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Abstract—The entire society, and particularly the 

transportation companies, have the interest to improve traffic 
safety. Besides more than 3,000 lost lives on the roads every day, 
there are significant financial consequences of road traffic 
accidents (RTAs). The purpose of this paper is to design an 
efficient model for providing information about driver propensity 
for RTAs based on assessing their personality traits. This is 
achieved by creating a fuzzy inference system (FIS) where inputs 
are the scores from the implemented psychological instruments 
and output is the number of RTAs experienced by a driver. To 
adjust the functioning of FIS to the empirical data, a Bee Colony 
Optimization (BCO) metaheuristic is applied. In this optimization 
procedure, we test three approaches for defining the variables of 
initial FIS and compare their performance. Simulation results 
show the differences between the considered approaches, and 
generally, very promising achievements of the proposed 
algorithm. The best-found FIS reached a 36% improvement of the 
objective function compared to the starting FIS. This FIS can be 
used, inter alia, as a decision-making tool in recruitment 
procedures for professional drivers to assess their propensity for 
RTAs, by that saving the lives of people and reducing the costs of 
the companies. 
 

Index Terms—Decision-making, fuzzy inference system, bee 
colony optimization, driver behavior, road traffic accidents 
 

I. INTRODUCTION 

OAD safety policies aim at defining certain measures to 
reduce the number and consequences of road traffic 

accidents (RTAs). Although the knowledge about RTAs is 
increasing, there are still many lives lost on the roads. This is 
evident even in the most developed countries. For example, 
more than 90 people die in the RTAs in the United States every 
day [1], or more than 70 in the European Union [2]. On the other 
hand, RTAs cause considerable financial losses, not just for the 
involved persons, but also for their employers, insurance 
companies, and the governments. Few studies measure the 
exact values. Based on the research carried out in Belgium, the 
unit cost per RTA amounts to €2 355 763, €850 033, €34 944 
and €2571 for fatal, serious, slight injury and property damage 
RTAs, respectively [3]. Calculating the costs of RTAs at the 
city level, García-Altés and Pérez [4] assessed that the total 
yearly costs in Barcelona were €367 million. 
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Particular attention in the prevention programs should be 
placed on heavy vehicles because they can cause more serious 
losses of lives and property in RTAs, as they can carry much 
more freight or passengers than light vehicles [5]. Work-related 
driving safety, or fleet safety, demands the management of fleet 
vehicles, and more importantly, the management of individuals 
who drive fleet vehicles [6]. A significant part of this 
management that shapes the future of a transportation company 
is related to a recruitment procedure for professional drivers. To 
develop the most efficient programs, decision-makers 
permanently need to analyze the causes of accidents and search 
for the models of RTAs prediction. In practice, the professional 
driving recruitment department puts attention to the driving 
skills of a candidate. However, the individual with good driving 
skills is not necessarily a safe driver. The reason lies in the fact 
that the personality and attitudes toward safety significantly 
contribute to this phenomenon. Therefore, in the recruitment 
procedure, there is a need to examine, besides physical abilities 
and competency, the propensity for RTAs based on 
psychological traits and safety attitudes. A possible model of 
this kind is proposed in [7] where driver behavior is modeled 
by the fuzzy inference system (FIS). We are preliminarily 
encouraged by the idea that the FIS proposed in [7] can be 
further improved in sense of achieving better solutions. This 
means that the results of FIS can be better adjusted to the 
collected empirical data and hence, its functioning would be 
more suitable to the realistic conditions. This is precisely one of 
the research gaps and motivation to carry out the research 
presented in this paper. An additional motivation is the fact that, 
by reviewing the literature, we did not find examples of 
modeling driver behavior by FIS where the subjective 
indicators are used; in all other cases, the applied indicators can 
be measured by certain technical devices. 

The considered FIS has four input variables and one output 
variable. The input variables represent the scores obtained from 
four psychological instruments and the output variable is the 
number of RTAs that a driver experienced. Therefore, this 
paper aims to perform an optimization of FIS that would be a 
decision-making tool for assessing the driver propensity for 
RTAs. The mentioned optimization procedure aims to fine-tune 
the parameters of FIS in a way to achieve the performance that 
corresponds as precisely as possible to the collected empirical 
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data. In other words, the goal is to minimize the objective 
function which measures a cumulative deviation between the 
results of FIS and data collected for each of the 305 drivers who 
participated in this research. 

To optimize the FIS performance, various techniques can be 
used. Since this is an extremely complex task of combinatorial 
optimization in sense of the enormous number of possible 
solutions, some of the approximate methods would be an 
expedient tool to use. In recent years, various swarm 
intelligence algorithms are developed. Here, we apply a Bee 
Colony Optimization (BCO) metaheuristic to optimize the FIS. 
By analyzing the literature from the field of optimization 
algorithms, it can be seen that BCO gives very competitive 
results comparing to some other techniques. In [8] the author 
applied BCO to optimize 50 numerical test functions and 
compared the results with the performance of a Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), 
Differential Evolution (DE), and Artificial Bee Colony (ABC). 
The obtained results indicate that BCO mostly generates the 
same or better solutions. Marković [9] compared BCO with DE 
and PSO while solving the wavelength converters placement 
problem and demonstrated that BCO achieved not just high-
quality solution, but significantly outperforms the 
computational efficiency of other considered approaches. In 
[10], [11] it is shown that BCO gives better solutions than DE 
or heuristic algorithms Max-Profit and first-come-first-served 
(FCFS). The authors of [12] performed 41 numerical 
experiments showing that the BCO generated high-quality 
results that are very competitive with GA and Lagrangian 
relaxation concerning both solution quality and computational 
performance. The results of the mentioned studies motivated us 
to test the BCO approach in this paper, more specifically its 
improving version – BCOi that is for the first time applied in 
[13] for FIS parameters optimization. However, the research 
gap noticed here is that the algorithm proposed in [13] test also 
unwanted FIS structures by that impairing the execution 
performance. To solve this problem, in this paper we propose a 
new strategy within BCO related to the selection of points to be 
tested during one iteration of algorithm execution. This results 
in a dynamic tuning of possible domains of tested variables in 
each change, which leads the artificial bees to find possibly 
better solutions more efficiently. 

The procedure of FIS performance optimization implies 
setting an initial solution. Many authors start the optimization 
from an intuitively or randomly generated FIS. This can be seen 
as another research gap. In this paper we consider three 
approaches to set an initial FIS in the process of optimization 
and compare their performance in a sense of found solution 
goodness. These approaches differ in the way how input 
variables are defined. 

Therefore, the main contributions of this paper include that: 
(1) Driver behavior is efficiently modeled by the FIS that 
calculates a driver propensity for RTAs based on assessing their 
personality traits. This can be used in many areas, such as 
educational procedures for improving traffic safety according 
to personality characteristics of the driver, or as a decision-
making tool in recruitment procedures for professional drivers; 

(2) A new strategy for determining the domains of search within 
BCO metaheuristic is devised in the case of FIS performance 
optimization; (3) By testing three approaches, we contributed 
to solving the task of designing a proper initial solution in the 
optimization of FIS performance. 

A more concrete explanation of the stated contributions is 
given in Section 2, where the methodology of research is 
described together with the literature review from the 
considered fields. Calculations and simulation results are 
presented in Section 3. Finally, we conclude with a description 
of the benefits of the findings presented in this paper.  

