOSE were not considered. The traffic
was generated by a custom developed application [9], which in turn generated the target
decisions (ALLOW, BLOCK, INSPECTION, FORWARD, QOS EF, QOS AF13, and QOS
AF41). Data traffic was generated for the following scenarios: normal traffic (random
TCP or UDP ports and action: ALLOW), DoS attack (number of packets per second for
a single flow distinctly high and action: BLOCK), HTTP traffic (TCP destination port 80
and action: application layer INSPECTION), HTTPS traffic (TCP destination port 443 and
action: FORWARD to selected ports) and three types of QoS (critical priority for TCP
destination port 5060; high priority for TCP destination port 37; and low priority for source
or destination ports 20, 21, 69 and 115). IP addresses and number of packets per second
were randomly generated from defined intervals. The traffic map generated for neural
network training consisted of 80,000 unique data patterns.

The dataset was subdivided into a training set (70%), validation set (15%) and testing
set (15%). The training set was used for neural network parameter adaptation during the
training process, the validation set was used to identify the best network configuration
during training and the testing set was used for final AI module evaluation.

Note that inputs in the dataset were transformed using the depiction procedure
described in Figure 5 and using the medium image shown in Figure 14.

3.2.2. CNN Training and Results

The training of the selected architectures was performed in order to obtain a CNN-
based decision element. The ADAM search technique was chosen for use as an optimizer
based on its generally acceptable performance [44]. Initial weights were set randomly, with
Gaussian distribution (location = 0, scale = 0.05). The training instances were performed 50
times. See Table 2 for all parameters of the training processes. The resulting values of the
categorical cross entropy loss function computed over the testing set for each topology are
shown in Figure 15. Categorical cross entropy loss function is calculated as follows.

E = − 1
N

N

∑
i=1

K

∑
j=1

ti,j log(yi,j) (1)

where N is the number of samples in the testing set, K is the number of classes considered
for classification, t is the label of the target class (0 or 1) and y is the j−th scalar value in the
neural network output (between 0 and 1).
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In addition, accuracy of the decision element when using the data in the testing set is
depicted in Figure 16. As training is a stochastic process, the results are depicted as box
graphs. Accuracy is defined as follows.

Acc =
n
N

(2)

where n is the number of correctly performed decisions and N is the number of all decisions,
i.e., the number of samples in the testing set.

L
o
s
s
 f
u
n
c
ti
o
n
 E

Figure 15. Final values of loss function (1) over testing set.
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Figure 16. Final accuracy (2) of the decision element over testing set.
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Table 2. Parameters of CNN training for decision procedure design.

Number of experiments 50
Input shape 110 × 110 × 1
Training algorithm ADAM algorithm
Initialization Normal distribution (mean = 0, std = 0.05)
Maximum epochs 100
Stopping criterion Maximum epochs reached
Learning rate α 0.001
Exponential decay rate 1 β1 0.9
Exponential decay rate 2 β2 0.999

As mentioned in Section 2, we have tested three hypotheses in our research. The best
final accuracies of the decision element designed in this contribution are compared to our
previous results in Table 3. In addition, we include other important metrics—confusion
matrix, precision, recall and F1-score—in Appendix A.

Table 3. Testing results for the best topologies.

Topology Accuracy

Best performance obtained according to the hypothesis described
in Section 2.1

0.9188

Best performance obtained according to the hypothesis described
in Section 2.2

0.9501

Net1 0.9523
Net2 0.9970
LeNet-5 0.9433
AlexNet 0.9965
VGG-16 0.9976
MobileNet 0.9984

4. Discussion

The objective of the presented work was to develop a specific neural network-based
decision procedure that may be applied to a flow characteristic-based traffic handling
controller. Three hypotheses were formulated and tested in this and the authors’ previous
works. It already has been shown that the convolutional neural network in combination
with a depiction procedure provides better accuracy of the decision element in comparison
to a direct feedforward neural network [22]. We clearly show in this contribution, however,
that it is beneficial to optimize the depiction procedure itself. As the results demonstrate
(Table 3), optimization of the depiction procedure improves the accuracy from 0.9501 to
0.9984 while preserving the same computational complexity. In addition, the other metrics
presented in Appendix A also support this statement. For example, according to Table A11,
(D)DoS attack was correctly detected in 6204 cases of 6218 possible cases and no false
detections were triggered.

