
Diagnostics support of musculoskeletal
diseases using artificial neural network
1st Zdenek Novotny

Faculty of Electrical Engineering
and Informatics

University of Pardubice
Pardubice, Czech Republic

st46619@student.upce.cz

2nd Jan Mares
Faculty of Electrical Engineering

and Informatics
University of Pardubice

Pardubice, Czech Republic
jan.mares@upce.cz

3rd Petr Dolezel
Faculty of Electrical Engineering

and Informatics
University of Pardubice

Pardubice, Czech Republic
petr.dolezel@upce.cz

Abstract—A vestibular schwannoma is a benign tumor,
developing in the inner ear. As it grows, it may affect
patient’s hearing and body balance. If not treated, it
can also lead to death of the patient. Once it becomes a
problem, it is surgically removed. During the surgery,
there is a high risk that surrounding nerves become
harmed (it causes problems with facial movement). This
document discusses evaluation of such injury, based on a
modern approach of classification using artificial neural
network.

Index Terms—biomedicine, diagnostics, Keras, muscu-
loskeletal diseases, Python, Tensorflow, artificial intelli-
gence, artificial neural network, big data.

I. INTRODUCTION

A. Vestibular schwannoma

The cause of a vestibular schwannoma is overpro-
duction of Schwann cells. These are normally wrap-
ping nerves, but when over-produced, they form a
tumor. A tumor usually grows slowly, and it is mostly
observed, when it is small. While growing, it can affect
surrounding nerves and lead to several harmful effects.
These include, for example, partial deafness, ringing in
the ear, loss of balance, as well as facial paralysis and
asymmetry. These complications may seriously affect
the patient’s life.

If it grows critically, it starts to press on the brain,
which can also cause death of the patient. Further
impacts and details of such a tumor are discussed in
[1].

If the swannoma causes problems, it is usually
surgically removed. While removing, it is necessary
to cut the vestibular nerve and surrounding nerves are
easily harmed, too. Thus, the surgery itself can make
symptoms even worse [1]. Surrounding nerves include
facial nerves, whose injury leads to facial paralysis,
articulation disorder and non-verbal communication
problems [1].

After the surgery, a patient participates in physical
therapy, which takes several months. The therapy in-
cludes evaluation of facial moveability in order to as-
sess the damage. The first evaluation takes place before
the surgery, to set the reference value to which post-
surgery evaluations can be compared. Post-surgery

The work has been supported by the SGS grant at the Faculty
of Electrical Engineering and Informatics, University of Pardubice,
Czech Republic. This support is very gratefully acknowledged.

evaluations are usually performed a week after the
surgery, a month later and three months later [2].

These days, the evaluation depends on a doctor, who
visually checks the patient, performing a set of facial
exercises. As the result is bound to be subjective, there
is a need for automation of this process. A computer
is able to evaluate the patient objectively and may also
declare a unified scale. Furthermore, it could set a base
for diagnostics without the need of a physician, for
example at home.

There are several approaches that can be taken
to make the automation of facial exercise evaluation
possible. This document focuses on machine learning,
using artificial neural networks to dynamically evaluate
face points’ positions in time. The points are further
described in [2].

B. Artificial neural networks

Artificial neural networks are based on artificial neu-
rons, which are defined in [3]. Each neuron processes
its input signals and creates an output signal. By mutual
interaction of such neurons, more sophisticated predic-
tions can be achieved. The fundamental advantage, in
comparison to expert systems, is its ability to learn,
while all it needs are input and output values. It is
not necessary to define the inner process of evaluation.
On the other hand, its advantage over stochastic algo-
rithms is computation speed. While the computation
in stochastic algorithms is focused once the input
is defined, artificial neural networks are demanding
especially at the learning phase. A prediction for a
given input is then usually fast and efficient.

That is the reason why artificial neural networks
are applied in many fields, including banking, traffic,
electronics, medicine, social engineering, telecommu-
nications, industry, education and many more. It solves
data classification, cluster analysis, pattern recognition
and prediction [3].