II. METHODOLOGY AND RELATED WORK 

The methodology of research covers several areas. Firstly, 
the psychological instruments to assess the drivers’ personality 
traits were considered. These instruments were chosen in a way 
to describe as accurately as possible the driver propensity for 
RTAs. Further, a survey was carried out to collect data about 
drivers. The third methodological issue relates to the design of 
a FIS to be a starting point for the optimization procedure. 
Finally, the optimization of FIS is performed by the BCO 
metaheuristic. As a result of the optimization procedure, there 
is a FIS that represents a model for explaining driver behavior 
with minimal deviations from the empirical data. A research 
configuration is shown in Fig. 1. 

 

 
Fig. 1. Research configuration 
 

A. Preliminaries concerning driver behavior modeling 

There is a generally accepted pattern about the classification 
of RTAs causes. They can be classified into three general 
groups [14]: human factors, mechanical factors related to the 
vehicle, and environmental factors and road conditions. By 
reviewing the literature, human errors are recognized as the far 
most common influential factor causing more than 90% of 
RTAs [15]. The examples of the human factor influence in the 
occurrence of RTAs are numerous. One of the common terms 
used here is careless driving. It is a driving style below the 
expected by a responsible and careful driver. A list of unsafe 
driving maneuvers can be extensive: illegal lane changes, 
speeding, excessive honking, absence of turn signals, drowsy 
driving, etc. The offense that is even more serious is reckless 
driving. It represents an intentional or wanton disregard for the 



  

traffic safety rules such as aggressive driving, significant 
speeding, racing at public roads, tailgating, and many other 
risky actions that endanger the own or the lives of others. 

A common cause of RTAs is also distracted driving, 
especially in the population of young drivers [16]. This involves 
communication with the passengers, using a mobile phone or 
other devices, eating or drinking behind the wheel, grooming, 
or application of makeup. Further, operating a vehicle while 
impaired by alcohol or drugs is a serious offense that can lead 
to the occurrence of RTAs. By analyzing the police reports 
about 17,945 tested drivers in urban areas and 19,507 in rural 
areas, the authors of [17] concluded that the motorcyclists 
represent a category with the highest share of driving under the 
influence. 

It is proven that the drivers who do not respect the traffic rules 
in one segment, usually do not behave properly also in some 
other segment. For example, drivers in Serbia are forbidden to 
talk on the phone while driving, except when using a hands-free 
device. In [18] it is shown that the participants who violate this 
rule, are prone to drive under the influence of alcohol as well, 
especially the group of drivers who experienced more than three 
RTAs in their driving experience. This points to the conclusion 
that the human factor as a cause of RTAs and general driver 
behavior can be explained to a large extent by the corresponding 
psychological traits, as confirmed in [19]-[22]. 

To model driver behavior, in this paper, we use four 
psychological instruments, which were statistically proven to 
be good predictors of involvement in RTAs [23]. Further, the 
same instruments were combined with the fuzzy logic to form 
a model for assessing driver propensity for RTAs in [7]. The 
fuzzy logic is particularly convenient to be used in this kind of 
model because a measurement or assessment of psychological 
traits always contains a certain level of fuzziness and 
approximations even in the cases where the scores from 
psychological instruments are exactly expressed with crisp 
values. 

B. Collection of data 

To collect data, two types of questionnaires are used. The 
first utilizes four psychological instruments for assessing driver 
behavior and the second involves a demographic and driving 
survey. Four psychological instruments considered in this 
research are the Aggressive Driving Behavior Questionnaire 
(ADBQ), the Barratt Impulsiveness Scale (BIS-11), the 
Manchester Driver Attitude Questionnaire (DAQ), and the 
Questionnaire for Self-Assessment of Driving Ability. The 
demographic and driving survey completed by the participants 
provides a range of information; however, for this paper, the 
main purpose is to obtain information about the number of 
RTAs in which each participant was involved. 

The final database that is used for the design of FIS and 
further for its optimization contains data on the score each 
participant obtained for each of the psychological instruments 
and the number of RTAs per participant. The scores from 
psychological instruments are considered as input variables of 
FIS and the number of RTAs as output. 

The ADBQ was created by Mouloua, Brill, and Shirkey [24]. 

Their idea was to design an instrument with good predictive 
power considering aggressive situations that are typical in 
driving. The instrument contains 20 questions. The participants 
were asked to assess the likelihood of manifestation of 
aggressive driving using a 6-point Likert scale. Results were 
given in the range of 1 = never to 6 = almost always. Based on 
the answers, a score from the ADBQ could range from 20x1=20 
to 20x6=120. 

The second implemented psychological instrument is the 
BIS-11. This instrument is used for the assessment of 
impulsivity while driving. A version of BIS-11 designed by 
Patton, Stanford, and Barratt [25] is used. This instrument 
consists of 30 questions and the score can vary from 30 to 120. 

The third psychological instrument relates to the Manchester 
DAQ. The DAQ is a questionnaire for the assessment of 
attitudes toward risk propensity while driving, constructed by 
Parker, Lajunen, and Stradling [26]. The questionnaire consists 
of 20 questions and the score can be in the interval from 20 to 
100 points. 

The fourth applied psychological instrument is the 
Questionnaire for Self-assessment of Driving Ability. 
Tronsmoen [27] devised this questionnaire. It consists of a set 
of statements about how drivers react in certain traffic 
situations. Based on the responses, it is possible to obtain 
information about participants’ self-perception as a driver. 
There are 22 questions and the scores from this instrument can 
range from 22 to 88 points. 

The output variable relates to the number of RTAs 
experienced by subjects. In this sample, participants reported 
the number of RTAs from 0 to 8; therefore, this variable is 
accordingly defined in this range. 

Before the interview, each of the 305 participants in this 
research was informed about the key elements of the 
questionnaires. Besides, they were asked to voluntarily and 
honestly participate in interviewing by explaining the 
anonymous nature of the interview and that the collected 
answers will be presented only at an aggregate level. 

A convenience sampling technique (a non-probability 
technique), was implemented. This technique implies a sample 
that is an available source of data for researchers. In this survey, 
there was a condition for the participants that they should 
regularly, at least once a month, drive at the State Road 22 in 
Serbia, commonly known as Ibar Highway. This road section 
represents an IB-class road, connecting the capital – Belgrade 
with Western Serbia. The authors chose this road section 
because this is one of the roads with the highest number of 
RTAs in the country. 

In the procedure of data collection, two examination 
strategies were implemented, one for the drivers of privately 
owned vehicles, and another for professional drivers. The 
participating professional drivers completed paper-based 
questionnaires, while drivers of privately owned vehicles 
completed web-based questionnaires. The online response rate 
was 65.6%. To collect data on professional drivers, 12 bus 
companies and trucking companies from Serbia were contacted. 
The authors of this paper had some sort of previous 
collaboration with these companies, which might be an 



  

explanation for a very high response rate. Namely, all 100 
contacted bus drivers, and 102 truck drivers filled in the 
questionnaires. 

C. Design of FIS for modeling driver behavior 

The fuzzy logic was proposed by Zadeh [28] offering the 
following basic definition: A fuzzy set A in X is characterized 
by a Membership Function (MF) µ(x) which associates with 
each point in X a real number in the interval [0, 1], with the 
value of µ(x) at x representing the “grade of membership” of x 
in A. 