Although the optimization process is a hugely time-consuming task, it was performed
once during the development of the decision procedure and it did not affect implementation
of the element in traffic handling control.

The proposed AI decision procedure can be generally utilized in many network secu-
rity devices such as firewalls, intrusion detection systems and intrusion prevention systems.
In our protection system deployment, as formerly introduced in [9], the functionality
combines intrusion prevention and detection systems. Use of SDN relies on periodical
collection of traffic data (commonly every one second interval) and subsequent processing
on the SDN controller, which includes the AI subsystem. This processing is therefore done
offline as in traditional intrusion detection systems. However, unlike in these systems,
our system can react based on the AI subsystem result, by inserting specific flow rules (such
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as blocking) into networking devices and therefore achieving functionality of the intrusion
prevention system, but with an approximately 1 s latency. For testing purposes, we deploy
the proposed decision procedure using NVIDIA Jetson NANO [45], as a single board
computer naturally suitable for this purpose. The latency of the depiction procedure is 18.6
ms and the latency of the MobileNet (which provides the best overall performance—see
below) is 16.6 ms. We assume, the decision procedure could take from approximately 2
ms to 100 ms, based on used hardware and neural network architecture. Therefore, it can
be seamlessly applied in the SDN-based network protection system with a one second
interval.

In examining performance of the particular convolutional networks, we should empha-
size especially the well-established VGG-16 and MobileNet, which feature good learning
ability, result in small loss function values and deliver excellent performance with accu-
racies equal to 0.9976 and 0.9984, respectively. Surprisingly, LeNet-5’s accuracy fails to
exceed 0.95.

It is not possible to directly compare the presented results to other works. Although
several authors propose artificial intelligence techniques for security handling, using the
software-defined networking paradigm, they mostly consider different aims, unmatched
datasets and uneven conditions. For a raw illustration, we summarize some findings below.

Authors in [46] proposed an intrusion detection system for SDN based on a neural
network approach and they achieved the accuracy of 0.973 with their dataset. Oo Myo
Myint et al. [47] introduced a detection method of (D)DoS attack by using the advanced
support vector machine technique with an accuracy between 0.970 and 1.000 based on the
ratio of training and testing data. They also used their own dataset. Fuzzy logic approaches
can also be used for detection of the (D)DoS attack on SDN. Authors [48] proposed an
algorithm that deployed multiple criterion for attack detection, and they demonstrated
the ability to detect and filter 97% of the attack flows with a false positive rate of 5%.
Moreover, a combination of a support vector machine and a decision tree approach was
introduced in [49]. Based on the experimental results with the KDD CUP99 dataset [50],
their system showed an accuracy of 0.976. Additionally, as a last example, Phan et al. [51]
provided a novel approach which implemented a self-organizing map with a support
vector machine approach. Their results showed that this system was able to achieve an
accuracy of 0.976 and a false positive rate of 3.85 %. As mentioned, these results were
gained from different datasets and the acquisition procedures were based on different
effects. Despite this, the presented accuracies are roughly on the same level as our results,
or worse. These findings indicate that our approach is vindicated.

5. Conclusions

In this contribution, we proposed a specific neural network-based decision procedure
as a part of a traffic handling controller. Such an AI-based element can be straightforwardly
integrated into a software-defined networking controller to provide all the advantages
of a machine learning approach while presenting no particular demands for proprietary
software or custom hardware.

The main contribution consists of the development and improvement of the depiction
process using a genetic algorithm. We implemented a convolutional neural network
as a decision element. In as much as convolutional neural networks behave especially
well when applied to multidimensional inputs, we state a novel depiction procedure to
automatically transform incoming flow characteristics into a 2D array. The depiction
procedure uses meta-learning to adaptively perform an efficient conversion of raw data
into a new data representation (suitable encoder), which will be suitable for processing
using a convolutional neural network. The depiction procedure adds another layer of
representational learning (one layer of representational learning is contained in a deep
neural network) and is optimized in a complex computational experiment based on a
genetic algorithm.
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As a result, we demonstrated that a convolutional network, in combination with
an optimized depiction procedure, provides exceptionally high accuracy of the decision
process. The proposed process of finding a suitable data representation and an effective
depiction procedure on the performed experiments, significantly increases the accuracy
in the classification of network packets. The presented method is, nevertheless, far from
optimal. One important point is the size and bit depth of the medium image—these
parameters are now determined once without the possibility of a change. It could be
possible to find the size and depth more suitable for a particular neural network. The other
point is the depiction process. Many well accepted approaches, which can store information
into an image, are known. Instead of using our procedure, we can adapt other one and get
a better or less time-consuming depiction process.

