
April-June 2021 | Vol. 59 | No. 2194

Flow Injection Amperometric Evaluation of Trolox Equivalent 
Antioxidant Capacity of Chocolates with Different Cocoa Content  

at a Boron-Doped Diamond Electrode  

original scientific paper 
ISSN 1330-9862

https://doi.org/10.17113/ftb.59.02.21.6984

Tahir Arbneshi1 ,  
Arbër Frangu1 ,  
Michaela Frühbauerová2 , 
Libor Červenka2 ,  
Liridon Berisha1 ,  
Kurt Kalcher3 and 
Milan Sýs2*

1�Department of Chemistry, Faculty of 
Mathematics and Natural Sciences, 
University of Prishtina, Str. Mother 
Teresa, 10 000 Prishtina, Republic of 
Kosovo

2�Department of Analytical Chemistry, 
Faculty of Chemical Technology, 
University of Pardubice, Studentská 
573, 532 10 Pardubice, Czech 
Republic

3�Institute of Chemistry-Analytical 
Chemistry, Karl Franzens University, 
Universitaetsplatz 1, 8010 Graz, 
Austria 

Received: 15 September 2020
Accepted: 6 May 2021 

*Corresponding author:
Phone: +420466037034
Fax: +420466037279
E-mail: milan.sys@upce.cz

SUMMARY
Research background. The objective of this paper is to introduce an instrumentally sim-

ple analytical tool for determination of cocoa solid content in chocolates. This electroan-
alytical method is based on amperometric oxidation of all present antioxidants in choco-
lates at boron-doped diamond electrode (BDDE) that is integrated in a flow injection 
analysis (FIA) wall-jet electrode system.

Experimental approach. As part of optimisation, thirteen commonly occurring antiox-
idants were investigated using cyclic voltammetry at the BDDE in 0.1 mol/L phosphate 
buffer with different methanol (MeOH) content. Working parameters, such as MeOH vol-
ume fraction, flow rate and detection potential, were optimised. Principally, the height of 
the oxidation peak (current response) representing the oxidation of the sum of antioxi-
dants (total antioxidant content; TAC) was expressed as Trolox equivalents.

Results and conclusions. For analytical purpose, a linear range from 5 to 100 mg/L de-
scribed by regression equation and characterised by high correlation coefficient R2=0.9994 
was achieved. Obtained high positive correlation between the determined values of Trolox 
equivalent antioxidant capacity (TEAC) and cocoa mass fractions characterised by corre-
lation coefficient of 0.9187 for eight randomly selected samples (one white, two milk, and 
five dark chocolates) confirmed that cocoa solids represent the main source of antioxidants 
(reducing agents).

Novelty and scientific contribution. The research demonstrates that TEAC values could 
be considered as an additional marker of cocoa content in the chocolate analysis to the 
commonly used theobromine (authenticity of food products). The developed FIA could 
therefore serve as simple analytical tool in the food quality control. 

Key words: Trolox equivalent antioxidant capacity, amperometry, boron-doped diamond 
electrode, flow injection analysis, cocoa mass fraction in chocolate 

INTRODUCTION
Chocolate is a favourite food product made from cocoa beans that is consumed as 

sweets or beverage and to flavour or coat various confectionery and bakery products (1). 
Generally, the chocolate is divided into three main categories, namely dark, milk and white 
chocolate (1,2). Dark chocolate usually contains 50–90 % cocoa solids, cocoa butter and 
sugar, whereas milk chocolate contains 10–50 % cocoa solids, cocoa butter, milk in some 
form and sugar. White chocolate does not contain any cocoa solids and is made simply of 
cocoa butter, sugar and milk powder (3). Lower quality chocolates may also contain but-
ter fat, vegetable oil or artificial colours or flavours. According to EU legislation (2000/36/
ES), the last-mentioned type must not be labelled as chocolate (4). U.S. Food and Drug 
Administration (FDA) issued an order that semisweet chocolate must contain a minimum 
of 35 % chocolate liquor (5).

In the recent past, Czech Agriculture and Food Inspection Authority revealed the sad 
fact that most commercially available chocolates do not have the declared content of co-
coa solids in order to be classified as a regular chocolate. Moreover, the statutory minimum 
content of cocoa solids was missing in some chocolate drinks (6). These unsatisfactory 
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reports demonstrate the urgency to develop a simple ana-
lytical method applicable in the chocolate analysis.