In the literature, there are several examples of applying fuzzy 
logic to test the psychophysical characteristics of drivers. The 
authors of [29] designed a FIS to determine driving styles in 
terms of vehicle-human interactions. The acceleration, velocity, 
and distance between the preceding and host car were 
considered as parameters that affect the driving style. The same 
parameters were used in [30], while in [31] sudden acceleration 
and sudden turns are considered. In [32] authors implemented 
fuzzy logic to model driving behavior. However, their 
conclusions about driving style were based on the vehicle speed 
and acceleration measurement. 

The authors of [33] created a FIS to predict the drowsiness 
level of the driver based on physiological reactions such as eye 
closure, gaze vector, head motion. A fuzzy system to warn the 
driver of drowsiness based on the captured facial images of 
drivers was proposed in [34]. The authors of [35] and [36] 
applied the fuzzy sets to compute the distraction of the drivers 
and proposed a corresponding road safety system.  

The fuzzy logic was used also to form an accident prediction 
model based on input parameters that relate to the road 
infrastructure, such as road width, pavement conditions, 
average hourly traffic volume, speed, the number of access 
points to the highway, and traffic signs conditions [37], [38]. 
Selvi [39] establishes a similar prediction model based on fuzzy 
logic through factors such as traffic volume, rain status, and the 
geometry of the roads. A systematic review of the mentioned 
studies that use fuzzy logic for testing driver behavior and 
accident prediction is given in Table I. 

The main difference between the previously mentioned 
studies and this paper is in the type of indicators used for the 
assessment of driver behavior. In the mentioned studies, the 
applied indicators can be explicitly measured by certain 
technical devices. Conversely, we use subjective indicators 
such as the assessment of personality and attitudes related to 
driver behavior. For this aim, we apply four psychological 
instruments. Based on the achieved scores from these 
instruments, we design the input variables of the proposed FIS. 
A result of the FIS represents the quantification of driver 
propensity for RTAs. 

The final aim is to propose a FIS that acts as similar as 
possible to the pattern formed by real data. Finding this kind of 
FIS represents an optimization procedure that is the main 
subject of this paper. Additionally, the aim is to examine how 
the starting FIS in the optimization procedure affects the 
goodness of the found solution at the end of FIS optimization. 

 

TABLE I 
THE USE OF FUZZY LOGIC FOR TESTING DRIVER BEHAVIOR AND ACCIDENT 

PREDICTION IN THE RELEVANT LITERATURE 
Author(s) and 

Reference 
Year of 

publication 
Used indicators 

Boyraz, Acar, and 
Kerr [33] 

2008 Eye closure, gaze vector, head 
motion 

Wu and Chen [34] 2008 Facial images 
Selvi [39] 2009 Traffic volume, rain status, and 

the geometry of the roads 
Saleh, Aljaafreh, and 
Albdour [29] 

2013 Acceleration, velocity, and 
distance between the preceding 
and host car 

Fazio, Santamaria, De 
Rango, Tropea, and 
Serianni [32] 

2016 Vehicle speed and acceleration 

Wahaballa, Diab, 
Gaber, and Othman 
[37] 

2017 Road width, pavement 
conditions, average hourly 
traffic volume, speed, the 
number of access points to the 
highway, and traffic signs 
conditions 

Gaber, Wahaballa, 
Othman, and Diab 
[38] 

2017 Annual average volume per lane, 
road width, speed, number of 
minor access points, road 
surface condition, and the 
percentile of sign per km of road 

Riaz, Khadim, Rauf, 
Ahmad, Jabbar, and 
Chaudhry [35] 

2018 Distance, speed, and distraction 
calculated by facial angle, eye 
movement, position. 

Ou, Ouali, Bedawi, 
and Karray [36] 

2018 Head pose estimation and the 
distraction recognition 

Čubranić-Dobrodolac, 
Švadlenka, Čićević, 
and Dobrodolac [7] 

2020 Personality traits and attitudes 

Yuksel and Atmaca 
[31] 

2020 Sudden acceleration and sudden 
turn 

Bennajeh and Ben 
Said [30] 

2021 Acceleration, velocity, and 
distance between the preceding 
and host car 

Our study 2021 Personality traits and attitudes 

 
There are three different approaches to forming the 

initial FIS proposed and tested. Let us assume that each input 
variable j is defined by 𝑁  MFs and 𝑁  is an odd number starting 
from 3. Here we analyze only the triangular and trapezoidal 
MFs in describing variables and we apply different approaches 
just on input variables.  
 The first approach is based on the symmetrical principle, 
where MFs are distributed along the entire interval of possible 
solutions, from 𝐼  to 𝐼 , and the axis of symmetry is in the 
middle of this interval. This method implies the use of 
triangular MFs and a point with the maximum degree for the 

central MF (MF number , where MF number 1 is at the 

beginning of variable interval) is based on the axis of symmetry. 
A point with the maximum degree for the MF number 1 of 
variable j is located at the minimum value of the variable 
interval (𝐼 ). On the other hand, a point with the maximum 
degree for the MF number 𝑁  of variable j is located at the 

maximum value of the variable interval (𝐼 ). The positions 
of points with the maximum degree for all MFs can be 
expressed by Eq. (1): 
 

𝑃 𝑀𝐹 = 𝐼 + (𝑖 − 1), (1) 

 



  

where 𝑃 𝑀𝐹  is the position of a point with the maximum 
degree for MF number i, for variable j. 

The second method is based on the asymmetric 
principle taking the mean value from the empirical sample of 
considered variable j (𝑋 ) as a point with the maximum degree 
for the central MF. Therefore, the positions of points with the 
maximum degree for all MFs can be determined by Eq. (2): 
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The asymmetric principle is also applied in the third 

method where the mean and extreme values from the empirical 
sample are taken into account when defining the points with the 

maximum degrees for MFs number 1,  and 𝑁 . Therefore, 

in this method, the positions of points with the maximum degree 
for all MFs can be determined by Eq. (3), where 𝑋  is the 

minimum value from the sample for variable j, and 𝑋  is the 
maximum value from the sample for variable j:  
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 After the variables of FIS are defined, the next step is to 
determine the fuzzy rules. In all three previously described 
methods, we use a well-known approach proposed by Wang 
and Mendel [40]. This method is widely used in the literature 
[7], [41]-[43]. There are also examples of the combination of 
the Wang-Mendel method and some of the optimization 
algorithms, as is the case in this paper. For example, Yanar and 
Akyürek [44] combined the Wang-Mendel method with the 
simulated annealing metaheuristic. 
 Finally, when all parameters of FIS are defined, its 
performance should be tested by the optimization algorithm 
which will be further explained in Section 2.3. In this process, 
we use the objective function expressed by Eq. (4): 
 

Minimize   𝐶𝐷 = |𝑦 − 𝐹𝐼𝑆(𝑧)| 

  

(4) 

where CD is the cumulative deviation between the empirical 
data and results of created FIS structures during the 
optimization procedure, PA is the number of participants in the 
sample, 𝑦  is the number of RTAs that participant z experienced 
in the driving history and FIS(z) is the result of FIS for 
participant z. Therefore, CD is a measure that describes how 
well a FIS describes the empirical data.  

