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Crystallization of glasses – When to use the Johnson-Mehl-Avrami kinetics? 
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A B S T R A C T   

Applicability of the Johnson-Mehl-Avrami (JMA) model was tested based on the universal criterion of the kinetic 
peak asymmetry. Theoretical simulations were used to prepare variety of kinetic peaks with different asym-
metries, which were described by the JMA model and the masterplot function z(α). Based on the correlation 
between the simulated crystallization peaks and the JMA description, the following intervals of the degrees of 
conversion corresponding to the z(α) function maxima can be attributed to the respective values of the corre-
lation coefficients: αmax,z = 0.620 – 0.665 corresponds to the better correlation with the JMA model than 
r2 = 0.999; αmax,z = 0.585 – 0.705 indicates the correlation better than r2 = 0.995. These intervals are signifi-
cantly more lenient than those proposed in the original derivation of the masterplot approach. Even at r2 = 0.995 
the fit by the JMA model provides very accurate kinetic predictions utilizable for preparation of glass-ceramics.   

1. Introduction 

The Johnson-Mehl-Avrami-(Kolmogorov) equation [1–5] belongs 
among the most famous expressions the glass scientists are familiar with. 
The model, usually abbreviated JMA, KJMA or JMAK (abbreviation JMA 
will be used in the present paper as it is the most common one), was 
derived to describe the macroscopic rate of crystallization in the glassy 
material. In particular, the formula describes the time evolution of the 
transformed fraction of the material α: 

α = 1 − exp( − Ktm) (1)  

where K is a rate constant determined by the nucleation and growth 
rates, and m is the Avrami exponent reflecting the growth dimension-
ality. The expression was derived based on the so-called extended vol-
ume concept, i.e. the volume of the reaction/transformation product 
that would be created if the material consisted entirely of the initial 
untransformed phase; the following conditions were assumed during the 
derivation:  

a) nucleation (either homogeneous or heterogeneous) producing nuclei 
randomly dispersed throughout the amorphous phase  

b) growth rate depends only on temperature, not on time or degree of 
transformation  

c) crystal growth is isotropic 

It has been shown in [6,7] that the applicability of the JMA equation 

can be extended to non-isothermal conditions, if the majority of the 
nuclei are formed before or during the initial stages of the crystallization 
process. 

Due to its simplicity, physically meaningful interpretation, and lack 
of competing physico-chemical models suitable for the description of the 
crystallization behavior, the JMA equation became immensely popular. 
Popularity of the JMA formalism is well evidenced by the cross-search in 
scientific literature databases: 286 references to the “JMA AND crys-
tallization” in Web of Science, 311 in Scopus, 1265 in Science Direct. In 
fact, the JMA equation is in practice one of just two solid-state models 
regularly used to describe the nucleation-growth based processes (with 
the other being the empirical Šesták-Berggren autocatalytic model [8]). 
The wide spread and popularity of the JMA equation led, however, to its 
overuse, and it is nowadays commonly applied even in cases when the 
base conditions for its usage are not fulfilled. In particular, the Avrami 
exponent m is often evaluated based on the so-called double-logarithm 
function [9–11]: 

dln[ − ln(1 − α) ]
d(1/T)

= −
m⋅E

R
(2)  

without verification of the JMA model suitability/applicability (in Eq. 2, 
E is the apparent activation energy of the process, R is the universal gas 
constant, and T is temperature). Out of the randomly selected 50 
recently published papers utilizing the JMA evaluation, only the 
following ones used the JMA model properly and verified its applica-
bility - [12–22]. Actual verification of the physico-chemical conditions 
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(as listed above), for which the JMA formalism was derived, is rather 
complicated and laborious, and requires extensive microscopic analysis. 
Therefore, a substitute in the form of mathematical/kinetic verification 
has been adopted. The (unfortunately) more popular way of verification 
is based on the linearity of data evaluated using Eq. 2, which however 
can often produce linear dependence also in cases when the usage of 
JMA model is not valid. 