Theobromine (TBR) is the primary alkaloid contained in 
cocoa powder and chocolate. Since TBR ranges from 26 g/kg 
in cocoa to 140 mg/kg in cocoa butter, this alkaloid can be 
considered as a marker of cocoa content (7). Determination 
of fat-free cocoa solids is performed using a protocol ČSN 56 
0578, based on the HPLC analysis (8).

In addition to TBR, dark chocolate is rich in minerals, such 
as potassium, iron, magnesium, copper, manganese and zinc. 
The cocoa in dark chocolate also contains antioxidants called 
flavonoids, which may provide several health benefits (3,9). 
Assuming that cocoa powder and cocoa butter are the only 
sources of antioxidants, it is possible to use the total antioxi-
dant content (TAC) as another potential marker of cocoa con-
tent (10). Phenolic compounds, flavours (vanillin and ethyl-
vanillin) and alkaloids (TBR and caffeine) present in chocolate 
represent reducing agents that can be electrochemically ox-
idised at carbon-based working electrodes (11–14).

Due to an insignificant passivation of the electrode sur-
face, a boron-doped diamond electrode (BDDE) was integrat-
ed into wall-jet flow cell to find out whether a simple flow 
injection analysis (FIA) with amperometric detection could 
be used for evaluation of dark chocolates (15). A correlation 
(R or R2), known as a statistical measure describing a relation-
ship between two variables (16), represented ideal tool to 
clarify the dependence between the declared cocoa content 
and TAC values in numerous dark chocolate samples. 

MATERIALS AND METHODS

Chemicals and reagents

Analytical standards of ≥99.0 % l-ascorbic acid, ≥98.0 % 
caffeic acid, 99.0 % caffeine, ≥99 % trans-cinnamic acid, ≥98 % 
(–)-epicatechin, 97 % (±)-6-hydroxy-2,5,7,8-tetramethylchro-
mane-2-carboxylic acid (Trolox), ≥95  % chlorogenic acid, 
97.5–102.5 % gallic acid, ≥97.0 % kaempferol, ≥98 % (+)-cat-
echin hydrate, ≥95 % naringin, ≥98 % sinapic acid, ≥98.0 % 
theobromine and ≥97 % vanillin were purchased from Sigma-
-Aldrich, Merck (Prague, Czech Republic). All voltammetric 
measurements were performed in their 1.0 mmol/L aqueous 
solutions of 0.1 mol/L phosphate buffer, pH=7.0, prepared 
from sodium dihydrogen phosphate dihydrate and disodium 
hydrogen phosphate, both obtained from Lach-Ner, Ltd. 
(Neratovice, Czech Republic). Due to low solubility, naringin, 
(+)-catechin, (–)-epicatechin and kaempferol had to be dis-
solved in phosphate buffer containing volume fraction of 
10 and 50 % methanol (MeOH). Deionized water (ρ=18.3 MΩ. 
cm) obtained with a Milli-Q® water purification system from 
Merck (Darmstadt, Germany) was used for the preparation of 
phosphate buffer. 

Pretreatment of boron-doped diamond electrode

A commercially purchased boron-doped diamond elec-
trode (BDDE) with boron to carbon ratio of 1:1000 and a 

surface diameter of 3 mm (Windsor Scientific Ltd, Slough, UK) 
was used for all experiments. The BDDE surface was mechan-
ically pretreated by carefully polishing it with a wet filter pa-
per to eliminate the passivation layers on the electrode 
caused by oxidation products of polyphenols. 

Instrumentation

The electrochemical behaviour of the dominant thirteen 
substances with antioxidant effect present in chocolate and 
Trolox was studied using cycling voltammetry at BDDE which 
was simultaneously connected with a silver/silver chloride 
electrode, 3.0 mol/L KCl as salt bridge (reference electrode) 
from Metrohm Česká republika s.r.o. (Prague, Czech Republic) 
and platinum sheet (auxiliary electrode) from Elektrochem-
ické detektory, s. r. o. (Turnov, Czech Republic) to the poten-
tiostat/galvanostat Autolab PGSTAT101 operated via the 
Nova 1.11 software from the above-mentioned Metrohm 
company (17).

Flow injection analysis (FIA) configuration consisted of a 
multi-channel peristaltic pump MINIPULS 3 from Gilson (Mid-
dleton, WI, USA), Rheodyne automatic six-position dosing 
valve from IDEX Health & Science (Wertheim, Germany), and 
BDDE inserted into the cross-flow cell from Inventek Sp. z o.o. 
(Warsaw, Poland), as shown in Fig. 1. 