D. Implementation of BCO based algorithm 

There are various types of bio-inspired methods, which 
represent powerful optimization algorithms for solving the task 
of FIS optimization [45]. When it comes to the use of 
metaheuristic algorithms based on artificial bees, there are 
several cases in the literature where the authors performed the 
optimization of FIS by this approach. Some authors use the 
approach proposed by Karaboga [46] named Artificial Bee 
Colony (ABC) optimization. The examples are the following. 
In [47] the authors optimized the load frequency control in the 
microgrid system. A methodology based on ABC to define 
Takagi–Sugeno fuzzy systems with enhanced performance 
from data is proposed in [48]. Konar and Bagis [49] applied 
different population-based approaches for the fuzzy modeling 
of the nonlinear systems and fuzzy rules optimization. They 
compared the performance of ABC, Particle Swarm 
Optimization (PSO), and Differential Evolution Algorithm 
(DEA). 

On the other hand, some authors used the BCO approach for 
the optimization of FIS. BCO metaheuristic was proposed by 
Lučić and Teodorović [50]. Caraveo, Valdez, and Castillo [51] 
applied the BCO to optimize the FIS used as a water tank 
controller, which aims at controlling the water level in a tank, 
as well as to control the trajectory of the unicycle mobile robot. 
The same benchmark control problems were solved by 
Amador-Angulo and Castillo [52] who used BCO and type-2 
fuzzy logic for tuning fuzzy controllers. In [53] the authors 
proposed an improvement of BCO by dynamic adaptation of 
the algorithm’s parameters. In [54] a comparison is made 
among Particle swarm optimization (PSO), BCO, and the Bat 
Algorithm (BA), while the authors of [55] compared the 
performance of BCO, Differential Evolution (DE), and 
Harmony Search (HS) algorithms in the optimization of fuzzy 
controllers. Nikolić, Šelmić, Macura, and Ćalić [13] recently 
proposed the BCO based algorithm for fuzzy membership 
functions tuning in the case of solving the problem of freight 
train energy consumption estimation. Further, a fuzzy-based 
ABC algorithm is employed to solve the construction site layout 
problem by satisfying the multi-objective function [56]. 
Mijović, Kalić, and Kuljanin [57] applied two meta-heuristics 
for FIS fine-tuning, where the BCO approach outperformed the 
PSO algorithm in terms of achieved solutions. A systematic 
review of the studies that use metaheuristic algorithms based on 
artificial bees to optimize FIS performance is given in Table II. 

There are two types of BCO algorithm: constructive – the 
BCOc and improving – the BCOi. In the BCOc, there is no 
starting solution and it is generated gradually [10]. Conversely, 
the BCOi begins from a complete solution [9]. The BCOi type 
of algorithm to optimize the parameters of the fuzzy 
membership function is proposed for the first time in the paper 
[13]. Here, we use the BCOi type of algorithm as well; however, 
the main innovation of our algorithm is a newly devised 
strategy for the selection of points to be tested. Namely, in [13], 
the artificial bees choose the point that characterizes MFs to be 
modified at a certain step randomly. Conversely, in the 
algorithm proposed in this paper, we use a determined schedule 
of changing the points that define MFs during one iteration. 



  

Considering one variable of FIS, in the proposed algorithm we 
start by changing MFs that are defined at the lowest values at 
the x-axis, and we continue to the highest values. The 
consequence of the proposed schedule is a more efficient 
manner of setting the constraints concerning the domains, i.e. 
possible values that the examined point can take. In the 
following text, we will give a more detailed explanation. 

 
TABLE II 

THE USE OF ALGORITHMS BASED ON ARTIFICIAL BEES TO OPTIMIZE FUZZY 

INFERENCE SYSTEM PERFORMANCE 

Author(s) and 
Reference 

Year of 
publication 

Considered problem 
Type of 
algorithm 
based on bees 

Chaiyatham, 
Ngamroo, 
Pothiya, and 
Vachirasricirikul 
[47] 

2009 Load frequency 
control 

ABC 

Habbi, 
Boudouaoui, 
Karaboga, and 
Ozturk [48] 

2015 Box–Jenkins gas 
furnace problem, 
nonlinear dynamic 
plant and nonlinear 
static system, and 
nonlinear plant 
tracking control 
problem 

ABC 

Caraveo, 
Valdez, and 
Castillo [51] 

2016 Water tank controller, 
and trajectory of the 
unicycle mobile robot 

BCO 

Konar and Bagis 
[49] 

2016  Antenna modeling 
problem and Box-
Jenkins gas furnace 
problem 

ABC 

Amador-
Angulo, 
Mendoza, 
Castro, 
Rodríguez-Díaz, 
Melin, and 
Castillo [53] 

2016 Trajectory of 
autonomous mobile 
robot 

BCO 

Olivas, Amador-
Angulo, Perez, 
Caraveo, 
Valdez, and 
Castillo [54] 

2017 Trajectory of 
autonomous mobile 
robot 

BCO 

Amador-Angulo 
and Castillo [52] 

2018 Water tank controller, 
and trajectory of the 
unicycle mobile robot 

BCO 

Castillo, Valdez, 
Soria, Amador-
Angulo, Ochoa, 
and Peraza [55] 

2019 Water tank, and the 
inverted pendulum 

BCO 

Nikolić, Šelmić, 
Macura, and 
Ćalić [13] 

2020 Train energy 
consumption 
estimation 

BCO 

Nguyen [56] 2021 Construction site 
layout planning 

ABC 

Mijović, Kalić, 
and Kuljanin 
[57] 

2021 Determining the 
airline market share 

BCO 

Our study 2021 Modeling driver 
behavior 

BCO 

 
A common feature of the previous research in the field is that 

an initial FIS in the optimization procedure was designed by an 
intuitive approach. One of the aims of this paper is exactly to 
demonstrate that the initial solution can affect the performance 
of an optimization procedure considering the goodness of the 
found solution. This is proven by comparing the values of 

objective function after a certain number of iterations. 
The general principles of the BCO metaheuristic and its 

comprehensive description can be found in [58]. The main 
characteristic of BCO is that the artificial bees collectively 
search for the best solution and each bee is independent in the 
searching procedure. However, in certain moments, they 
compare their obtained solutions and a bee decides to continue 
its search following some other bee or be loyal to its solution. 
The main idea behind this is that certain bees should follow the 
bees with better solutions in order to find the best possible 
solution. When a bee searches for a solution, this part of the 
algorithm is called forward pass, while flying back to the hive 
and comparison of achieved solutions is called backward pass. 
All decisions are made with an adequate probability level, 
having in mind the goodness of current achieved solutions. The 
purpose of introducing a probability in the bees’ decision-
making is to prevent being trapped in local optimums. 

Each BCO algorithm is characterized by the following 
attributes [58]: 

B – the number of bees involved in the search procedure, 
IT – the number of iterations, 
NP – the number of forward and backward passes in one 

iteration, 
NC – the number of solution changes in one forward pass, 
S – the best-known solution. 
When it comes to the implementation of the BCO algorithm 

for FIS optimization, we introduce the following concept 
explained through five steps. 