There are many known topologies for classification
of time series. Quality of the output is partially depen-
dent on input - its shape, signal noise and potential
dependency of its ingredients. Some well-known net-
works include:

• Feed-forward neural network - one of the mostly
used artificial neural networks. It is based on sim-
ple neurons, which are layered. All the neurons

ISBN 978-80-261-0973-0, © University of West Bohemia, 2021



in a layer are connected to all the neurons in
the next layer. Connections are neither present
between neurons in the same layer nor there are
any backward connections. Feed-forward neural
networks are mainly used for approximations and
predictions. Their disadvantage for time series
classification is that the coherence of timesteps
is lost [4].

Fig. 1. Feed-forward neural network.

• Convolutional neural network - another widely
used approach, mainly in image analysis. Convo-
lution is an important operation in signal theory.
Values are aggregated over a sliding window,
so minor deviations are suppressed. It is further
explained in [5]. Convolution layer is commonly
followed by a pooling layer, which aggregates
the data even more, reducing noise and shape
[5]. Usually a max pooling (resulting in max-
values) or average pooling (resulting in average
values) is used. Convolution and pooling together
can significantly reduce shape of input while
preserving important features. The resulting data
are then usually analyzed by a feed-forward neural
network [4] [5].

Fig. 2. Convolution and pooling.

• Recurrent neural network - recurrent neural net-
work is equipped with a temporary memory. Its
output is based on a current input, as well as
historic data. That is the reason why these are
commonly used for prediction of dynamic values,
that may depend on preceding progress. Even
though the recurrent neural network is preferably
designed for next-step prediction, there are known
experiments of using it as a time series classifier
[4], [6].

C. Artificial intelligence in diagnostics

Artificial intelligence has already been used in
medicine to solve various problems. For example, it is
used for spectral analysis, modelling of mental defects,
predictions of disease progress, and above all, for
analysis of image data and signal processing.

The University of Chemistry and Technology
in Prague, in conjunction with University Hospital
Kralovske Vinohrady, developed a system for post-
surgery diagnostics of muscoskeletal diseases using
image processing. It consists of robotic scanning of

patient’s walk and static scanning of his or her face [2].
These image data are then analyzed. The experiment,
discussed in this document, is based on their data.

II. PROBLEM FORMULATION

The aim of this article is to develop a diagnostic
support of post-surgery diagnostics of muscoskeletal
insufficiency during physical therapy. As an input to
the development, data about patients and their diagnos-
tics were provided by our partners from the University
Hospital Kralovske Vinohrady.

A. Image data

Firstly, image data are needed. In this experiment,
these data were captured by a Microsoft Kinect sensor,
which is able to take a stereoscopic visual record. The
sensor has been placed statically, capturing the face
of the respective patient. The patient then performed a
total of nine facial exercises (for example to raise his or
her eyebrows, to smile, to scowl, etc.). The record was
consequently turned into a three-dimensional model of
the patient’s head. From the model, twenty-one points
composed the input for classification. As the model
is three-dimensional, each point is defined by three
Cartesian coordinates and time. Mentioned points are
illustrated in the figure below.

Fig. 3. Captured points.

B. Diagnostic data

Another important data is the original evaluation,
as decided by a doctor. Each patient is assigned a
mark from 0 to 9, which represents his or her overall
evaluation. The higher the mark, the more are patient’s
nerves damaged.

As the set of patients is small, each patient evalu-
ation was processed independently. As such, connec-
tions between examinations of the same patient (which
are not desired anyway) were lost, but the data made
proper input for an artificial neural net.

For the learning phase, it is necessary to prepare a lot
of samples, covering the whole range of evaluations.
However, only 89 samples were provided. In addition,
almost half of them were evaluated with mark 1. In
contrast, there were no evaluations with mark of 0, 7,
8 or 9 at all.

III. PROPOSED SOLUTION

According to the previous authors’ experience,
Python programming language with Tensorflow-Keras
framework was selected to develop the solution.

For the implementation, a proper data format was
crucial. The final format used is as such: Incomplete



patients (patients who had not done some of the
exercises) were dropped.