Fig. 1. Schematic diagram of the electrochemical flow cell used in 
the amperometric measurements in flow injection system: 1=poly-
urethane resin block, 2=silver chloride reference electrode, 3=auxi-
liary platinum electrode, 4=boron-doped diamond electrode, and 
5=polyethylene tubing 

Methods

Repetitive cyclic voltammetry (five cycles) was used to 
determine oxidation peak potentials of the investigated an-
tioxidant substances. Potential range was set from –0.4 to 
+1.6 V, initial potential of 0 V, scan rate (ν) 50 mV/s, and poten-
tial step (Estep) 2.5 mV. Flow injection analysis with ampero-
metric detection in the wall-jet configuration was usually per-
formed at +1.3 V vs a miniature silver/silver chloride reference 
electrode at flow rate of 1 mL/min. The 0.1 mol/L phosphate 
buffer (pH=7.0) containing 30  % methanol was used as 

Fig. 1
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flowing carrier solution. Otherwise, all necessary changes in 
the working conditions are listed in the legends of the corre-
sponding figures. 

Sample preparation

Several purposefully selected chocolates of imported or-
igin, differing in the cocoa solid content from 0 to 80 %, were 
purchased from common stores in Prishtina, Kosovo. The ex-
traction of potential antioxidants from the chocolate samples 
of 5 g containing different amounts of cacao were carried out 
in a total mixture of 50 mL of water (70 %), acetone (29.8 %) 
and glacial acetate acid (0.2 %) using the ultrasonic bath at 
30 °C for 30 min. The acetone was evaporated in ultrasonic 
bath at 40 °C for 20 min. After this, the solution with choco-
late was adjusted with 0.1 mol/L NaOH to pH=5 and diluted 
in 100-mL volumetric flask using 0.1 mol/L phosphate buffer 
(pH=7.0) and MeOH (φ=30 %). The sample was then centri-
fuged five times at stirring speed of 1000 rpm for 4 min and 
filtered through a filter paper of pore size less than 1 μm. The 
filtrate obtained from the chocolate extracts was diluted five-
fold to reduce the high content of extract-reducing agents. 
Sample volume of 100 µL was used for FIA analysis. 

Statistical evaluation

Analysis of chocolate extracts was always repeated five 
times (N=5) and final results were calculated and presented 
as error bars (confidence intervals) x–±st1-α, where x–  is the arith-
metic mean, s the standard deviation, and t1-α the critical val-
ue of Student’s t-distribution for five (4 degrees of freedom) 
determinations (2.7764) at a significance level α=0.05 (95 % 
probability). 

RESULTS AND DISCUSSION

Electrochemical behaviour of substances 
present in chocolate

In this work we investigated only the reducing power of 
the chocolate samples, i.e. the potential of a substance to re-
duce another substance either by removal of hydrogen atom 

or release of electrons. We did not use conventional spectro-
photometric assays, which are based on monitoring the reac-
tions between the present antioxidants and 2,2’-azi-
no-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) or 
di(phenyl)-(2,4,6-trinitrophenyl) iminoazanium (DPPH•) radi-
cals. 

Since we can anodically oxidise most of the chocolate 
components with antioxidant activity at carbon-based work-
ing electrodes (18–20), we investigated the electrochemical 
behaviour of thirteen selected antioxidants using repetitive 
cyclic voltammetry (five cycles) at BDDE in 0.1 mol/L phos-
phate buffer (pH=7.0) from 0 to +1.6 V and back to 0.4 V. Due 
to low water solubility, phosphate buffer with MeOH (φ=10 %) 
was used for electrochemical study of (+)-catechin, (–)-epi-
catechin and naringin, while addition of 50 % MeOH was nec-
essary for kaempferol due to its low solubility in water.

To set a constant working potential for the subsequent 
amperometric detection, it was important to determine the 
values of the peak potentials of individual antioxidants. All 
investigated antioxidants provided minimally one oxidation 
peak, where for the analytical purpose (determination of co-
coa powder content in chocolate), peak potential values of 
the first peaks are shown in ascending order as follows: caf-
feic acid at +0.398 V, kaempferol at +0.483 V, chlorogenic acid 
at +0.505 V, sinapic acid at +0.620 V, gallic acid at +0.635 V, 
(+)-catechin at +0.640 V, l-ascorbic acid at +0.649 V, vanillin 
at +0.688 V, (–)-epicatechin at +0.744 V, naringin at +1.011 V, 
cinnamic acid at +1.133 V, caffeine at +1.384 V, and theobro-
mine (TBR) at +1.404 V.

