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Abstract: We introduce a new fuzzy linear regression method. The method is capable of approxi-
mating fuzzy relationships between an independent and a dependent variable. The independent
and dependent variables are expected to be a real value and triangular fuzzy numbers, respec-
tively. We demonstrate on twenty datasets that the method is reliable, and it is less sensitive to
outliers, compare with possibilistic-based fuzzy regression methods. Unlike other commonly used
fuzzy regression methods, the presented method is simple for implementation and it has linear
time-complexity. The method guarantees non-negativity of model parameter spreads.

Keywords: fuzzy linear regression; non-symmetric triangular fuzzy number; least absolute value;
Boscovich regression line; outlier

1. Introduction

A regression model approximates the functional relationship between a dependent
y and independent variables x. Parameters of a regression model are estimated using a
set of observations of x and y. The model with the estimated parameters can be used to
predict a dependent variable value for a specific combination of the independent variables.
In practice, statistical regression models are most often used for this purpose, but their
usage is limited by an assumption that any deviation of a prediction from a corresponding
observation is due to a random error.

In many practical applications, the deviations are a result of imprecise observations,
an indefiniteness of the system structure and parameters [1,2], or the vagueness of human
perception of the model (in contrast with the statistical regression where the errors are
associated with observations) [3]. There are also cases where the observations are inherently
fuzzy, e.g., if the observations are described by linguistic terms [4–6]. In such cases, the
deviations are not due to randomness, but they are due to fuzziness and fuzzy regression
should be used. The fuzzy regression can be also used when statistical distributional
assumptions cannot be justified, or if the representation of the regression model is poor [3].
The fuzzy regression is an efficient alternative to statistical regression whenever a dataset
is insufficient to support statistical regression analysis [7].

The fuzzy regression approximates the relationship between the dependent y and the
independent variables x using a fuzzy regression model. Once the underlying regression
relationship is known, an appropriate parametric fuzzy regression model (e.g., linear [8],
polynomial [9], and logistic [10] ) can be used for the approximation of the relationship. If
the relationship is unknown, it is possible to utilize a nonparametric fuzzy regression model.
Such as a model based on k-nearest neighbour smoothing [11], kernel smoothing [11], local
linear smoothing [12], and adaptive neuro-fuzzy inference systems [13].

In fuzzy regression analysis, the relationship is typically approximated as a linear
dependence by a model with all fuzzy parameters [2,14–24], but other fuzzy linear models
are used as well [8]. For example, the model with all fuzzy parameters can be extended

Mathematics 2021, 9, 685. https://doi.org/10.3390/math9060685 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6194-0467
https://orcid.org/0000-0002-5712-8852
https://orcid.org/0000-0002-5970-3515
https://doi.org/10.3390/math9060685
https://doi.org/10.3390/math9060685
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9060685
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9060685?type=check_update&version=1


Mathematics 2021, 9, 685 2 of 14

with a fuzzy error term [22], or some of the parameters can be real value numbers [8].
Models with all fuzzy parameters are known for a dependence of model prediction spreads
on absolute values of x [8,23]. In the case that all parameters, except a y-intercept or the
fuzzy error term, are real value numbers, the model prediction spreads are constant in the
whole range of x values [8].

For estimation of unknown parameters of a fuzzy model, possibilistic and statistics-based
approaches are frequently used. Possibilistic fuzzy estimators minimize a total spread of the
fuzzy model predictions subject to constraints that arise from observations [1,3,15,16,19,21,25,26].
The statistics-based solutions adopt concepts that are used in statistics such as the ordinary
least squares method [17,18,20,27–33], the least absolute deviations method [22–24,34–37], and
adaptive smoothing methods [11,12]. Some fuzzy estimators combine the possibilistic and the
statistics-based approaches [38].

Several limitations were observed for some fuzzy estimators. As pointed out by
many authors [22,24,39–41], numerous fuzzy estimators are sensitive to outliers. This
criticism resulted in a number of fuzzy estimators that are more or less resilient to
outliers [3,11,12,24,26,41–44]. A serious issue of some estimators is the fact that they do not
guarantee non-negativity of spreads [35,41,45,46]. A certain disadvantage is also the compu-
tational complexity of the estimators. Depending on a used fuzzy estimator, matrix opera-
tions [18], linear programming [1,3,15,16,19,21,24,44], quadratic programming [26,27,32,38],
or a general constrained optimization problem [25,29–31,33] must be solved to obtain
estimates of the unknown parameters. Some methods employ customized iterative opti-
mization algorithms [20,41].

Herein, we propose a new fuzzy estimator intended for a simple fuzzy regression
model with real value independent and fuzzy dependent variables. We based the estimator
on the Boscovich regression line [47,48], hence we named it Boscovich fuzzy regression
line. The original Boscovich regression line was a pioneering regression method based
on minimization criterion, i.e., it is a predecessor of today’s statistical regression methods.
The method was characterized by extremely low computing demands. The presented
Boscovich fuzzy regression line inherited this property. Moreover, the used fuzzy linear
model guaranties non-negativity of the model parameter spreads by its nature, and spreads
of model predictions are not influenced by independent variable values. Even with its sim-
plicity, the presented fuzzy estimator provides regression models in a quality comparable
to other fuzzy regression methods.

2. Materials and Methods

The Boscovich regression method [48] was designed for the simple theoretical linear
regression model

y = β0 + β1x, (1)

where β0 and β1 are unknown parameters of the model. The estimation of β0, β1 is based
on n imprecise observations (xi, yi), where i ∈ I, and I = {1, 2, . . . , n}. The estimator
introduced by Boscovich was based on two constraints [49]:

(1) the sum of the positive and negative residuals (in the sense of y axis) shall be equal,
(2) the sum of the best absolute values of all the residuals shall be as small as possible.