As a capturing period of the used sensor should be
nearly a constant, the time stamps were dropped too.
The time flow was substituted by timesteps. Thus, a
single point was represented by a matrix of Cartesian
coordinates x, y, z and timesteps.

A single exercise is a matrix of such points and
a single patient is a matrix of exercises. As there
were nine exercises of twenty-one observed points, this
results in a matrix with 567 columns and rows equal
to timesteps of the respective exercise.

As the used artificial neural network had fixed size,
it was necessary to adjust the size to the longest time
series of all exercises.

Also, some transformations were considered and
applied. One reason for transformations is the need to
comply with Keras input, the other is for optimisation,
as there is just a few samples and any improvement
can help.

To meet the input, it is necessary to define the
input layer of the artificial neural network. That is
a part of the network’s topology design, where the
number of layers, number of neurons and the output
layer are defined. There is no ideal topology, one must
undertake some experiments to make the decision.
However, with enough resources, these experiments
can be automatized (e.g. evolutionary algorithm).

A. The input

The data format described above is pretty simple
and understandable for a human being. But the Keras
framework has different needs. If only one input is
present, it must be a TensorFlow tensor, a NumPy array
or an array-like structure. In case of multiple inputs,
the Keras framework expects a list of these structures.
Each item of the list then represents the whole input
set (or generated batch) of an input filter.

Thus, it is mandatory to create such a list. First, let
us unify the exercises dimensions. The width of such
array is given by number of points, multiplied by 3
dimensions in space. The length, on the other hand,
differs by the number of captured timesteps. To unify
the length, respective exercises have been arranged into
an array with length of the longest exercise of them
all. Shorter exercises have been filled by zeros from
the top.

It was also considered useless to carry the timestamp
of each step, as the capture speed was constant and the
same for each exercise and therefore the time flow of
the respective exercise can be inferred from the number
of its timesteps.

Such arrays can then be concatenated to a sole array,
which represents all exercises of a respective patient.
The issue of data format is solved, but as the data
sample is small, there were also some optimisation
processes applied to increase the change of success.

Firstly, as the data are captured by a camera, refer-
ence point positions are bound to be affected by the
respective patient’s stance. This means that the actual
position of a point consists of an initial value and

an increment, while the motoric functions are denoted
by the increment only. To eliminate the anomaly in
the initial values, the initial value of a point in each
dimension has been subtracted from every correspond-
ing value of timesteps. Like that, the resulting array
consists just of increments.

Another optimisation targets the set division. Later,
during testing, it is necessary to train the net. The
quality of training also needs to be evaluated, which
is the purpose of the validation set. The validation set
is usually approximately a quarter of the input data.
The rest forms the training set. But the original data
were unbalanced and some of the output evaluations
were entirely missing. In fact, almost half of patients
were evaluated by mark 1. On the other hand, none
were evaluated by marks 0, 7, 8, or 9. If divided
randomly, there was a large probability that the low-
count evaluations would be missing in either set. To
ensure that the training set will be enough, it was
divided with an accent to contain at least seventy-five
percent of each evaluation.

The last optimisation process inheres in change of
the sampling rate. As the input data are basically a
collection of signals, it suffers from distortion. The
distortion can be repressed by lowering the sampling
rate. With lower sampling rate, only serious changes
are apparent. On the other hand, some important details
would be lost, so it is generally hard to determine the
right sampling rate. That is why the original data were
preserved too, along with down-sampled versions of a
half and one fifth. This means three input arrays, for
three input filters of the net.

Also, although the Keras framework can train the net
using a single array and thus it could use the whole
training set, it is better to divide it into batches. As
there are more patients expected in future, the training
set is going to grow. Training of an artificial neural
network can be very storage-demanding and this can
lead to an input so large, that it will exhaust the whole
memory. To reduce such risk, smaller input batches
were used for training. The generator, implemented
for creation of such batches, outputs four (optionally
shuffled) lists, divided to batches. The first list contains
patient data of original sampling rate, the second one
contains half-sampled data and the third one fifth-
sampled. The last one is the list of corresponding
evaluations.