For demonstration, repetitive cyclic voltammograms (5 
cycles) of Trolox, vanillin, and TBR are shown in Fig. 2. In all 
cases, a decrease in the oxidation signal was observed with 
each subsequent cycle, indicating a slow transport of oxida-
tion products from the BDDE surface. This phenomenon was 
solved when these products were flushed from the electrode 
surface by amperometric detection in a flow mode. From the 
above-mentioned peak potential values, it is clear that if a 
constant potential is set for amperometric detection of 
+0.623 V (Trolox), antioxidants having higher oxidation peak 
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Fig. 2. Repetitive cyclic voltammograms (5 cycles) of: a) 1 mmol/L Trolox, b) vanillin, and c) theobromine recorded on boron-doped diamond 
electrode in 0.1 mol/L phosphate buffer (pH=7.0) at a scan rate of 50 mV/s. Black curves (blank) indicate the cyclic voltammograms obtained for 
phosphate buffer only
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potentials will not be included in chocolate analysis. Hence, 
an effect of amperometric detection on total antioxidant con-
tent (TAC) values was essential for optimisation. These TAC 
values are usually expressed as Trolox equivalent antioxidant 
capacity (TEAC) (21). The presence of short-chain alcohols in 
phosphate buffer (aqueous-alcoholic mixtures) generally has 
no effect on peak shift. However, this assumption had to be 
verified for a MeOH volume fraction of 10 to 50 %. 

Optimisation of flow injection analysis

The optimisation procedure included selection of opti-
mal working parameters, such as composition of carrier solu-
tion, potential of amperometric detection, and flow rate. Due 
to the presence of slightly water-soluble phenolic acids, fla-
vonoids and tannins, it was necessary to select the MeOH 
volume fraction in the carrier solution of 0.1 mol/L phosphate 
buffer (pH=7.0). The whole optimisation was carried out in 
the dark chocolate extract with w(cocoa)=80 %. 

In general, polyphenolic compounds can be defined as 
weak organic acids for which it is known that their peak po-
tentials are shifted to more positive potentials with decreas-
ing pH values (22,23). The main reason for not performing FIA 
with acidic carrier solution is the necessity of amperometric 
detection at high positive potentials. The effect of pH in a 
range of pH=6–9 on current response of 1 mmol/L Trolox was 
investigated using cyclic voltammetry in 0.1 mol/L phosphate 
buffer. The obtained results indicate that the Trolox provides 
the maximum current response at pH=7, which was consis-
tent with other studies that report the determination of poly-
phenols using FIA (24,25).

The optimum volume fraction of methanol in the carrier 
phosphate buffer solution was determined by varying 
φ(MeOH)=0–50 %. For constant detection potential of +1.3 V 
and flow rate of 1 mL/min, the extract of dark chocolate pro-
vided an oxidation peak whose height increased with higher 
volume fractions of MeOH (up to 30 %) in the phosphate buf-
fer (Fig. 3) and this was taken as an optimum for further mea-
surements. 

Retaining the detection potential constant throughout 
the analysis is of critical significance for the application of am-
perometric sensing. After injection of the chocolate extract 
into the flowing carrier solution, an evident increase in the 
current response became clear for potentials greater than 
+0.7 V, whereas setting at higher potential values triggered 
only a small increase in the current response. However, a sig-
nificant increase in the baseline current response was ob-
served at detection potentials greater than +1.4 V and thus 
the optimal value of +1.4 V was chosen for preventive pur-
poses.

The carrier solution flow rate was also the important FIA 
working parameter to be optimised as it specifies the dura-
tion of reducing agents (polyphenols) in the column where 
their electrochemical oxidation takes place. The flow rate of 

0.2 to 1.6 mL/min for 50 mg/L Trolox was investigated at the 
fixed potential of +1.3 V. A sharp rise in peak height was seen 
up to 1 mL/min, while a constant current response was ob-
served above that flow rate. Therefore, a flow rate of 1 mL/
min was chosen as optimum. 

Analytical method validation

First, it is necessary to note that the presented contribu-
tion is not an introduction of a newly developed analytical 
method for TEAC determination of chocolate extracts, but an 
initial study to find out whether TEAC values can be used as 
a marker for cocoa content in chocolate samples. However, a 
simple validation of FIA with amperometric detection at 
BDDE had to take place.

Precision, defined as the level of agreement of repeated 
measurements, was determined as relative standard devia-
tion (RSD) of five analyses (injections). For example, RSD val-
ues of 3.3 and 3.8 % for milk chocolate (30 % cocoa) and dark 
chocolate (50 % cocoa) extracts, respectively, were calculat-
ed. If significance level of 5 % (α=0.05) is taken into account, 
satisfactory precision can be obtained.