 
Step 1: Definition of parameters - MF points to be changed 

Let us assume that the vertices of a triangular MF are marked 
with A, B, C, where their positions are defined by values of x 
and µ(x). The vertices A, B, C are distributed along xi axis by 
ascending order, which means that the value x for the vertex A 
is the smallest, for B - middle, and for C - the highest. In the 
BCO algorithm, each vertex of MF is considered as a parameter 
𝑃 (𝑐ℎ) (𝑓 = 1, 𝑁𝑃; 𝑐ℎ = 1, 𝑁𝐶) to be changed NC times in one 
forward pass. In the proposed BCO algorithm, for each 
approach for the design of MFs and each considered variable, 
for the MF number 1 we change just the parameter of MF that 
is characterized by the highest value of x. Conversely, for the 
MF number 𝑁  we make changes just for the parameter of MF 
that is characterized by the smallest value of x. For all other 
MFs of a variable, we change all three parameters of MF. 
Therefore, if a variable is described by five MFs, this variable 
would be described by 11 parameters. 
 
Step 2: Setting the procedure of fuzzy rules generation from 
numerical data 

After each change of a parameter, the fuzzy rules should be 
set to form a complete FIS. This is done using the method 
proposed by Wang and Mendel [40]. When a FIS is completely 
designed, the effects of each change should be tested on the 
empirical data by applying Eq. (4). 
Step 3: Changing the values of parameters – forward pass 

The concept of the BCO algorithm is graphically shown in 
Fig. 2. In this case, it is assumed that NC=2 which means that 



  

in a forward pass there will be two changes of the parameter. In 
the proposed BCO algorithm, each parameter 𝑃 (𝑐ℎ) is 
changed by the new value 𝑃 (𝑐ℎ) according to Eq. (5) and after 
each change and generation of new fuzzy rules, the 
performance of newly created FIS is evaluated by Eq (4). 

 
𝑃 (𝑐ℎ) =  𝑃 + 𝑃 − 𝑃 ∗ 𝑟𝑎𝑛𝑑 ,   (5) 

 
𝑃  is the minimal value of the parameter 𝑃 , 𝑃  is the 
maximum value of the parameter 𝑃  (𝑓 = 1, 𝑁𝑃), and 𝑟𝑎𝑛𝑑 ,  
is a random number in the interval from 0 to 1 which changes 
its value NP x NC times in each iteration (𝑐ℎ = 1, 𝑁𝐶). 

 
Fig. 2. The concept of the BCO algorithm for case B=4, NC=2. 
 
Step 4: New strategy for the constraints concerning the values 
of tested parameters 

When it comes to the way of choosing which 𝑃 (𝑐ℎ) to be 
changed in a forward pass, we come to the most important 
difference between the algorithms found in the literature and 
our one. As previously explained, unlike in the algorithm 
proposed in [13], where the artificial bees choose which point 
to modify during the iteration’s steps in a random manner, we 
use a determined schedule of changing the points which define 
MFs. As a consequence, a more efficient approach to finding 
better solutions is achieved. 

When testing a parameter 𝑃 (𝑐ℎ), the domain of possible 
values should be determined. For this purpose, to provide the 
overlapping of corresponding MFs and to maintain the required 
order of considered parameters at xi axis, there are certain 
constraints set. Here, the constraints in the case of variable x1 
with five MFs (VLA, LA, MA, HA, and VHA) will be 
illustrated (Fig. 3). The same principle of forming constraints is 
valid for other variables of FIS. 

To apply Eq. (5), we need to define the range where 𝑃 (𝑐ℎ) 
can take the values. Therefore, it is necessary to determine 
𝑃  and 𝑃 . The notation used in the constraints is 
specified in Fig. 3. The symbol 𝑅 is used for the parameter of 
MF that is the “right” bound of the MF which name is in the 
index of symbol 𝑅, and 𝐿 for the parameter that is “left” bound 
of considered MF. The positions at the x-axis where MF has the 
maximum degree (µ(x)=1) is marked with 𝑀 , for example 
𝑀  for MF named VLA. In the considered case, the 
parameters: 

𝑅 _  , 𝐿 _  , 𝑀 _  , 𝑅 _  , 𝐿 _  , 𝑀 _  , 
𝑅 _  , 𝐿 _  , 𝑀 _  , 𝑅 _  , 𝐿 _  denotes  
𝑃  , while 
𝑅 _  , 𝐿 _  , 𝑀 _  , 𝑅 _  , 𝐿 _  , 𝑀 _  , 
𝑅 _  , 𝐿 _  , 𝑀 _  , 𝑅 _  , 𝐿 _  represents 
𝑃 . 

In addition, the factor that emerges in the constraints is ODC, 
representing an overlapping and distance constant. The 
algorithm proposed in [13] enables the FIS structures with 
minimal overlapping of MFs, or these with the uncovered 
variable’s domain by MFs (Part a of Fig. 4), as well as the FIS 
structures with illogical membership functions (Part b of Fig. 
4). These authors calculate the output of unwanted FIS 
structures, but it is rejected later in the objective function by 
adding a penalty. Because it can be considered inefficient to 
perform the calculations that would later be abandoned without 
comparison with other solutions, we devised a new method for 
the selection of points to be tested during one iteration and set 
the ODC to design the appropriate FIS structures from the 
beginning of the algorithm, by this excluding a penalty constant 
that disturbs clear calculation of the objective function. 

 

𝑂𝐷𝐶 =  
𝑅𝐵 − 𝐿𝐵

𝑛
∗ 10% (6) 

 

 
Fig. 3. The notation used in the constraints 
 

(a) (b) 

(c) (d) 
Fig. 4. Illustration of different constraints concerning P_f (ch) domains: (a) 
uncovered domain of the variable – Figure adjusted from [13]; (b) illogical 
membership functions – Figure adjusted from [13]; (c) the minimum allowed 
overlapping in the proposed algorithm – ODC value; (d) the minimum allowed 
distance between two membership functions for the points with the maximum 
degree (µ(x)=1) in the proposed algorithm – ODC value 
 

In part (c) of Fig. 4, ODC denotes the minimum allowed 
overlapping, while the same value of ODC can be used as the 
minimum allowed distance between two membership functions 
for the points with the maximum degree (µ(x)=1), as shown in 



  

part (d) of Fig. 4. The value of ODC should be calculated for 
each variable of FIS, by the Eq. (6), where LB is the lower 
bound of the domain of the variable, RB is the upper bound of 
the domain of the variable, and 𝑛  is the number of MFs that 
exist in the variable. To calculate the ODC, we introduce Eq. 
(6).  

To calculate 𝑅  , 𝐿  , 𝑀  , 𝑅  , 𝐿  , 𝑀  , 𝑅  , 𝐿  
, 𝑀  , 𝑅  , 𝐿  when considering the input variable x1, the 
constraints are defined as follows: 

For VLA: 𝑅 _ = 𝑀 + 𝑂𝐷𝐶; 
 𝑅 _ = (𝑀 + 𝑀 )/2. 
  