The constraint (1) implies that the regression line should pass through the centroid
(x, y) formed by the observations, i.e.,

y = β̂∗0 + β̂∗1x, (2)

where β̂∗0, β̂∗1 are the best estimates of the unknown regression coefficients β0, β1 with
respect to the constraints (1) and (2). As follows from the constraint (1), the coordinates of
the centroid can be expressed as

x =
1
n

n

∑
i=1

xi, y =
1
n

n

∑
i=1

yi. (3)
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Thus, the best estimate of the unknown regression coefficient β0 can be expressed on
the base of (2) as

β̂∗0 = y− β̂∗1x. (4)

Naturally, only one point, (x, y), is insufficient to form any line. Therefore, at least one
other point is needed. Boscovich suggested using one of the observations as the second
point of the regression line. Whereas n observations are available, n regression lines can be
constructed in such a way. The k-th regression line is clearly determined by

Lk : yk = y + β̂
(k)
1 ∆xk, (5)

where β̂
(k)
1 is the k-th estimate of β1 based on the k-th observation (xk, yk), and ∆xk = xk− x.

On the basis of (5), the k-th estimate of β1 can be expressed as

β̂
(k)
1 =

(
∆x−1

k

)
(yk − y). (6)

Altogether, n estimates of β1 are obtained in such a way. The selection of the best one
can be carried out using an evaluation function J based on the constraint (2), i.e., for the
k-th regression line, it holds that

J(k) =
n

∑
i=1

∣∣∣yi − ŷ(k)i

∣∣∣ = n

∑
i=1

∣∣∣yi − y− β̂
(k)
1 ∆xi

∣∣∣, (7)

where ŷ(k)i is the i-th prediction of the dependent variable y using the k-th regression
model (5).

Boscovich expressed a premise that one of the n regression lines is the best approx-
imation of the model (1). Considering constraint (2), the best estimate of the unknown
regression coefficient β1 is given by

β̂∗1 = arg min
β̂
(k)
1 ,∀k∈I

n

∑
i=1

∣∣∣yi − y− β̂
(k)
1 ∆xi

∣∣∣. (8)

3. Fuzzy Set Preliminaries

Definition 1. A fuzzy subset Ã defined on R with membership function µÃ : R→ [0, 1] is called
a fuzzy number if

(a) µÃ(x) is normal, i.e., ∃x0 ∈ R with µÃ(x0) = 1,
(b) µÃ(x) is fuzzy convex,
(c) µÃ(x) is upper semi-continuous on R,
(d) µÃ(x) is compactly supported, i.e., cl{x ∈ R; µÃ(x) > 0} is compact, where cl(A) denotes

the closure of the set A.

Definition 2. Let L and R be continuous decreasing functions L, R : [0,+∞)→ [0, 1] fulfilling
L(0) = R(0) = 1 and L(1) = R(1) = 0, invertible on [0, 1]. Moreover, let mL

Ã, mR
Ã ∈ R, where

mL
Ã ≤ mR

Ã, and αÃ, βÃ ∈ R+; then a fuzzy set Ã is said to be an L-R type fuzzy number if its
membership function is

µÃ(x) =



L
(

mL
Ã−x
αÃ

)
, for mL

Ã − αÃ < x < mL
Ã,

1, for mL
Ã ≤ x ≤ mR

Ã,

R
(

x−mR
Ã

βÃ

)
, for mR

Ã < x < mR
Ã + βÃ,

0, otherwise,

(9)



Mathematics 2021, 9, 685 4 of 14

where mL
Ã and mR

Ã are the left and the right points of the core and αÃ and βÃ are the left and the
right spread of the fuzzy number Ã. Symbolically,

Ã =
(

mL
Ã, mR

Ã, αÃ, βÃ

)
LR

. (10)

In the case that the functions L and R are linear, and mL
Ã = mR

Ã = mÃ, then the L-R fuzzy
number is called a triangular fuzzy number and its membership function is

µÃ(x) =


mÃ−x

αÃ
, mÃ − αÃ < x ≤ mÃ,

x−mÃ
βÃ

, mÃ < x < mÃ + βÃ,

0, otherwise,

(11)

where mÃ is the mean of the triangular fuzzy number Ã. The triangular fuzzy number Ã is
sufficiently represented by the triplet

Ã = (mÃ, αÃ, βÃ)T . (12)

Let the set of all triangular fuzzy numbers be denoted as RT , where T is a symbol for a
triangular fuzzy number.

Definition 3. Let Ã = (mÃ, αÃ, βÃ)T be the triangular fuzzy number where Ã ∈ RT and λ
is a real number. Then their scalar multiplication can be, on the basis of the extension principle,
defined as

λ · Ã =

{
(λmÃ, λαÃ, λβÃ)T λ ≥ 0,
(λmÃ,−λβÃ,−λαÃ)T λ < 0.

(13)

For any λ, ν ∈ R and any Ã ∈ RT , it holds that

(λν) · Ã = λ · (ν · Ã). (14)

Definition 4. The opposite of a triangular fuzzy number Ã = (mÃ, αÃ, βÃ)T , where Ã ∈ RT , is
the triangular fuzzy number

− Ã = −1 · Ã = (−mÃ, βÃ, αÃ)T . (15)

The fuzzy numbers Ã and −Ã are symmetrical with respect to the axis x = 0.