B. The network

In this experiment, a convolutional artificial neural
network has been chosen to classify the input. Con-
volutional neural networks are mainly used in image
processing, but they can also be used as time series
evaluators. The main advantage of such neural network
is its ability to learn strong features, resulting in a
chance to distinguish between motoric disfunctions and
distortion. Additionally and simultaneously, a feed-
forward artificial neural network has been used as an-
other classificator for comparison. Feed-forward neural
networks are known as a good predictors, but its
topology ignores coherence of respective timesteps.



The differences between both nets are mainly in
hidden layers, as the input layer is bound to fit the
input data and the output layer must fit the expected
result format.

The input layer consists of three input points. Each
input point is basically a standalone artificial neural
network. Each such network has its own input layer,
which has to fit the input data. Therefore, it differs
in length, according to sampling rate, as mentioned
above. Then, convolution follows. In this experiment,
one-dimensional convolution has been chosen, as it is
not desired to move the filter in a single timestep. In
contrast, it is necessary to slide the filter over timesteps
from top to bottom, which is just what the one-
dimensional convolution does. Apparently, the width of
the filter was set to the same as the input layer’s width.
There are several parameters to consider in connection
with a convolutional layer:

• Filter count - generally, the more filters, the more
features can the network learn. It is hard to define
the right count and this parameter was a subject
of examination.

• Filter length - in this particular experiment, as
mantioned earlier, this means the number of
timesteps in one convolution step. This parameter
was a subject of examination as well.

• Padding - set to ”same”, which means an overlap
of zeros is added to the input data, resulting in
the same rows in the output as there were in the
input.

• Activation - set to ”tanh”, hyperbolic tangent. This
function is continuous on (-1; 1), so there is no
need to normalize the output later.

After the convolution, a pooling layer follows. Namely
a one-dimensional global max pooling was chosen to
keep just a single, strongest feature of each filter. The
result is then processed by a feed-forward layer. This
layer has following parameters to be set:

• Neurons count - theoretically, the more neurons
in a layer, the better prediction. However, there is
a limit, where additional neuron improvement is
not worth the cost. The right value was a subject
of examination.

• Activation - hyperbolic tangent was used there
too.

The feed-forward layer is followed by a dropout layer,
which deactivates random neurons while training, and
weakening relations between them. This helps to avoid
learning ”by rote”.

The described standalone networks form the main
input layer. All the outputs are then concatenated into
a single array, using a concatenate layer. Then they are
processed by a hidden layer, which is another feed-
forward neural network.

The last layer is the output layer, represented by
further feed-forward layer. However, the output layer is
not of the same format as those previous feed-forward
networks. It must fit the expected output, which means
discrete marks of < 0; 9 >. This can be accomplished
by classification. Each evaluation mark is represented

by a class and the network must classify the input data
to one of them.

The usual approach of classification is the softmax
activation function. Simply put, softmax computes
the likeness of an input to a class. The likeness is
represented by a rational number of (0; 1) and the
sum of such likenesses equals 1. As it is mandatory
to compute the likeness for each class, the number of
neurons equals the number of classes. Meaning 10 of
them in this experiment.

It is also necessary to choose a loss function. The
loss function reflects how much the actual predicated
output missed the expected result. In classification,
cross-entropy functions are usually used. A cross-
entropy function indicates high loss value especially if
a wrong class has been chosen with high confidence.
As there is always just one correct class in this exper-
iment, meaning a patient should be evaluated by just
one mark, categorical cross-entropy loss function was
used, which meets these requirements. Another training
output is the accuracy. While the loss value quantifies
divergence of expected output, accuracy quantifies the
rate of correct classifications. Generally, a low loss
value means a better net, while high accuracy denotes
that it is trained well. Optimisation of these values is
just what this experiment was all about.

As already mentioned, a feed-forward neural net-
work has been used for comparison. It has been
implemented similarly. The difference is that instead
of convolutional and pooling layers, another fully con-
nected layer has been used.