The second way of verification is represented by a direct fit of the 
experimental data (often obtained by the thermoanalytical techniques 
such as DSC or DTA) by the JMA model – this solution is the most ac-
curate but requires a specialized software or pre-programmed spread-
sheet calculation based on the following kinetic equation: 

Φ = ΔH⋅A⋅e− E/RT ⋅m(1 − α)[ − ln(1 − α) ]1− (1/m) (3)  

where Φ is the heat flow (measured e.g. by DSC), ΔH is the crystalli-
zation enthalpy, and A is the pre-exponential factor. Note that the 
product of the first three right-hand terms is denoted as the rate constant 
K(T), whereas the fourth right-hand term is denoted as the kinetic model 
function f(α). The latter has been obtained by derivation of Eq. 1 with 
respect to t. 

The third way of the JMA model applicability verification is based on 
usage of the masterplots [23,24]. The JMA model has a specific asym-
metry, for which the product of f(α) and g(α) (i.e. integral form of f(α)) 
yields maximum at α = 0.632. Of course, due to the unidealities of the 
experimental data, certain variance interval needs to be allowed for the 
JMA verification procedure. This interval was proposed to be ± 0.01 (i.e. 
0.62 – 0.64) in [25] and ± 0.02 (i.e. 0.61 – 0.65) in [26]. However, the 
recent practice has shown (see e.g [27].) that the JMA model can be 
reasonably applied in much broader interval of the α values corre-
sponding to the f(α)⋅g(α) maxima. Aim of the present paper is to provide, 
using theoretical simulations, a statistical background for the decision 
regarding the applicability of the JMA model. 

2. Results 

The fundamental outline of the present calculations is the following: 
the flexible Šesták-Berggren (AC) model [8] will be used to simulate 
variety of kinetic peaks with different asymmetries that will be conse-
quently analyzed with respect to their easily quantifiable features (e.g. 
asymmetry, masterplot characteristic) and fit by the JMA model. Based 
on the correlation coefficient associated with the JMA fit, the suitable 
ranges of the general kinetic peak characteristics (asymmetry, master-
plot characteristic) will be determined and attributed to the particular 
JMA fit accuracies. 

To produce different peak asymmetries, the universal Šesták-Bergg-
ren model was implemented into the standard kinetic equation: 

Φ = ΔH⋅A⋅e− E/RT ⋅αM(1 − α)N (4)  

where M and N are the kinetic exponents of the AC model. The theo-
retical simulations based on Eq. 4 were performed with the following 
parameters – ΔH = 1, ln(A/s− 1) = 35, E = 120 kJ mol− 1, Δα used in the 
integration-based simulation was 10-4. Combinations of the following 
AC exponents values were used to cover the whole relevant range of 
asymmetries “close” to that of the JMA model: M = 0.25, 0.50, 0.75 and 
1.00; N = 0.05–2.50 with the step of 0.05 (the step of 0.1 was used in 
case of the combinations with M = 1 to identify the influence of the step 
size on the resolution of the resulting dependences). In total, 175 AC 
peaks were simulated – Fig. 1 depicts examples of the simulated AC 
kinetic peaks to demonstrate the changes of the peak shape and position 
with evolution of the particular kinetic exponents. 

In the first step, all simulated AC kinetic peaks were fit using the 
Fraser-Suzuki (FS) function [28,29] to determine the asymmetry of these 
peaks. Note that the mathematic FS function was shown to very well 
express the JMA kinetics [30] and the function is generally well suited 
for the description of the solid-state kinetic data [31]. The FS function is 
represented by Eq. 5: 