Moreover, we believe that the proposed depiction procedure could be used much
more generally, and that it could be applicable to other problems that do not yet have good
enough results when using neural networks. Future research will focus on designing and
exploring different types of depiction procedures and finding more general approaches
that could increase the accuracy of neural networks and machine learning algorithms on
selected problems.
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Appendix A. Metrics of Designed Neural Networks

We present the accuracy of each neural network intended to be a decision element
in Table 3. However, in order to provide a comprehensive information about the process,
we provide the other metrics here as an appendix. In the following tables, we present a
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confusion matrix, precision, recall and F1-scorescore for the best representative of each
neural network and each class. The metrics are defined as follows.

Precision =
TP

TP + FP
, (A1)

Recall =
TP

TP + FN
, (A2)

F1-score =
2

Recall−1 + Precision−1 , (A3)

where TP (true positive) is the number of correctly recognized decisions for each class
(ALLOW, BLOC, INSPECTION, ...), FP (false positive) is is the number of incorrectly
recognized decisions for a specific class and FN (false negative) is the number of decisions
wherein the specific class was not recognized.

Table A1. Confusion matrix for Net1.

Allow
Predicted

Block
Predicted

Forward
Predicted

Inspection
Predicted

QoS_af13
Predicted

QoS_af41
Predicted

QoS_ef
Predicted

Allow Actual 3164 0 16 3 21 1 24
Block Actual 31 6187 0 0 0 0 0
Forward Actual 0 0 3133 0 1 0 0
Inspection
Actual

0 0 0 3062 14 0 0

QoS af13 Actual 2 0 2 425 2059 634 2
QoS af41 Actual 0 0 0 0 15 3119 0
QoS ef Actual 0 0 0 0 1 0 3084

Table A2. Classification report for Net1.

Precision Recall F1-Score Samples

Allow 0.9897 0.9799 0.9847 3229
Block 1.0000 0.9950 0.9975 6218
Forward 0.9943 0.9997 0.9970 3134
Inspection 0.8774 0.9954 0.9327 3076
QoS af13 0.9754 0.6591 0.7866 3124
QoS af41 0.8308 0.9952 0.9056 3134
QoS ef 0.9916 0.9997 0.9956 3085

Table A3. Confusion matrix for Net2.

Allow
Predicted

Block
Predicted

Forward
Predicted

Inspection
Predicted

QoS_af13
Predicted

QoS_af41
Predicted

QoS_ef
Predicted

Allow Actual 3161 0 17 4 17 3 27
Block Actual 28 6190 0 0 0 0 0
Forward Actual 0 0 3133 0 1 0 0
Inspection
Actual

0 0 0 3072 4 0 0

QoS af13 Actual 1 0 3 571 1816 730 3
QoS af41 Actual 0 0 0 0 11 3123 0
QoS ef Actual 0 0 0 0 1 0 3084



Appl. Sci. 2021, 11, 2012 20 of 23

Table A4. Classification report for Net2.

Precision Recall F1-Score Samples

Allow 0.9909 0.9789 0.9849 3229
Block 1.0000 0.9955 0.9977 6218
Forward 0.9937 0.9997 0.9967 3134
Inspection 0.8423 0.9987 0.9139 3076
QoS af13 0.9816 0.5813 0.7302 3124
QoS af41 0.8099 0.9965 0.8936 3134
QoS ef 0.9904 0.9997 0.9950 3085

Table A5. Confusion matrix for LeNet-5.