C. The test

With input data in the desired format and networks
ready for training, it was time to move to experiments.
These experiments have several goals to accomplish:

• Prove that the artificial neural network is func-
tional.

• Prove that it is possible to diagnose musculoskele-
tal diseases using artificial neural network.

• Find out if the diagnostic is accomplishable at
present.

• Choose the final parameters of the network.
The network is functional, if it predicts output for
a given input and if it is capable of training itself
with the prepared generator. The diagnostic is possi-
ble, if the network’s training impacts its classification
ability, meaning it can find and learn coherence in
the data. This is currently possible, if the training
enhances the classification ability so much that the
network closely predicates correct evaluations of the
validation set. The last goal was to find the final
parameters of the network. These are, in particular,
the number of filters and neurons the of hidden layer
and also the number of hidden layers. The indicator
of training quality has been set as minimisation in
case of loss function and as maximization in case
of accuracy. These experiments were executed with
both the convolutional neural network and the feed-
forward neural network. Each training consists of 1000



learning epochs. These parameters changed a bit later,
according to optimisation of parameters.

IV. RESULTS AND DISCUSSION

Results of all experiments were examined and writ-
ten down into several tables. In initial experiments, the
number of neurons varied.

TABLE I
1 LAYER, 10 FILTERS, 10 NEURONS, FILTERS OF LENGTH 8, 16

AND 24

Net Set Metric Expt. 1 Expt. 2 Expt. 3
FFNN Training Loss 0.0192 0 0
FFNN Training Acc 0.9851 1 1
FFNN Validation Loss 4.3784 10.7683 7.1403
FFNN Validation Acc 0.2727 0.1818 0.3636
CNN Training Loss 0.1173 0.0753 0.1017
CNN Training Acc 0.9403 0.9701 0.9552
CNN Validation Loss 3.2232 3.5301 4.2814
CNN Validation Acc 0.3636 0.3182 0.3182

TABLE II
1 LAYER, 50 FILTERS, 50 NEURONS, FILTERS OF LENGTH 8, 16

AND 24

Net Set Metric Expt. 1 Expt. 2 Expt. 3
FFNN Training Loss 0 0 0
FFNN Training Acc 1 1 1
FFNN Validation Loss 8.9976 6.3715 7.4063
FFNN Validation Acc 0.3182 0.2273 0.3182
CNN Training Loss 0 0.0188 0
CNN Training Acc 1 0.9701 1
CNN Validation Loss 11.1176 7.1512 13.5941
CNN Validation Acc 0.3182 0.1818 0.2273

TABLE III
1 LAYER, 100 FILTERS, 100 NEURONS, FILTERS OF LENGTH 8, 16

AND 24

Net Set Metric Expt. 1 Expt. 2 Expt. 3
FFNN Training Loss 0 0 0
FFNN Training Acc 1 1 1
FFNN Validation Loss 6.2946 5.7037 6.0173
FFNN Validation Acc 0.4091 0.2727 0.4091
CNN Training Loss 0 0 0
CNN Training Acc 1 1 1
CNN Validation Loss 13.3315 14.8280 12.3779
CNN Validation Acc 0.2273 0.2273 0.2727

TABLE IV
1 LAYER, 200 FILTERS, 200 NEURONS, FILTERS OF LENGTH 8, 16

AND 24

Net Set Metric Expt. 1 Expt. 2 Expt. 3
FFNN Training Loss 0 0 0
FFNN Training Acc 1 1 1
FFNN Validation Loss 6.2173 3.9490 5.7697
FFNN Validation Acc 0.3636 0.5 0.4091
CNN Training Loss 0 0 0
CNN Training Acc 1 1 1
CNN Validation Loss 13.4876 15.0199 14.1734
CNN Validation Acc 0.2727 0.2273 0.2727

The first set of tests targeted the number of neurons.
Big differences were tried and examined in order to
find out if it is worth to use for example hundreds
of them. From the result above, it is obvious that the
network is functional. It is certainly able to predict
outputs on given inputs and to train using the prepared

generator. As the accuracy of training set predictions
is tending to 1 in every case, it also seems that the
network is learning well and can be used to classify
such input data. So it can be used as a diagnostics
support of musculoskeletal diseases. This particular
result is crucial. However, it is also evident, that the
classification of validation set was not satisfactory in
any case.