Fig. 1. Example AC kinetic peaks simulated using Eq. 4 with the following parameters: q+ = 10 ◦C⋅min− 1, H = 1, ln(A/s− 1) = 35, E = 120 kJ⋅mol− 1, M and N 
exponents are indicated in the respective graphs, Δα used in the integration-based simulation was 10-4. The ranges of N values cover all asymmetries explored in the 
present paper. 
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where a0, a1, a2 and a3 are the parameters corresponding to the ampli-
tude, position, half-width and asymmetry of the curve, respectively. 
Whereas the amplitude, position and half-width of the kinetic peaks are 
non-specific parameters with respect to the given kinetics, the value of 
the asymmetry parameter a3 can be attributed to the particular kinetic 
models. Asymmetry of the simulated AC kinetic peaks (expressed via the 
a3 coefficient of the FS function) is shown in Fig. 2A. Note that the value 
a3 = 0 corresponds to the perfectly symmetrical peak, negative and 
positive asymmetries correspond to the peaks skewed to higher and 
lower T values, respectively. The meaningfulness of the attribution of 
asymmetry to the simulated AC data was tested based on the correlation 
coefficient of the FS fits rFS – as displayed in Fig. 2B. The high correlation 
of the FS fits with the actual AC kinetic peaks (absolute majority of the 
data had r > 0.995) confirms the validity of the a3 parameters attribu-
tion to the particular AC peaks. Note that the actual correspondence 
between the a3 parameter and the true asymmetry of the simulated AC 
peaks is significantly higher than suggested by the r values, because the 
correlation coefficients express the conformity between the both whole 
curves (AC and FS), where the main deviations occur at the peak tails. 
Were the peak tails omitted, the correlation between the main bodies of 

the AC and FS curves (which actually determines the peak asymmetry) 
would be much higher. 

In the second step (after the FS fits of the AC data), the AC kinetic 
peaks were fit by the JMA model (Eq. 3) – the fits were performed for the 
standard derivative form of the kinetic data, i.e. dα⋅dt− 1. The correlation 
coefficients of these fits are displayed in Fig. 3. It is apparent from 
Fig. 3A that only a relatively narrow range of M/N combinations used 
during the simulations of the AC kinetic peaks leads to the consequent 
acceptable description by the JMA model. Importantly, all curves for 
different M values used in the AC simulations that are displayed in 
Fig. 3A converge into one mastercurve, when (instead of the AC expo-
nent N) they are characterized by their FS asymmetry parameter a3 (see 
Fig. 3B). This indeed confirms that the JMA model has specific asym-
metry: for r = 0.999 the a3 interval is from -0.49 to -0.24; for r = 0.995 
the a3 interval is from -0.65 to -0.08. For r2 = 0.999 the a3 interval is 
from -0.45 to -0.28; for r2 = 0.995 the a3 interval is from -0.56 to -0.17. 
This indicates that in theory the fit by the FS function (with the 
parameter a3 being determined in the process) could be used as a cri-
terion for the JMA model applicability. However, since the fit of the 
experimental data by the FS equation is only very slightly less laborious 
compared to the direct fit of the data by the JMA model itself, it would 
not be a practical solution. Note that, as a byproduct, the values of the 

Fig. 2. A) Parameters a3 (responsible for the peak asymmetry) of the Fraser- 
Suzuki function obtained during the fit of the simulated AC peaks by the FS 
function. B) Correlation coefficients rFS obtained for the fits of the four series of 
the simulated AC peaks by the FS function. Dashed lines indicate the particular 
correlation levels between the AC model and the FS function. 

Fig. 3. A) Correlation coefficients rJMA obtained for the fits of the four series of 
the simulated AC peaks by the JMA model. Dashed lines indicate the particular 
correlation levels between the AC and JMA models. The correlation coefficients 
are plotted against the kinetic exponent NAC used in the corresponding simu-
lation. B) Correlation coefficients rJMA obtained for the fits of the four series of 
the simulated AC peaks by the JMA model. Dashed lines indicate the particular 
correlation levels between the AC and JMA models. The correlation coefficients 
are plotted against the Fraser-Suzuki parameter a3 obtained during the fit of the 
same simulated AC peaks by the FS function. 