For LA: 𝐿 _ = 𝐿𝐵; 
 𝐿 _ = 𝑅 − 𝑂𝐷𝐶; 𝐿 _ = 𝑀 − 𝑂𝐷𝐶; 
 𝐿 _ = min (𝐿 _  , 𝐿 _ ). 
 𝑀 _ = 𝐿𝐵 + 2 ∗ 𝑂𝐷𝐶; 𝑀 _ = 𝐿 + 𝑂𝐷𝐶; 
 𝑀 _ = max 𝑀 _  , 𝑀 _ ; 
 𝑀 _ = 𝑀 − 2 ∗ 𝑂𝐷𝐶; 𝑀 _ = 𝑅 − 𝑂𝐷𝐶; 
 𝑀 _ = min (𝑀 _  , 𝑀 _ ). 
 𝑅 _ = 𝑀 + 𝑂𝐷𝐶; 𝑅 _ = 𝐿 + 𝑂𝐷𝐶; 
 𝑅 _ = max(𝑅 _  , 𝑅 _ ); 
 𝑅 _ = (𝑀 + 𝑀 )/2. 
  
For MA: 𝐿 _ = (𝑀 + 𝑀 )/2; 
 𝐿 _ = 𝑅 − 𝑂𝐷𝐶; 𝐿 _ = 𝑀 − 𝑂𝐷𝐶; 
 𝐿 _ = min (𝐿 _  , 𝐿 _ ). 
 𝑀 _ = 𝑀 + 2 ∗ 𝑂𝐷𝐶; 𝑀 _ = 𝐿 + 𝑂𝐷𝐶; 
 𝑀 _ = max 𝑀 _  , 𝑀 _ ; 
 𝑀 _ = 𝑀 − 2 ∗ 𝑂𝐷𝐶; 𝑀 _ = 𝑅 − 𝑂𝐷𝐶; 
 𝑀 _ = min (𝑀 _  , 𝑀 _ ). 
 𝑅 _ = 𝑀 + 𝑂𝐷𝐶; 𝑅 _ = 𝐿 + 𝑂𝐷𝐶; 
 𝑅 _ = max(𝑅 _  , 𝑅 _ ); 
 𝑅 _ = (𝑀 + 𝑅𝐵)/2. 
  
For HA: 𝐿 _ = (𝑀 + 𝑀 )/2; 
 𝐿 _ = 𝑅 − 𝑂𝐷𝐶; 𝐿 _ = 𝑀 − 𝑂𝐷𝐶; 
 𝐿 _ = min (𝐿 _  , 𝐿 _ ). 
 𝑀 _ = 𝑀 + 2 ∗ 𝑂𝐷𝐶; 𝑀 _ = 𝐿 + 𝑂𝐷𝐶; 
 𝑀 _ = max 𝑀 _  , 𝑀 _ ; 
 𝑀 _ = 𝑅𝐵 − 2 ∗ 𝑂𝐷𝐶; 𝑀 _ = 𝑅 − 𝑂𝐷𝐶; 
 𝑀 _ = min (𝑀 _  , 𝑀 _ ). 
 𝑅 _ = 𝑀 + 𝑂𝐷𝐶; 𝑅 _ = 𝐿 + 𝑂𝐷𝐶; 
 𝑅 _ = max(𝑅 _  , 𝑅 _ ); 
 𝑅 _ = 𝑅𝐵. 
  
For VHA: 𝐿 _ = (𝑀 + 𝑀 )/2; 
 𝐿 _ = 𝑅 − 𝑂𝐷𝐶; 𝐿 _ = 𝑅𝐵 − 𝑂𝐷𝐶; 
 𝐿 _ = min (𝐿 _  , 𝐿 _ ). 

 
The concrete values in the set constraints are dynamically 

changing during the execution of the algorithm. This implies 
that each formed FIS in the testing procedure has its own 
constraints. This kind of dynamically changing constraints is 
possible only in the case of a determined schedule of changing 
the points 𝑃 (𝑐ℎ). 

 
Step 5: Comparison of achieved solutions – backward pass 

In Fig. 2, the first row represents a set of possible values that 
the first parameter can take. Although this is an extremely large 
range of possible values, it is a finite number denoted by the 
letter n. In Fig. 2, n has a different notation in each forward pass 
to demonstrate that different parameters can take other n 
possible values at different variable domains across xi axis. 
Therefore, a set of possible values that considered parameters 

can take is referenced as 𝑛 , where P in the index indicates 
that it is a possible value of a parameter and f gives the 
information about which of NP parameters is changing (f = 1, 
NP).  

In the first forward pass denoted by No.1, each bee takes one 
of 𝑛  values for the first parameter 𝑃 (1). Based on the 
selected value, a bee generates the new FIS and the value of its 
objective function is calculated. Then each bee takes some other 
of 𝑛  values for the same first parameter 𝑃 (2) and the new 
values of objective functions are calculated. Since the NC = 2, 
after two changes a bee should decide which of two values will 
take and bring to the hive for comparison with other bees. A 
decision about which change a bee should take is made by a 
certain probability level. For this purpose, we introduce the 
probability of choosing one of two values in this case (𝑃𝑅 ) 
which is calculated based on a well-known Logit model. Having 
in mind that the objective function relates to minimization, the 
calculation of 𝑃𝑅  is done as shown in Eq. (7) [59]. 
 

𝑃𝑅 =  
𝑒( )

∑ 𝑒( )
  (7) 

 
𝐶𝐷  is the value of the objective function for change number f. 
To make a selection decision, a number from the interval (0,1) 
is randomly generated. Based on the calculated probability 
value 𝑃𝑅  and the value of a randomly generated number, a bee 
decides which value of the parameter will adopt in the 
considered forward pass.  

A concept of bees’ solutions comparison is also based on 
probability. First, a bee should decide to be loyal or not to its 
obtained solution. This procedure can be done as explained in 
[8]. The quality of the solutions generated by bees is normalized 
as shown in Eq (8): 

 

𝑁 =  
𝐶𝐷 − 𝐶𝐷

𝐶𝐷 −  𝐶𝐷
  (8) 

 
where 𝑁  is a normalized value of objective function obtained 
by b-th bee, 𝐶𝐷  is the highest value of objective function 
found by all bees, 𝐶𝐷  is the value of objective function found 
by b-th bee and 𝐶𝐷  is the lowest value of objective function 
found by all bees. 
 A bee decides whether to remain loyal to its solution based 
on probability (𝑃𝑅𝐿 ) calculated as presented in Eq. (9): 
 

𝑃𝑅𝐿 = e ( ) (9) 

 
where 𝑁  is the maximum normalized value of the objective 
function considering all bees. 
 If the bee decides not to be loyal to its solution, it chooses 
which bee to follow. A probability that the bee that is not loyal 
will follow the b-th bee (𝑃𝑅𝐹 ) is expressed by Eq. (10) where 
L is a set of loyal bees. 
 

𝑃𝑅𝐹 =
𝑁

∑ 𝑁
 

  
(10) 

In the illustrated case in Fig. 2, Bees 1 and 3 remained loyal 



  

to their previous solutions, while Bees 2 and 4 abandoned their 
solutions and decided to continue their search following the 
solutions of Bee 1 and 3, respectively. 

A general procedure of the BCO algorithm implemented for 
FIS performance optimization is presented in Table III. In the 
proposed pseudocode, the used symbols are as previously 
defined (inputs: B, IT, NP, NC; output: S). A case when the 
proposed algorithm is performed ones, including IT iterations, 
will be called an experiment (E). It is welcome to repeat the 
experiment more times and to compare the results. In this paper, 
we defined the value of IT to be 20 and repeated the experiment 
10 times for each of the three different approaches (m) for 
defining MFs. To compare the proposed approaches, we 
calculated the mean values of 10 experiments. 