Definition 5. For the triangular fuzzy numbers Ã = (mÃ, αÃ, βÃ)T , B̃ = (mB̃, αB̃, βB̃)T , and
C̃ =

(
mC̃, αC̃, βC̃

)
T , where Ã, B̃, C̃ ∈ RT , the sum of Ã and B̃ can be, on the basis of the extension

principle, defined as
Ã⊕ B̃ = (mÃ + mB̃, αÃ + αB̃, βÃ + βB̃)T . (16)

The operation for Ã, B̃, C̃ ∈ RT is:

(a) commutative, i.e., Ã⊕ B̃ = B̃⊕ Ã,
(b) associative, i.e., Ã⊕ (B̃⊕ C̃) = (Ã⊕ B̃)⊕ C̃.

Furthermore, it holds:

(a) for any λ, ν ∈ R with λν ≥ 0 and any Ã ∈ RT that

(λ + ν) · Ã = λ · Ã⊕ ν · Ã, (17)

(b) for any λ ∈ R and any Ã, B̃ ∈ RT that

λ · (Ã⊕ B̃) = λ · Ã⊕ λ · B̃, (18)
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(c) for any Ã ∈ RT and λ ∈ R that

Ã− λ = (mÃ − λ, αÃ, βÃ)T , (19)

and
Ã + λ = (mÃ + λ, αÃ, βÃ)T . (20)

Definition 6. The average value of n triangular fuzzy numbers Ã1, Ã2, . . . , Ãn ∈ RT is

Ã =
1
n

n

∑
i=1

Ãi =
1
n
·
(

Ã1 ⊕ Ã2 ⊕ · · · ⊕ Ãn
)
, (21)

where Ãi =
(

mÃi
, αÃi

, βÃi

)
T

for ∀i ∈ [1, n], Ã =
(

mÃ, αÃ, βÃ

)
T
∈ RT .

4. Boscovich Fuzzy Regression Line

The presented fuzzy regression method is intended for datasets where observations
of the independent variable x are real value numbers and observations of the dependent
variable y are triangular fuzzy numbers Ỹ, i.e., a set of n observations is given as

O =
{
(xi, Ỹi)

∣∣∀i ∈ I
}

, (22)

where xi is the i-th real value observation of the independent variable x, Ỹi is the i-th fuzzy
observation of the dependent variable y, Ỹi = (yi, υi, υi)T , yi is the mean, υi is the left, and
υi is the right spread of Ỹi.

For the approximation of a linear dependence between x and Ỹ, we use a simple fuzzy
linear model

Ỹ = Ã0 + a1x, (23)

where Ã0 and a1 are unknown model parameters, Ã0 ∈ RT , a1 ∈ R, Ã0 = (a0, α0, α0)T , a0
is the mean, α0 is the left, and α0 is the right spread of Ã0. As the y-intercept Ã0 is the only
fuzzy parameter of the model (23), the fuzziness of model predictions is independent of
model input x [8].

Following the Boscovich idea (see Section 2, constraint (1)), the best estimate of the
fuzzy regression line (23) shall pass through a centroid formed by the observations O, i.e.,

Ỹ = ˆ̃A∗0 + â∗1 x, (24)

where ˆ̃A∗0 , â∗1 are the best estimates of the unknown regression coefficients Ã0 and a1

according to the constraints (1) and (2); Ỹ is the y coordinate of the centroid, and x is its x
coordinate. The coordinates of the centroid formed by the observations (22) are given as

x =
1
n

n

∑
i=1

xi, Ỹ =
1
n

n

∑
i=1

Ỹi, (25)

therefore x ∈ R, Ỹ ∈ RT .
Let us express the estimate of the unknown fuzzy regression coefficient Ã0, using the

Formula (24), as
ˆ̃A∗0 = Ỹ− â∗1 x. (26)

As in the case of the Boscovich regression line, n fuzzy regression lines can be con-
structed using the observations (22). The k-th fuzzy regression line, based on the k-th
observation

(
xk, Ỹk

)
is given as

L̃k : Ỹk = Ỹ + â(k)1 ∆xk, (27)
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where â(k)1 is the slope of the k-th fuzzy regression line (i.e., the k-th estimate of a1), and
∆xk = xk − x.

The model (27) uses the trick used in the ordinary least squares method. Specifically,
we relate the explanatory variable to the centre of gravity using the relation ∆xk = xk − x.
The y coordinate of the centroid Ỹ incorporates the fuzziness of the underling relationship
(25), which is reflected in the intercept of the regression line ˆ̃A∗0 (26). The intercept is the
only fuzzy coefficient of the linear function in our model. Such a constructed line, fulfilling
the first Boscovich assumption (Section 2, constraint (1)), is going through the centroid,
which is a necessary constraint for an unbiased estimate of the regression line. Considering
this, we can construct an estimate of the slope of the k-th regression line on the basis of the
mean values of the fuzzy numbers Ỹk and Ỹ

L′k : mỸk
= mỸ + â(k)1 ∆xk, (28)

where mỸk
is the mean of the k-th observation of Ỹ, and mỸ is the mean of the y coordinate

of the centroid Ỹ.
The k-th estimate of the slope a1 is then given as

â(k)1 =
(

∆x−1
k

)(
Ỹk −mỸ

)
. (29)

For the selection of the best estimate of the slope a1, an appropriate evaluation func-
tion has to be formulated (see Section 2, constraint (2)). As follows from the relaxed
Equation (28), the criterion is given as

J(k)F =
n

∑
i=1

∣∣∣mỸi
−mỸ − a(k)1 ∆xi

∣∣∣, (30)

and the best estimate of a1 is given as

â∗1 = arg min
â(k)1 ,∀k∈I

n

∑
i=1

∣∣∣mỸi
−mỸ − a(k)1 ∆xi

∣∣∣. (31)

The proposed fuzzy estimator can be written using a pseudocode as an Algorithm 1.