R. Svoboda                                                                                                                                                                                                                                       



Journal of the European Ceramic Society 41 (2021) 7862–7867

7865

JMA exponent m were obtained as a result of the fits of the various AC 
kinetic peaks by the JMA model – as this type of distortion and its 
interpretation is not the main topic of the present paper, the corre-
sponding dependences including their discussion is published separately 
in the Supplemental online material. 

In the third step, the AC kinetic peaks were transformed to the 
masterplot function z(α): 

z(α) = f (α)⋅g(α) = Φ⋅T2 (6) 

The α values corresponding to the maxima of these functions, αmax,z, 
are in Fig. 4A correlated to the FS parameter a3. The very good corre-
lation coefficient of 0.9945 indicates that αmax,z directly reflects the 
asymmetry of the kinetic peaks. This finding validates the proposed 
universal utilization of the αmax,z value for the determination of the JMA 
model applicability. The statistical evaluation of the JMA model appli-
cability is introduced in Fig. 4B, where the αmax,z values are linked to the 
correlation coefficients of the JMA fits to the kinetic peaks with varying 
asymmetry. The r = 0.999 correlation with the JMA kinetics is achieved 
in the interval αmax,z = 0.615 – 0.685; the r = 0.995 correlation is then 
achieved in the interval αmax,z = 0.535 – 0.735. For the r2 correlations 
the αmax,z intervals are: 0.999 → 0.620 – 0.665; 0.995 → 0.585 – 0.705. 
These intervals are indeed much broader compared to the originally 
proposed boundaries. 

3. Discussion 

Large variety of kinetic peaks (simulated in terms of the AC model) 
with different asymmetries were fit by the JMA model (Eq. 3) and 
evaluated by means of the masterplot function z(α) (Eq. 6). In this way, 
the intervals for the αmax,z values were determined, for which the kinetic 
peak very well corresponds to the JMA kinetics. The kinetic peaks pre-
sented in Section 2 were all simulated for the ln(A/s− 1) = 35 & 
E = 120 kJ mol− 1 combination of model-free kinetic parameters. In 
order to verify the universality of the presented findings, all the calcu-
lations were repeated for two other combinations of E and A values: ln 
(A/s− 1) = 15.5 & E = 60 kJ mol− 1, and ln(A/s− 1) = 60 & 
E = 200 kJ mol− 1. This range of E values covers majority of the 
commonly encountered cases of solid-state kinetics (note that the pre- 
exponential factor only determines the peak position on the tempera-
ture axis and does not influence the peak asymmetry or width). As was 
expected, all tested combinations of E and A provided exactly similar log 
(1-rJMA)-a3 and αmax,z-log(1-rJMA) dependences, which indeed confirms 
universality of the present findings (even outside of the above- 
mentioned tested E/A limits). 

The correlation coefficients for the JMA fits presented in Section 2 
are crucial for the practical utilization of the corresponding αmax,z in-
tervals (see Fig. 4B). However, one needs to be able to associate these 
correlation coefficients with the real-life consequences in order to 
consider their importance. The deviations of the α-T dependences during 
the standard non-isothermal heating scan at 10 ◦C min− 1 are shown in 
Fig. 5. Each graph depicts the data-curves simulated using the AC model 
at ΔH = 1, ln(A/s− 1) = 35, E = 120 kJ mol− 1, M as denoted in the 
graph, and N corresponding to the αmax,z values determined from Fig. 4B 
(the exact αmax,z values are mentioned at the end of section 2; the cor-
responding N values were calculated using the interpolation between 
the simulated data). The α-T dependences in Fig. 5 show that even in the 
case of r2 = 0.995 a very reasonable description of the experimental 
data would be achieved using the JMA kinetics. Importantly, the de-
viations in the kinetic description occur at the high-α stages of the ki-
netic process (crystallization), and the initial onset remains under these 
conditions practically unaltered. This has very important consequences 
with respect to the main goal of the kinetic analysis, i.e. prediction of the 
materials behavior under extrapolated experimental conditions. The 
data from Fig. 5 prove that for the JMA-resembling kinetics the slight 
deviations arising from the usage of the JMA model for slightly different 
peak asymmetries still result in a very accurate determination of the 
onset of the process (provided that the E and A values are determined 
correctly and in accordance with the experimental data). This is a crucial 
information especially with respect to the determination of the stability 
of the glassy materials during their storage, processing or particular 
application conditions. 