 
TABLE III 

PSEUDOCODE OF IMPLEMENTED BCO ALGORITHM FOR FIS OPTIMIZATION 
1. for m = 1 to 3 
2. Choose one of the three proposed approaches for the design of MF. 
3.  for e = 1 to E 
4.  for t = 1 to IT   
5.  for b = 1 to B  
6. Assign an initial solution to the bee b based on the chosen approach 

in Step 2. 
7.  for f = 1 to NP  
8.  for b = 1 to B  
9.  for ch = 1 to NC  
10. Evaluate the performed changes in the solution of the bee b. 

Chose one change considering the obtained values of the 
objective function. 

11.  for b = 1 to B  
12. Based on the values of the objective function for each bee, decide 

whether the bee b is loyal to its solution. If the bee b is not loyal, 
chose the bee to be followed by the bee b. 

13. Evaluate all solutions and find the best one S. 
14. Output the best solution for each iteration 
15. Output the best solution for each experiment. 

III. CALCULATIONS AND SIMULATION RESULTS 

The considered sample in this study included 305 drivers, 
comprising 103 drivers of privately owned vehicles, 100 bus 
drivers, and 102 truck drivers. The ratio between male and 
female respondents was 88/12 %. This relationship was 
expected due to the demanding nature of professional driving 
and the fact that generally, a large majority of drivers are male. 

The domains and descriptive statistics for the scores achieved 
by respondents are shown in Table IV. The following symbols 
are introduced: variable x1 is the score from the ADBQ, x2 from 
the BIS-11, x3 from the DAQ, x4 from the Questionnaire for 
Self-Assessment of Driving Ability and y is the number of 
traffic accidents experienced by participants. 

As explained in Section 2, we test three approaches for 
defining variables. In all approaches, the input variables are 
described by five MFs. For all input variables, the MFs are 
described as follows: very low, low, medium, high, and very 
high level of the considered variable. For example, the score 
from the ADBQ gives the information about driver 
aggressiveness; accordingly, five fuzzy sets that describe this 
input variable are the following: very low aggressiveness 
(VLA), low aggressiveness (LA), medium aggressiveness 
(MA), high aggressiveness (HA) and very high aggressiveness 
(VHA). The same principle is implemented when the MFs of 

other variables are named. The BIS-11 test is named 
impulsiveness and the letter “I” is used at the end of the name 
of MFs, the DAQ is considered as risk and the letter “R” is 
taken, while the Questionnaire for Self-Assessment of Driving 
Ability is abbreviated as self-assessment, hence the letter “S” is 
used. 

TABLE IV 
DOMAIN INTERVALS FOR X1, X2, X3, X4 AND Y AND DESCRIPTIVE 

STATISTICS OF THE SAMPLE 

Variable Domain 
Descriptive statistics of the sample 

Minimum Mean Maximum 
x1 [20,120] 26 49.46 76 
x2 [30,120] 49 68.44 86 
x3 [20,100] 24 62.52 83 
x4 [22,88] 34 66.58 88 
y [0,8] 0 1.33 8 

 
Using the first approach, where the input variables are 

defined based on the symmetry principle, the MFs are 
distributed as shown in Fig. 5. As can be seen, the axis of 
symmetry is positioned in the middle of the variable domain. In 
the case of aggressiveness, this axis is at point 70, for 
impulsiveness – at point 75, for risk – at point 60, and for self-
assessment – at point 55. To offer more precise information 
about the position of MFs, the concrete values for which the 
degree of corresponding MF is equal to 1 are presented in Table 
V. 

  

  
Fig. 5. MFs for input variables defined by the symmetric principle 

 
TABLE V 

THE VALUES OF VARIABLES XI (I=1:4) FOR WHICH THE DEGREE OF 

CORRESPONDING MF IS EQUAL TO 1 (µ(XI) = 1) 

Variable 
Type of fuzzy set 

Very low Low Medium High Very high 
 Symmetric approach 

x1 20 45 70 95 120 
x2 30 52.5 75 97.5 120 
x3 20 40 60 80 100 
x4 22 38.5 55 71.5 88 

 The asymmetric approach based on the mean value 
x1 20 34.73 49.46 84.73 120 
x2 30 49.22 68.44 94.22 120 
x3 20 41.26 62.52 81.26 100 
x4 22 44.29 66.58 77.29 88 
 The asymmetric approach based on mean and extreme 

values 
x1 [20,26] 37.73 49.46 62.73 [76,120] 
x2 [30,49] 58.72 68.44 77.22 [86,120] 
x3 [20,24] 43.26 62.52 72.76 [83,100] 
x4 [22,34] 50.29 66.58 77.29 88 

 
The second approach is based on the asymmetric principle, 

taking the mean value from the sample as the point for which 



  

the central MF has the maximum degree (equal to 1). As can be 
seen from Table 5, the value 49.46 is the value of variable x1 for 
which µ(x1) = 1 for the MF Medium (MA). The limit values of 
a variable x1 are taken as µ(x1) = 1 for the MF Very low (20) and 
Very high (120). The space between the mean and limit values 
is symmetrically divided, where the position of the axis of 
symmetry is a point where µ(x1) = 1 for the fuzzy sets Low 
(34.73) and High (84.73). The same principle is implemented 
for the remaining three input variables and the input variables 
are designed by the second approach as shown in Fig. 6. 

  

  
Fig. 6. MFs for input variables defined by the asymmetric principle based on 
the mean value 

 
The third approach is based on the asymmetric principle, 

where the characteristic points are the mean and extreme values 
from the data sample. For example, the possible values of the 
variable aggressiveness are from 20 to 120. Considering the 
values from the sample of 305 drivers, the minimum value was 
26 and the maximum 76. Based on the proposed approach, the 
scores below 26 belong to the fuzzy set very low aggressiveness 
(VLA) with the value of MF equal to 1 (µ(x1) = 1). On the other 
hand, scores above 76 are in the fuzzy set very high 
aggressiveness (VHA), also with the value of MF equal to 1. 
The value 49.46 was taken as the highest MF value (µ(x1) = 1) 
in the fuzzy set medium aggressiveness (MA), the same as in 
the second method. The remaining two MFs, LA and HA were 
defined between the extreme values from the sample and mean, 
as shown in Fig. 7. Other input variables are defined in the same 
manner. 

  

  
Fig. 7. MFs for input variables defined by the asymmetric principle based on 
mean and extreme values 

 
To describe the output variable, seven MFs were introduced 

unlike the cases for input variables where five MFs were used. 
The domain of the output variable covers just 9 points; 

however, the number of MFs is increased in this case because 
the RTAs are relatively rare events and the intention was to 
describe each category of drivers as precise as possible. The 
following MF were introduced: very small number of accidents 
(VSNA), small number of accidents (SNA), moderately small 
number of accidents (MSNA), medium number of accidents 
(MNA), moderately high number of accidents (MHNA), high 
number of accidents (HNA), and very high number of accidents 
(VHNA). The variable y was defined as shown in Fig. 8. 