Algorithm 1 Boscovich fuzzy regression line

1: function BFRL(O)
Require: The set of n observations O =

{
(xi, Ỹi)

∣∣∀i ∈ I
}

Ensure: The best estimates of Ã0 and a1
2: x ← 1

n ∑n
i=1 xi

3: Ỹ ← 1
n ∑n

i=1 Ỹi
4: ∆xi ← xi − x, ∀i ∈ I
5: â(i)1 ←

(
∆x−1

i

)(
mỸi
−mỸ

)
, ∀i ∈ I

6: J(k)F ← ∑n
i=1

∣∣∣mỸi
−mỸ − â(k)1 ∆xi

∣∣∣, ∀k ∈ I

7: â∗1 ← arg min
â(k)1 ,∀k∈I

J(k)F . Best estimate of a1

8: ˆ̃A∗0 ← Ỹ− â∗1 x . Best estimate of Ã0

9: return ˆ̃A∗0 , â∗1
10: end function
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5. Numerical Examples

We compared the presented Boscovich fuzzy regression line (BFRL) with several
possibilistic and statistics-based fuzzy regression methods. As representatives of the
possibilistic family, we selected a possibilistic linear regression (PLR) analysis [16], a PLR
combined with an omission approach (OPRL) [44], and a multi-objective fuzzy linear
regression (MOFLR) [26]. The OPRL and MOFLR were designed to be less sensitive to
outliers. We implemented the OPRL for detection of one outlier. Each of these three
methods requires setting of one parameter by a decision maker. The decision maker must
set up a threshold value h in the cases of PRL and OPRL, where h ∈ [0, 1). The threshold
value indicates a degree of fitness of an estimated fuzzy regression model [16]. MOFLR
requires presenting of a weighting coefficient ω, where ω ∈ (0, 1). The weighting coefficient
determines a trade off between outlier penalization (ω → 1) and data fitting (ω → 0) [26].
From the statistics-based methods, we considered a fuzzy least squares (FLS) [18], a
fuzzy least absolute linear regression (FLAR) [24], and a robust fuzzy regression (RFR)
analysis [41]. Note that the RFR requires at least six observations to estimate parameters of
a simple fuzzy linear model and it employs a customized iterative optimization method.

BFRL was designed as a parameter estimator of the fuzzy linear model (23). PLR,
OPLR, MOFLR, FLS, FLAR and FLS expect a fuzzy linear model with all fuzzy parameters.
For one real value independent variable x, the model is given as

Ỹ = Ã0 + Ã1 · x, (32)

where Ã0 and Ã1 are unknown model parameters, Ã0, Ã1 ∈ RT , Ã1 = (a1, α1, α1)T , a1 is
the mean, α1 is the left, and α1 is the right spread of Ã1.

RFR uses a different approach to model prediction calculation. The i-th prediction of
y, Ỹi = (yi, υi, υi)T , is given as

Ỹi =


yi = fa,
υi = byi + d,
υi = gyi + h,

(33)

where a, b, d, g and h are unknown model parameters, and f =
[
1 xi

]
.

We evaluated performance of the aforementioned methods on various datasets.
The possibilistic approaches (PRL, OPRL, MOFLR) were designed for symmetric fuzzy
numbers. To allow comparison of all the methods, we involved datasets with symmetric
fuzzy observations into the evaluation process. We used data from example 1 published
in [16] and from example 2 published in [18]. We labelled the datasets SFN-1 and SFN-2,
respectively. The presented BFRL, as well as the statistics-based methods (FLS, FLAR,
RFR), are also capable of processing non-symmetric fuzzy numbers. To fully examine
performance of these methods, we included three datasets with non-symmetric fuzzy
observations of the dependent variable into the evaluation process. Specifically, we used
data from example 1 published in [45], from example 2 published in [50], and from exam-
ple 3 published in [51]. We labelled the datasets NFN-1, NFN-2, and NFN-3, respectively.
The datasets SFN-1, SFN-2, NFN-1, NFN-2, and NFN-3 consist of 5, 8, 16, 8 and 8 observa-
tions, respectively.

We evaluated performance of the methods using a total error E which we defined as a
sum of absolute errors, i.e.,

E =
n

∑
i=1

Di, (34)

where D is a difference between membership functions of observed and estimated fuzzy
responses. For the i-th observation, the difference is given as

Di =
∫

SỸi
∪S ˆ̃Yi

∣∣∣µỸi
(y)− µ ˆ̃Yi

(y)
∣∣∣dy, (35)
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where µỸi
(y) and µ ˆ̃Yi

(y) are the membership functions of the i-th observed Ỹi and the

i-th estimated response ˆ̃Yi, respectively; and SỸi
and S ˆ̃Yi

represent supports of µỸi
(y) and

µ ˆ̃Yi
(y), respectively [52]. Total errors (34) of the examined fuzzy regression methods are

summarized in Table 1. The errors are organized with respect to fuzzy regression methods
(columns) and datasets (rows). For PRL and OPRL, we used threshold values h = 0 and
h = 0.5. For MOFLR, we considered ω ∈ {0.1, 0.5, 0.99}. Note that RFR cannot be applied
on SFN-1 since the dataset consists of 5 observations only. Since PRL, OPRL and MOFLR
return biased results on datasets with non-symmetric fuzzy observations, the results were
not included into Table 1.

Table 1. Total errors of the possibilistic linear regression (PLR), the PLR combined with the omission approach (OPRL), the
multi-objective fuzzy linear regression (MOFLR), the fuzzy least squares (FLS), the fuzzy least absolute linear regression
(FLAR), the robust fuzzy regression (RFR) analysis, and the Boscovich fuzzy regression line (BFRL). Testing done on datasets
with symmetric (SFN-1, n = 5 and SFN-2, n = 8) and non-symmetric fuzzy numbers (NFN-1, n = 16; NFN-2, n = 8 and
NFN-3, n = 8). Settings of adjustable parameters h and ω are stated under method abbreviations.