The feed-forward neural network results are very
varied. Despite the fact that with 200 neurons in every
input layer’s hidden layer, as well as in the main hidden
layer, the network achieved a half accuracy, it was
found out by further investigation, that the net simply
learned to evaluate most of inputs with mark 1, which
is the expected evaluation in almost half of samples.
This way, the network found a coherence, which leads
to good results, but in a totally improper way. Con-
sidering this, the feed-forward neural network was not
providing a relevant comparison to the convolutional
neural network and was omitted in further experiments.

The convolutional neural network supplies slightly
more stable results. Furthermore, with increasing neu-
rons count, its accuracy was decreasing, in contrast to
the feed-forward neural network, which is interesting.
As no other parameter has been changed and inverse
tendency has been seen on the other network, it clearly
is not connected with input layer’s hidden layer and
it is definitely caused by number of filters in the
main hidden layer. Thus, consequent experiments used
just a few convolutional filters and many neurons in
fully connected layers. The next set of experiments
addressed the impact of filters length to the prediction
quality.

TABLE V
1 LAYER, 16 FILTERS, 100 NEURONS, FILTERS OF LENGTH 8, 16

AND 24

Net Set Metric Expt. 1 Expt. 2 Expt. 3
CNN Training Loss 0.0581 0.0271 0.0482
CNN Training Acc 0.9701 0.9851 0.9701
CNN Validation Loss 4.9434 6.8729 5.5106
CNN Validation Acc 0.4545 0.4545 0.3182

TABLE VI
1 LAYER, 16 FILTERS, 100 NEURONS, FILTERS OF LENGTH 4, 8

AND 12

Net Set Metric Expt. 1 Expt. 2 Expt. 3
CNN Training Loss 0 0.0193 0.0192
CNN Training Acc 1 0.9701 0.9851
CNN Validation Loss 12.3504 6.2219 6.5905
CNN Validation Acc 0.1364 0.3636 0.4091

TABLE VII
1 LAYER, 16 FILTERS, 100 NEURONS, FILTERS OF LENGTH 16, 32

AND 48

Net Set Metric Expt. 1 Expt. 2 Expt. 3
CNN Training Loss 0.0187 0.0453 0.0190
CNN Training Acc 0.9701 0.9552 0.9851
CNN Validation Loss 9.2765 7.7833 7.8863
CNN Validation Acc 0.1818 0.0455 0.4091

An obvious improvement was done by lowering the
number of filters. On the other hand, reduction, as well



as extension of filter length lowered the accuracy, so
filter length was determined to be 8, 16 and 24.

Even so, these results are still not usable practically.
The accuracy is not even 0.5. Another way to poten-
tially improve the prediction, is to add more hidden
layers.

TABLE VIII
2 LAYERS, 16 FILTERS, 100 NEURONS

Net Set Metric Expt. 1 Expt. 2 Expt. 3
CNN Training Loss 0 0 0
CNN Training Acc 1 1 1
CNN Validation Loss 5.5643 6.1475 6.9884
CNN Validation Acc 0.5 0.4091 0.4091

TABLE IX
2 LAYERS, 16 FILTERS, TWO UNION FF LAYERS

Net Set Metric Expt. 1 Expt. 2 Expt. 3
CNN Training Loss 0 0 0
CNN Training Acc 1 1 1
CNN Validation Loss 7.7642 8.1129 9.0588
CNN Validation Acc 0.3636 0.4091 0.2727

TABLE X
2 LAYERS, 16 FILTERS, TWO INPUT INNER FF LAYERS

Net Set Metric Expt. 1 Expt. 2 Expt. 3
CNN Training Loss 0 0 0
CNN Training Acc 1 1 1
CNN Validation Loss 7.8389 6.7058 8.1535
CNN Validation Acc 0.3182 0.2727 0.3182

By adding another convolutional layer, the predic-
tion has improved even more. However, adding another
fully connected layer gave no indication of any im-
provement at all. Although the prediction was better,
it cannot be considered reliable. Probable cause of this
was simply a lack of provided samples.