 
Fig. 8. MFs for the output variable 

 
Testing of the proposed approaches for defining variables in 

the FIS is done by the optimization procedure using the 
proposed BCO algorithm. Each input variable is described by 
five MFs. For MF number 1 just the parameter of this MF that 
is of the highest value at xi axis is tested, while for MF number 
5 just the parameter of the lowest value at xi axis is considered. 
In the case of MFs numbers 2, 3, and 4, all three parameters of 
each triangular MF are tested. In total, there are 11 parameters 
analyzed for each variable. Since there are four input variables, 
each of them described by five MFs, the total number of 
parameters (P) to be examined is 44. As previously explained 
in Section 2, testing a parameter represents a forward pass, 
therefore NP=44. When testing a parameter, the domain of 
possible values should be determined. For this purpose, to 
provide the overlapping of corresponding MFs and to maintain 
the required order of considered parameters at xi axis, there are 
88 constraints set. Other parameters of the implemented BCO 
algorithm are the following: B=4, NC=5, IT=20. 

The simulation procedure implied 10 experiments for each 
considered approach for defining variables. For each iteration, 
the mean values of 10 experiments is presented in Fig. 9. 
Having in mind that there are 4 bees, 5 changes made by each 
bee in a forward pass, 44 forward passes, 20 iterations, 10 
experiments, 3 approaches and that each FIS is tested on the 
sample of 305 drivers, the results present in Fig. 9 are based on 
161,040,000 evaluated fuzzy inference systems. The total 
execution time is around 90 hours, i.e. almost 4 days. Although 
this can be considered as a long computation time, in our case, 
it is acceptable since the proposed algorithm is not intended to 
be used for the management of some processes in real-time. Just 
the final obtained FIS that provides the best performance should 
be used in practice. However, it is interesting to compare the 
performance of different BCO algorithms. By analyzing Table 
VI, it can be concluded that the computation time is affected to 
the largest extent by the number of variables that exist in a FIS, 
as well as by the number of MFs per variable. By increasing 
these two parameters, the fuzzy rules database exponentially 
increases which also prolongs the calculation, particularly if a 
certain additional algorithm is introduced for new fuzzy rules 



  

generation after each change. Boosting the complexity of the 
algorithm provides better solutions and, as previously 
explained, this is justified in our case. 

 

 
Fig. 9. A comparison between three approaches for defining variables of FIS 
based on average CD values in 10 experiments with 20 iterations 

 
TABLE VI 

THE PARAMETERS OF THE BCO ALGORITHM THAT AFFECT THE EXECUTION 

TIME 
Authors and Reference Nikolić 

Šelmić, 
Macura, Čalić 
[13] 

Mijović, 
Kalić, 
Kuljanin [57] 

Our study 

Number of input 
variables 

3 2 4 

Number of MFs in each 
input variable 

3 NA 5 

Number of output 
variables 

1 1 1 

Number of MFs in 
output variable 

5 7 7 

Sample 15 98 305 
The certain algorithm 
applied for new fuzzy 
rules generation after 
each change 

No No Yes 

Number of passes in 
each iteration 

3 3 44 

Number of bees 15 40 4 
Execution time for one 
iteration [min] 

Significantly 
less than 1 

Significantly 
less than 1 

Around 9 

 
The results of the best-found FIS structures after each 

experiment are presented in Table VII. To determine whether 
there is a statistically significant difference between the three 
approaches for setting an initial solution concerning the 
achieved results in the optimization procedure, we conducted a 
paired t-test. The conclusion is that there is no difference 
between the Symmetric approach and the Asymmetric approach 
based on the mean value (p=0.524), while the Asymmetric 
approach based on mean and extreme values differs from both 
other approaches (p0.001 in both cases). 

Finally, the task is to find a FIS with a minimum value of the 
objective function. This would be the best found FIS that can 
be used as a decision-making tool for various purposes in the 
transportation field. The best found FIS is created by the 
asymmetric approach based on mean and extreme values and its 
CD value is equal to 190.6803. The MFs of input variables of 
this FIS are presented in Fig. 10.  

 
TABLE VII 

THE MINIMAL VALUES OF CD IN 10 EXPERIMENTS FOR EACH CONSIDERED 

APPROACH 

Experiment 
Number 

Symmetric 
approach 

(CD) 

The asymmetric 
approach based 

on the mean 
value 
(CD) 

The asymmetric 
approach based 

on mean and 
extreme values 

(CD) 
1 243.9240 247.5702 207.5843 
2 241.1064 245.7423 203.4848 
3 240.9741 242.2948 202.8990 
4 239.1694 241.0987 202.0099 
5 238.6924 240.2350 198.9663 
6 237.9139 233.1188 194.0601 
7 237.0992 232.9170 193.4670 
8 234.9182 230.5881 192.3154 
9 230.4864 227.3439 191.4037 

10 227.4326 222.9927 190.6803 

 
 

  

  
Fig. 10. MFs for input variables of the best found FIS 

IV. CONCLUSION 

This paper aimed to perform the optimization of FIS that can 
be used as a decision-making tool when assessing a driver 
propensity for RTAs based on the psychological traits and to 
examine the effects of initial FIS structures in the optimization 
procedure. There are three proposed approaches: Symmetric 
approach, Asymmetric approach based on the mean value, and 
Asymmetric approach based on mean and extreme values. The 
BCO algorithm proposed in this paper confirmed that the third 
method gives the best results. This conclusion may be useful 
twofold. First, having in mind that the third method for defining 
variables is the most suitable, the initial FIS in the optimization 
procedure can be easier and more effectively defined. Second, 
in the case when there is a task just to form a FIS for some 
purpose and there is a lack of time for the optimization 
procedure, by using the third method, the designed FIS will 
more probably offer better solutions than created randomly or 
by using other two tested methods. 

 Besides a contribution to the methodological field, this 
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paper proposed a FIS that can be used for different purposes in 
transportation. The best found FIS can be considered as a 
decision-making tool in recruitment procedures for professional 
drivers to assess a driver propensity for RTAs. Based on 
information obtained by implementing the proposed FIS, the 
training and education processes for candidates applying for a 
driving license may be improved. A particular significant 
application can be in the programs for the prevention of 
accidents and violations of laws, or the rehabilitation of drivers 
according to their personality traits in the cases when they have 
been convicted for traffic offenses. Having in mind the growing 
consequences of RTAs, both measured in the lost lives and as 
financial costs, the significance of the proposed model is 
evident. Transport demands are on the rise, especially in the 
cities, where RTAs, besides already described negative effects, 
can generate severe traffic congestions. Therefore, the proposed 
decision-making tool offers various benefits, from saving the 
lives of people to significant economic, environmental, and 
social benefits. 

When it comes to the limitations of this research, it should be 
kept in mind that the results are based on the data collected by 
the drivers' self-reports. Such methods of data collection can 
lead to distortions due to socially desirable answers. Although 
respondents were familiar with the anonymous nature of testing 
as well as guaranteed confidentiality of the collected data, it is 
assumed that they still had some kind of restraint in responding 
concerning certain aspects of behavior. Further research 
directions should be focused on the minimization or elimination 
of these limitations. However, despite the mentioned 
limitations, the results of this study indicate an important role 
of certain personality traits in risky behavior on the roads.  

In addition, the recommendation for future research can be to 
broaden the optimization algorithm to the different shapes of 
MFs or another number of MFs. Additionally, since the fuzzy 
rules base is formed in this paper based on the Wang-Mendel 
method, testing some other approaches would be welcome. 
Speaking about the sample, this study provides information on 
driver behavior in Serbia; however, as a possible future research 
direction, it would be of interest to carry out the same 
investigation in different countries. 
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