PLR OPRL MOFLR FLS FLAR RFR BFRL

h = 0 h = 0.5 h = 0 h = 0.5 ω = 0.1 ω = 0.5 ω = 0.99

SFN-1 12.40 17.89 12.40 17.89 220.42 35.35 14.53 10.14 9.50 - 9.17
SFN-2 3.86 6.45 3.51 4.78 73.73 11.89 5.09 3.23 3.24 3.23 3.61

NFN-1 - - - - - - - 144.13 133.81 151.98 161.09
NFN-2 - - - - - - - 15.21 14.09 14.57 15.30
NFN-3 - - - - - - - 2.98 2.29 2.90 3.03

We also investigated the sensitivity of the methods on outliers. We considered three
types of outliers: (a) outliers with respect to centres of the fuzzy dependent variable Ỹ (o1),
(b) outliers with respect to spreads of Ỹ (o2), and (c) outliers with respect to both the centres
and the spreads (o3). To examine the sensitivity, we created from each above stated dataset,
three new sets where each new set contained one outlier. The outliers in the datasets are
specified in Table 2 by their serial numbers i, means yi, left spreads υi and right spreads υi.
Their original values are written in normal text while the changed ones are in bold.

Table 2. Outliers of type o1 (columns 3–5), o2 (columns 6 - 8) and o3 (columns 9–11) in datasets
(column 1) are identified by their serial numbers i (column 2). Original values of means mỸ , right
spreads αỸ and left spreads βỸ of the observations Ỹ are in normal text and the changed values are
in bold.

o1 o2 o3

Dataset i yi υi υi yi υi υi yi υi υi

SFN-1 3 1 1.8 1.8 8 35 35 1 35 35
SFN-2 4 4 0.4 0.4 2 1.6 1.6 4 1.6 1.6

NFN-1 7 170 12 12 70.9 65 77 170 65 77
NFN-2 6 3 1.5 1.7 22 10 0.01 3 10 0.01
NFN-3 1 9.5 0.17 0.4 2.5 3 4 9.5 3 4

Total errors of acquired fuzzy regression models on the modified datasets with sym-
metric and non-symmetric fuzzy observations are summarized in Tables 3 and 4, respec-
tively. The results are organized with respect to fuzzy regression methods (columns) and
datasets (rows). Settings of adjustable parameters are given under method abbreviations.
Asterisk marked results point to the situation when outliers were correctly recognized by
OPRL (Table 3).
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Table 3. Total errors of the possibilistic linear regression (PLR), the PLR combined with the omission approach (OPRL), the
multi-objective fuzzy linear regression (MOFLR), the fuzzy least squares (FLS), the fuzzy least absolute linear regression
(FLAR), the robust fuzzy regression (RFR) analysis, and the Boscovich fuzzy regression line (BFRL). Method tested on
datasets with symmetric fuzzy numbers SFN-1 and SFN-2 affected by outliers of type o1, o2 and o3 (first column). Settings
of adjustable parameters h and ω are stated under method abbreviations. Asterisk indicates correctly recognized outliers
by OPRL.

PLR OPRL MOFLR FLS FLAR RFR BFRL

h = 0 h = 0.5 h = 0 h = 0.5 ω = 0.1 ω = 0.5 ω = 0.99

SFN-1-o1 35.99 56.88 35.99 23.03 * 220.58 39.57 22.50 15.74 14.17 - 14.59
SFN-2-o1 7.58 12.70 4.33 * 6.29 * 73.74 12.29 5.82 3.76 3.01 3.76 3.49

SFN-1-o2 131.05 131.05 42.03 * 44.30 * 836.00 132.99 79.48 52.97 41.08 - 53.02
SFN-2-o2 8.21 10.17 - 5.62 * 96.52 15.44 6.51 3.90 3.82 4.60 3.97

SFN-1-o3 132.57 132.38 42.56 * 45.06 * 836.13 145.87 81.79 54.64 42.06 - 54.61
SFN-2-o3 10.70 15.72 5.23 * 6.96 * 96.54 16.10 7.69 4.80 3.93 5.64 4.60

Table 4. Total errors of the fuzzy least squares (FLS), the fuzzy least absolute linear regression (FLAR),
the robust fuzzy regression (RFR) analysis, and the Boscovich fuzzy regression line (BFRL) (first
row) tested on datasets with non-symmetric fuzzy numbers, NFN-1, NFN-2, and NFN-3, affected by
outliers of type o1, o2 and o3 (first column).

FLS FLAR RFR BFRL

NFN-1-o1 180.45 146.88 166.43 189.74
NFN-2-o1 19.23 15.34 20.14 19.14
NFN-3-o1 5.30 2.29 5.32 5.03

NFN-1-o2 207.69 183.84 192.53 214.43
NFN-2-o2 15.74 14.89 17.04 16.54
NFN-3-o2 5.86 4.94 6.57 6.15

NFN-1-o3 259.93 205.94 393.57 259.24
NFN-2-o3 25.98 19.47 28.62 25.64
NFN-3-o3 11.63 5.58 11.69 10.60

The obtained parameter estimates by PRL and OPRL on datasets with symmetric fuzzy
numbers are summarized in Table 5. Estimates provided by MOFLR on the same datasets
are given in Table 6. Settings of adjustable parameters h and ω are stated under method
abbreviations. The estimates of model parameters generated by FLS, FLAR, RFR and BFRL
on datasets with symmetric and non-symmetric fuzzy observations are summarized in
Tables 7 and 8, respectively.