Even though there were no other patterns to train on,
it is possible to simplify the task to make classification
easier. For this purpose, let us assume that patients
are to be divided to just two groups; healthy ones and
others. A healthy patient shall be a patient, evaluated
by mark 0 or 1, while patients with higher mark shall
form the other group. Like that, the network had only
two classes to distinguish, and these two classes even
contained about a half of the patients each.

To perform this simplified classification, the most
successful network so far was used.

TABLE XI
SIMPLIFIED CLASSIFICATION

Net Set Metric Expt. 1 Expt. 2 Expt. 3
CNN Training Loss 0 0 0
CNN Training Acc 1 1 1
CNN Validation Loss 3.8725 3.2748 2.9729
CNN Validation Acc 0.5 0.5909 0.6364

With only two (balanced) classes, the classification
finally exceeded a 0.5 accuracy. However, by further
investigation, it was found out that the predictions
were more or less random. It was obvious that the
higher accuracy is just a result of almost half-to-half

distribution of patients in classes. That bit more than a
half shows some success, but it is not nearly enough the
network predictions as being trustworthy. There were
apparently not enough input data to find correlations
reliably.

V. CONCLUSIONS

In this article, there has been designed and imple-
mented a diagnostic support tool of musculoskeletal
diseases. The particular tool has been tested on real
checkup data of patients with post-operative complica-
tions after a vestibular schwannoma surgery.

A basic definition of the tumor was provided, as
well as its symptoms, impacts and current diagnostics.
Then, artificial neural networks were introduced as
a way of classification. The way of data collecting
and its preprocessing have been described, too. Based
on analysis of these data, a particular application has
been implemented, resulting in a tool which predicts
evaluation of patient’s condition by movement of his
or her face. Unfortunately, it has turned out that the
predictions are not accurate yet. Hence, the network is
not reliable.

However, according to its ability to learn the training
samples, it seems that the developed convolutional
neural network can find correlations in input data. And,
thus, it indicates the potential to classify patients, as
soon as enough data will be available to train on, which
is just a matter of time.

Such an application could help both medical practi-
tioners and patients. It opens the opportunity of self-
diagnostics without the help of a doctor, possibly
even from home, using just a device equipped with
a stereoscopic camera. It also reduces the effect of a
doctor’s subjective view. In addition, there could be a
mini-computer with a stereoscopic camera in a doctor’s
office, which could provide real-time evaluation of a
patient.

Of course, vestibular schwannoma is not the only
subject of body motion evaluation. The tool could
be adjusted to another disease, which is diagnosed
similarly.

REFERENCES

[1] National Institute on Deafness and Other Com-
munication Disorders [online], “Vestibular schwan-
noma (acoustic neuroma) and neurofibromatosis.” [On-
line]. Available: https://www.nidcd.nih.gov//health//vestibular-
schwannoma-acoustic-neuroma-and-neurofibromatosis

[2] J. Kohout, J. Crha, K. Trnková, K. Štı́cha, J. Mareš, and
M. Chovanec, “Robot-based image analysis for evaluating reha-
bilitation after brain surgery,” Mendel, vol. 24, no. 1, pp. 159–
164, 2018.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
MIT Press, 2016, http://www.deeplearningbook.org.

[4] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A.
Muller, “Deep learning for time series classification: a review,”
Data Mining and Knowledge Discovery, vol. 33, no. 4, pp. 917–
963, 2019.

[5] S. Saha, “A comprehensive guide to convolutional neural
networks — the eli5 way [online].” [Online]. Avail-
able: https://towardsdatascience.com//a-comprehensive-guide-
to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[6] M. Hüsken and P. Stagge, “Recurrent neural networks for time
series classification,” Neurocomputing, vol. 50, pp. 223–235,
2003.