In addition to the non-isothermal comparison depicted in Fig. 5, the 
analogous simulations were performed also for the true extrapolation of 
the kinetic behavior – the isothermal annealing at 50 ◦C. The corre-
sponding α-t dependences are shown in Fig. 6, defined similarly as in 
Fig. 5. Apart from the same conclusion regarding the exactly similar 
onset of the data even at the reported deviations from the JMA model, 
the isothermal dependences also show that up to ~ 70 % of material’s 
crystallinity the deviations in the reached α are negligible, and even at 
the late/end stages of the crystallization process the deviations do not 
exceed 10 % for the r2 = 0.995 correlation. This makes the JMA utili-
zation in less-than-ideal cases also perfectly viable with respect to the 
production of glass-ceramics, where the exact amount of the crystalline 
phase in the glassy matrix would be of concern. Lastly, in the case of the 
preparation of fully ceramic material, the times needed to reach full 
crystallinity can (especially for the slowly crystallizing materials as 
indicated by the lower M value) vary, depending on the r2 value, up to 
30 % for the levels of correlation tested in the present paper. This means 
that at larger deviations from the ideal JMA behavior the crystallization 
times or temperatures should be increased for the procedure to certainly 

Fig. 4. A) Correlation between the αmax,z values determined directly for the 
simulated AC peaks, and the a3 parameters obtained during the fit of the 
simulated AC peaks by the FS function. B) αmax,z values determined directly for 
the simulated AC peaks plotted against the correlation coefficients rJMA ob-
tained for the fits of the simulated AC peaks by the JMA model. Dashed lines 
indicate the particular correlation levels between the AC and JMA models. 
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produce the fully crystalline material. 

4. Conclusions 

Kinetic peaks with different asymmetry were simulated in terms of 
the autocatalytic kinetics, and consequently fit by the JMA model. Based 
on the correlation coefficients associated with the fit by the JMA model, 

borderline asymmetries corresponding to the JMA kinetics were deter-
mined for the correlations r2 = 0.999 and r2 = 0.995. These asymme-
tries were consequently associated with the simple metrics of the so- 
called z(α) masterplot function, finding the following limits for the 
two respective correlation boundaries: αmax,z = 0.620 – 0.665 for 
r2 = 0.999, and αmax,z = 0.585 – 0.705 for r2 = 0.995. These ranges are 
universally valid and significantly broader compared to the original 

Fig. 5. Kinetic predictions for the non-isothermal heating at 10 ◦C⋅min− 1 simulated in terms of the AC kinetics corresponding to the different correlations with the 
JMA model – as derived from Fig. 4B. 

Fig. 6. Kinetic predictions for the isothermal annealing at 50 ◦C simulated in terms of the AC kinetics corresponding to the different correlations with the JMA model 
– as derived from Fig. 4B. 
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limits of the JMA model applicability proposed in the paper that intro-
duced the z(α) masterplot function. It was further shown that also in the 
case of the correlation coefficient of r2 = 0.995 between the experi-
mental data and the fit by the nucleation-growth JMA model, a very 
accurate kinetic prediction (even extrapolated far outside the range of 
the measured experimental data) would be achieved. The predicted 
crystallization signals had exactly similar onsets, which validates the 
utilization of the new JMA applicability limits for all glass-stability tests. 
In addition, the predicted degree of achieved crystallinity was practi-
cally unaltered up to 70 %, which approves such data for usage in 
preparation of the glass-ceramics. 
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