We implemented all the fuzzy regression methods in MATLAB R2016a. We used
default setting of optimization functions which were used within the calculations. It means
that interior point methods were utilized to solve both linear and quadratic
programming problems.
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Table 5. Parameters of fuzzy regression models Ã0 and Ã1 estimated by the possibilistic linear regression (PLR) and the
PLR combined with the omission approach (OPRL) on datasets (first column) with symmetric fuzzy observations. Settings
of the adjustable parameter h are stated in the second line.

PLR OPRL

h = 0 h = 0.5 h = 0 h = 0.5
Ã0 Ã1 Ã0 Ã1 Ã0 Ã1 Ã0 Ã1

SFN-1 (3.85, 3.85, 3.85)T (2.10, 0.00, 0.00)T (4.15, 5.57, 5.57)T (1.97, 0.00, 0.00)T (3.85, 3.85, 3.85)T (2.10, 0.00, 0.00)T (4.15, 5.57, 5.57)T (1.97, 0.00, 0.00)T
SFN-2 (1.28, 0.83, 0.83)T (0.13, 0.00, 0.00)T (1.39, 1.23, 1.23)T (0.11, 0.00, 0.00)T (1.03, 0.63, 0.63)T (0.14, 0.01, 0.01)T (0.94, 0.98, 0.98)T (0.15, 0.00, 0.00)T

SFN-1-o1 (1.68, 6.02, 6.02)T (1.51, 0.59, 0.59)T (2.27, 9.32, 9.32)T (1.33, 1.27, 1.27)T (1.68, 6.02, 6.02)T (1.51, 0.59, 0.59)T (4.15, 5.57, 5.57)T (1.20, 0.00, 0.00)T
SFN-2-o1 (2.85, 1.25, 1.25)T (0.03, 0.00, 0.00)T (3.05, 2.00, 2.00)T (0.02, 0.00, 0.00)T (1.29, 0.82, 0.82)T (0.13, 0.00, 0.00)T (1.44, 1.12, 1.12)T (0.11, 0.00, 0.00)T

SFN-1-o2 (5.53, 26.47, 26.47)T (1.32, 2.84, 2.84)T (5.52, 25.25, 25.25)T (1.33, 3.25, 3.25)T (3.85, 3.85, 3.85)T (2.10, 0.00, 0.00)T (4.15, 5.57, 5.57)T (1.98, 0.00, 0.00)T
SFN-2-o2 (0.53, 1.60, 1.60)T (0.16, 0.00, 0.00)T (1.09, 1.83, 1.83)T (0.11, 0.00, 0.00)T - - (1.44, 1.12, 1.12)T (0.11, 0.00, 0.00)T

SFN-1-o3 (6.68, 26.19, 26.19)T (−1.89, 2.94, 2.94)T (4.13, 24.07, 24.07)T (−1.04, 3.64, 3.64)T (3.85, 3.85, 3.85)T (2.10, 0.00, 0.00)T (4.15, 5.57, 5.57)T (1.97, 0.00, 0.00)T
SFN-2-o3 (4.01, 1.77, 1.77)T (−0.02, 0.00, 0.00)T (3.63, 2.52, 2.52)T (−0.01, 0.00, 0.00)T (1.29, 0.82, 0.82)T (0.13, 0.00, 0.00)T (1.44, 1.12, 1.12)T (0.11, 0.00, 0.00)T

Table 6. Parameters of fuzzy regression models Ã0 and Ã1 estimated by the multi-objective fuzzy linear regression (MOFLR)
on datasets (first column) with symmetric fuzzy observations. Settings of the adjustable parameter ω are stated in the
second line. Negative spreads are in bold.

MOFLR

ω = 0.1 ω = 0.5 ω = 0.99
Ã0 Ã1 Ã0 Ã1 Ã0 Ã1

SFN-1 (4.95, 36.80, 36.80)T (1.71, 3.20, 3.20)T (4.95, 7.36, 7.36)T (1.71, 0.64, 0.64)T (4.95, 1.84, 1.84)T (1.71, 0.16, 0.16)T
SFN-2 (1.38, 2.95, 2.95)T (0.12, 0.50, 0.50)T (1.38, 0.59, 0.59)T (0.12, 0.10, 0.10)T (1.37, 0.30, 0.30)T (0.12, 0.05, 0.05)T

SFN-1-o1 (3.25, 36.80, 36.80)T (1.71, 3.20, 3.20)T (3.25, 7.36, 7.36)T (1.71, 0.64, 0.64)T (3.25, 3.72, 3.72)T (1.71, 0.32, 0.32)T
SFN-2-o1 (2.38, 2.95, 2.95)T (0.06, 0.50, 0.50)T (2.38, 0.59, 0.59)T (0.06, 0.10, 0.10)T (2.38, 0.30, 0.30)T (0.07, 0.05, 0.05)T

SFN-1-o2 (4.95, 166.40, 166.40)T (1.71, 3.20, 3.20)T (4.95, 33.28, 33.28)T (1.71, 0.64, 0.64)T (4.94, 16.81, 16.81)T (1.71, 0.32, 0.32)T
SFN-2-o2 (1.38, 14.95, 14.95)T (0.12,−0.17,−0.17)T (1.38, 2.99, 2.99)T (0.12,−0.03,−0.03)T (1.35, 1.51, 1.51)T (0.12,−0.02,−0.02)T

SFN-1-o3 (3.25, 166.40, 166.40)T (1.71, 3.20, 3.20)T (3.25, 33.28, 33.28)T (1.71, 0.64, 0.64)T (3.26, 16.81, 16.81)T (1.71, 0.32, 0.32)T
SFN-2-o3 (2.38, 14.95, 14.95)T (0.06,−0.17,−0.17)T (2.38, 2.99, 2.99)T (0.06,−0.03,−0.03)T (2.38, 1.51, 1.51)T (0.07,−0.02,−0.02)T

Table 7. Parameters of fuzzy regression models Ã0, Ã1, a, b, g, d, h and a1 estimated by the fuzzy least squares (FLS), the
fuzzy least absolute linear regression (FLAR), the robust fuzzy regression (RFR) analysis, and the Boscovich fuzzy regression
line (BFRL) on datasets (first column) with symmetric fuzzy observations. Negative spreads are in bold.