Allow
Predicted

Block
Predicted

Forward
Predicted

Inspection
Predicted

QoS_af13
Predicted

QoS_af41
Predicted

QoS_ef
Predicted

Allow Actual 3167 1 17 4 21 1 18
Block Actual 38 6179 0 0 0 1 0
Forward Actual 0 0 3130 0 4 0 0
Inspection
Actual

0 0 0 2949 127 0 0

QoS af13 Actual 3 0 2 545 2068 504 2
QoS af41 Actual 0 0 0 0 128 3006 0
QoS ef Actual 0 0 0 0 2 0 3083

Table A6. Classification report for LeNet-5.

Precision Recall F1-Score Samples

Allow 0.9872 0.9808 0.9840 3229
Block 0.9998 0.9937 0.9968 6218
Forward 0.9940 0.9987 0.9963 3134
Inspection 0.8431 0.9587 0.8972 3076
QoS af13 0.8800 0.6620 0.7556 3124
QoS af41 0.8559 0.9592 0.9046 3134
QoS ef 0.9936 0.9994 0.9964 3085

Table A7. Confusion matrix for AlexNet.

Allow
Predicted

Block
Predicted

Forward
Predicted

Inspection
Predicted

QoS_af13
Predicted

QoS_af41
Predicted

QoS_ef
Predicted

Allow Actual 3185 0 11 0 24 0 9
Block Actual 33 6185 0 0 0 0 0
Forward Actual 0 0 3134 0 0 0 0
Inspection
Actual

0 0 0 3076 0 0 0

QoS af13 Actual 1 0 2 0 3120 0 1
QoS af41 Actual 0 0 0 0 5 3129 0
QoS ef Actual 2 0 0 0 0 0 3083

Table A8. Classification report for AlexNet.

Precision Recall F1-Score Samples

Allow 0.9888 0.9864 0.9876 3229
Block 1.0000 0.9947 0.9973 6218
Forward 0.9959 1.0000 0.9979 3134
Inspection 1.0000 1.0000 1.0000 3076
QoS af13 0.9908 0.9987 0.9947 3124
QoS af41 1.0000 0.9984 0.9992 3134
QoS ef 0.9968 0.9994 0.9981 3085
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Table A9. Confusion matrix for VGG-16.

Allow
Predicted

Block
Predicted

Forward
Predicted

Inspection
Predicted

QoS_af13
Predicted

QoS_af41
Predicted

QoS_ef
Predicted

Allow Actual 3186 4 11 0 21 0 7
Block Actual 18 6200 0 0 0 0 0
Forward Actual 0 0 3134 0 0 0 0
Inspection
Actual

0 0 0 3076 0 0 0

QoS af13 Actual 2 0 3 10 3107 1 1
QoS af41 Actual 0 0 0 0 0 3134 0
QoS ef Actual 1 0 0 0 3 0 3081

Table A10. Classification report for VGG-16.

Precision Recall F1-Score Samples

Allow 0.9935 0.9867 0.9901 3229
Block 0.9994 0.9971 0.9982 6218
Forward 0.9956 1.0000 0.9978 3134
Inspection 0.9968 1.0000 0.9984 3076
QoS af13 0.9923 0.9946 0.9934 3124
QoS af41 0.9997 1.0000 0.9998 3134
QoS ef 0.9974 0.9987 0.9981 3085

Table A11. Confusion matrix for MobileNet.

Allow
Predicted

Block
Predicted

Forward
Predicted

Inspection
Predicted

QoS_af13
Predicted

QoS_af41
Predicted

QoS_ef
Predicted

Allow Actual 3193 0 10 0 20 0 6
Block Actual 14 6204 0 0 0 0 0
Forward Actual 0 0 3134 0 0 0 0
Inspection
Actual

0 0 0 3076 0 0 0

QoS af13 Actual 2 0 3 0 3114 1 4
QoS af41 Actual 0 0 0 0 0 3134 0
QoS ef Actual 0 0 0 0 0 0 3085

Table A12. Classification report for MobileNet.

Precision Recall F1-Score Samples

Allow 0.9950 0.9889 0.9919 3229
Block 1.0000 0.9977 0.9989 6218
Forward 0.9959 1.0000 0.9979 3134
Inspection 1.0000 1.0000 1.0000 3076
QoS af13 0.9936 0.9968 0.9952 3124
QoS af41 0.9997 1.0000 0.9998 3134
QoS ef 0.9968 1.0000 0.9984 3085
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