FLS FLAR RFR BFRL
Ã0 Ã1 Ã0 Ã1 aT b g d h Ã0 a1

SFN-1 (4.95, 1.84, 1.84)T (1.71, 0.16, 0.16)T (5.61, 1.80, 1.80)T (1.48, 0.20, 0.20)T - - - - - (5.70, 2.32, 2.32)T 1.46
SFN-2 (1.38, 1.48, 1.48)T (0.12, 0.03, 0.03)T (1.41, 0.10, 0.10)T (0.12, 0.03, 0.03)T

[
0.81 0.16

]
0.18 0.18 −0.03 −0.02 (1.20, 0.49, 0.49)T 0.13

SFN-1-o1 (3.25, 1.84, 1.84)T (1.71, 0.16, 0.16)T (4.14, 1.80, 1.80)T (1.77, 0.20, 0.20)T - - - - - (2.44, 2.32, 2.32)T 1.98
SFN-2-o1 (2.38, 0.15, 0.15)T (0.06, 0.03, 0.03)T (2.00, 0.10, 0.10)T (0.08, 0.03, 0.03)T

[
2.37 0.06

]
0.39 0.39 −0.77 −0.77 (1.90, 0.49, 0.49)T 0.10

SFN-1-o2 (4.95, 8.32, 8.32)T (1.71, 0.16, 0.16)T (5.60, 1.80, 1.80)T (1.48, 0.20, 0.20)T - - - - - (5.70, 8.80, 8.80)T 1.46
SFN-2-o2 (1.38, 0.75, 0.75)T (0.12,−0.01,−0.01)T (1.42, 0.21, 0.21)T (0.12, 0.02, 0.02)T

[
1.57 0.10

]
0.18 0.19 0.14 0.12 (1.20, 0.64, 0.64)T 0.13

SFN-1-o3 (3.25, 8.32, 8.32)T (1.71, 0.16, 0.16)T (4.05, 1.80, 1.80)T (1.79, 0.20, 0.20)T - - - - - (2.44, 8.80, 8.80)T 1.98
SFN-2-o3 (2.38, 0.75, 0.75)T (0.06,−0.01,−0.01)T (2.00, 0.21, 0.21)T (0.08, 0.02, 0.02)T

[
2.78 0.03

]
0.18 0.18 0.03 0.03 (1.90, 0.64, 0.64)T 0.10
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Table 8. Parameters of fuzzy regression models Ã0, Ã1, a, b, g, d, h and a1 estimated by the fuzzy least squares (FLS), the
fuzzy least absolute linear regression (FLAR), the robust fuzzy regression (RFR) analysis, and the Boscovich fuzzy regression
line (BFRL) on datasets (first column) with non-symmetric fuzzy observations. Negative spreads are in bold.

FLS FLAR RFR BFRL
Ã0 Ã1 Ã0 Ã1 aT b g d h Ã0 a1

NFN-1 (24.47, 4.85, 4.46)T (34.05, 4.95, 5.80)T (25.46, 4.68, 4.82)T (32.90, 4.90, 5.45)T [21.66 35.16] 0.16 0.17 0.67 0.39 (27.07, 12.28, 13.16)T 32.32
NFN-2 (12.93, 1.29, 1.70)T (0.54, 0.04, 0.01)T (12.86, 1.30, 1.58)T (0.57, 0.02, 0.02)T [12.65 0.55] 0.09 0.09 0.13 0.13 (12.93, 1.63, 1.79)T 0.54
NFN-3 (1.31, 0.16, 0.29)T (0.13, 0.01, 0.02)T (0.51, 0.15, 0.29)T (0.17, 0.01, 0.02)T [1.31 0.13] 0.06 0.15 0.08 0.10 (1.09, 0.26, 0.54)T 0.14

NFN-1-o1 (33.94, 4.85, 4.46)T (31.87, 4.95, 5.80)T (25.46, 4.70, 4.82)T (32.90, 4.94, 5.45)T [35.02 27.99] 0.16 0.18 0.17 0.02 (37.05, 12.28, 13.16)T 29.79
NFN-2-o1 (13.61, 1.29, 1.70)T (0.20, 0.04, 0.01)T (13.00, 1.30, 1.58)T (0.50, 0.02, 0.02)T [13.25 0.19] 0.10 0.12 0.06 0.02 (13.61, 1.63, 1.79)T 0.20
NFN-3-o1 (6.80, 0.16, 0.29)T (−0.22, 0.01, 0.02)T (0.51, 0.15, 0.29)T (0.17, 0.01, 0.02)T [8.62 −0.36] 0.01 0.05 0.18 0.26 (5.10, 0.26, 0.54)T −0.09

NFN-1-o2 (24.47, 9.92, 10.67)T (34.05, 3.78, 4.36)T (25.46, 4.55, 4.82)T (32.90, 5.03, 5.45)T [34.14 29.79] 0.15 0.17 0.73 0.49 (27.07, 15.59, 17.22)T 32.32
NFN-2-o2 (12.93, 0.99, 1.76)T (0.54, 0.19,−0.02)T (12.86, 0.95, 1.58)T (0.57, 0.13, 0.02)T [12.86 0.47] 0.10 0.10 0.07 0.11 (12.93, 2.69, 1.58)T 0.54
NFN-3-o2 (1.31, 2.38, 3.11)T (0.13,−0.13,−0.16)T (0.51, 0.20, 0.41)T (0.17, 0.01, 0.01)T [1.50 0.11] −0.01 0.11 0.68 0.71 (1.09, 0.61, 0.99)T 0.14

NFN-1-o3 (33.94, 9.92, 10.67)T (31.87, 3.78, 4.36)T (25.46, 4.71, 4.82)T (32.90, 4.97, 5.45)T [53.26 25.81] 0.19 0.23 3.44 3.25 (37.05, 15.59, 17.22)T 29.79
NFN-2-o3 (13.61, 0.99, 1.76)T (0.20, 0.19,−0.02)T (13.00, 0.95, 1.58)T (0.50, 0.13, 0.02)T [13.69 0.10] 0.21 0.11 −0.12 −0.03 (13.61, 2.69, 1.58)T 0.20
NFN-3-o3 (6.80, 2.38, 3.11)T (−0.22,−0.13,−0.16)T (0.51, 0.20, 0.41)T (0.17, 0.01, 0.01)T [8.44 −0.37] 0.34 0.42 −0.55 −0.44 (5.10, 0.61, 0.99)T −0.09

6. Discussion

We demonstrated in the numerical examples that the proposed Boscovich fuzzy
regression line (BFRL) is capable of approximating a fuzzy linear relationship between
the dependent y and one independent variable x, where the independent variable is
a real value number and the dependent variable is a triangular fuzzy number Ỹ. We
compared BFRL with several other fuzzy linear regression methods. Most of the reference
methods (PRL, OPRL, MOFLR, FLS and FLAR) approximate the relationship using the
fuzzy linear model (32), while RFR uses the model (33). Prediction spreads of both models
are dependent on x. BFRL estimates parameters of the fuzzy linear model (23). Prediction
spreads of this model are independent of x. This fact predetermines BFRL for applications
where the fuzziness of model predictions is independent of model inputs. An example of
such an application is approximation of the dependence of water level, in an uncovered
channel, on the opening of a floodgate. The level is measured using a perpendicularly
positioned scale.

We studied performance of the fuzzy regression methods on twenty datasets where
fifteen of them were affected by outliers. We measured prediction errors of acquired
fuzzy regression models using the total error (34). We found that, in most cases, BFRL
based models show lower total errors compared to PLR, OPRL, MOFLR and RFR models.
Total errors of BFRL and FLS models are comparable but, in comparison, FLAR models
always show lower errors (Tables 1, 3 and 4). Sensitivity of BFRL to all types of outliers is
comparable with other statistics-based methods (FLS, FLAR, RFR) but considerably lower
compared to PLR and MOFLR (Tables 3 and 4). If an outlier is correctly recognized by
OPRL, the total error of a model produced by OPRL on the outlier affected dataset, is
comparable with the total error of a BFRL based model (Table 3).

Unlike some reference methods, BFRL proved to be generally applicable and reli-
able. BFRL provides sensible parameter estimates for datasets with symmetric as well as
with non-symmetric triangular fuzzy numbers (as compared to PLR, OPRL and MOFLR).
BFRL is capable of operating on datasets with only two observations. For example, RFR
requires at least six observations. In contrast to OPRL (SFN-2-o2 for h = 0, Table 5), BFRL
always provided estimates of parameters (Tables 5 and 6). In contrast to RFR, BFRL always
returned the same estimates on the same dataset. The iterative manner of optimization in
RFR leads generally to various parameter estimates and various total errors. BFRL also
guaranteed non-negativity of parameter spreads (Tables 7 and 8). This basic requirement is
not guaranteed by MOFLR and FLS.

Fuzzy regression methods have mostly large computational complexity, which makes
them difficult to use especially with regard to their not easy implementation. For exam-
ple, PLR, OPRL, and FLAR result in a linear programming problem, MOFLR results in
a quadratic one. An analytical solution must be expressed in the case of FLS, and a cus-
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tomized iterative optimization method must be implemented in the case of RFR. Moreover,
time-complexity of these methods is exponential. A pleasant feature of the method BFRL
(Algorithm 1) is straightforward implementation and it has linear time-complexity.

7. Conclusions

Our approach is based on a fuzzy modification of the first statistical method for
data fitting based on criterion minimization. The generalization of the Boschovich line
to fuzzy regression does not allow an approximation of data by a model other than the
regression line. Other predecessors of the ordinary least squares method (Mayer’s method
of averages, Lambert’s line, and Laplace’s method, see [53]) could enhance the family of
fuzzy linear regression methods in future research. For example, a similarity between
Lambert’s ideas and robust non-parametric methods such as repeated median regression
and the Theil–Stein estimate [54] might provide future directions for further research.

The proposed Boscovich fuzzy regression line is a simple fuzzy regression method.
We demonstrated on the numerical examples that BFRL is a reliable method which provides
good parameter estimates including those estimated from datasets affected by outliers.
Prediction errors of BFRL models are smaller when compared to models proposed by the
possibilistic-based methods, and favourably comparable with prediction errors of models
produced by statistics-based methods. In comparison with the other methods, BFRL has
two major advantages: small time-complexity and straightforward implementation. More-
over, the method guarantees non-negativity of model parameter spreads. The robustness
and user-friendliness of the method makes it relevant in non-mathematical research fields.
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