As shown in Fig. 4, the dependence of height of oxidation 
current on Trolox concentration was studied for calibration 
range from 5 to 160 mg/L. A calibration range from 5 to 100 
mg/L Trolox was described by the following equation:

	  I=0.04859+0.0233c     R2=0.9994	 /1/

where 0.04859 is a slope characterising the sensitivity, 0.0233 
is y-intercept, and c is the concentration of the standard 
(Trolox). This linear behaviour between Trolox concentration 
and peak current response can be applicable for analytical 
purpose. If concentrations higher than 100 to 160 mg/L Trolox 
are included into calculations of linear regression, the follow-
ing equation will be obtained:

	 I=0.05736+0.0211c     R2=0.9954	 /2/

where 0.05736 is the slope, and 0.0211 is y-intercept. Due to 
the high value of the intercept, it was not possible to use the 

Baseline
0.05668
0.0691

0.05854
0.21486
0.26242

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50

I/µ
A

φ(MeOH)/%

Fig. 3. Effect of MeOH volume fraction in phosphate buffer on the 
current response of the extract of dark chocolate with w(cocoa)=80 
%. Results were recorded on boron-doped diamond electrode in FIA 
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method of standard addition, and therefore method of cali-
bration curve was preferred. Limit of detection (LOD) and lim-
it of quantification (LOQ) of 1.4 and 4.6 mg/L Trolox, respec-
tively, were calculated according to the formulae:

	 LOD=3s/k	 /3/
and
	 LOQ=10s/k	 /4/

where 3 and 10 are statistically recommended multiples of 
the baseline noise, s represents the standard deviation of five 
repetitive measurements of 5 mg/L Trolox and k is the slope 
of linear regression (0.0233). 

Unlike this, the dark chocolate extract samples were diluted 
twice so that their current responses would not exceed the 
linear range. 

Except for one sample of chocolate with 80 % cocoa (ex-
cluded from statistical evaluation), TEAC values (mg Trolox 
per 100 g sample) increased with higher cocoa mass fraction. 
The reason why the dark chocolate extract provided the cur-
rent response like chocolate samples with half the cocoa con-
tent has not been further investigated. However, it can be as-
sumed that the manufacturer probably declared false 
nutritional information.

Fig. 6 shows that TAC presented as TEAC could be consid-
ered as additional marker of cocoa content in the chocolate 
analysis to the commonly used TBR and caffeine (7). More-
over, a high positive correlation between the determined 
TEAC values and cocoa mass fractions characterised by 
R=0.9187 for eight randomly selected chocolate samples is 
proof of that. The calculated TEAC values from FIA are in close 
agreement with those previously reported routine spectro-
photometric assays that are usually based on the reaction of 
antioxidants with a colour radical (26,27). 
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Fig. 4. Typical amperograms of flow injection analysis recorded on 
boron-doped diamond electrode within calibration measurements 
at optimum working conditions (phosphate buffer with φ(MeOH)=30 
%, flow rate of 1 mL/min and detection potential of +1.3 V)

Fig. 6. Trolox equivalent antioxidant capacity (TEAC) of white (0 %), 
milk (30 %), and dark (50-80 % cocoa mass fraction) chocolates ob-
tained using the flow injection analysis with integrated boron-doped 
diamond electrode

Fig. 5. Typical record obtained during flow injection analysis of white 
(WC), milk (MC) and dark chocolate (DC) at the boron-doped dia-
mond electrode

Analysis of chocolate samples

Extracts of white chocolate (0 % cocoa), two samples of 
milk chocolate (30 % cocoa), and three dark chocolates (50, 
64 and 80 % cocoa) were analysed using FIA at BDDE. Two 
milk chocolates from different manufacturers with the same 
cocoa mass fraction were chosen to verify the accuracy of the 
analysis. Fig. 5 shows that both extracts of milk chocolates 
provided comparable current response. In addition, a current 
response at the limit of detection was obtained for the ex-
tract of white chocolate which confirms that this type of choc-
olate cannot be considered as a rich source of antioxidants. 

CONCLUSIONS
The boron-doped diamond electrode integrated in the 

flow injection analysis (FIA) system could represent a simple 
analytical tool for evaluation of chocolate quality by deter-
mining its cocoa content. This basic study represents the first 
step in the development of a simple analytical method for 
determination of cocoa content as a source of polyphenols 
and other potential antioxidants (reducing agents). It is ex-
pected that the analyses of more chocolate samples contain-
ing different cocoa powder mass fractions and comparisons 
with measured total phenolic content as Trolox equivalents 
will be the subjects of the upcoming investigations. The de-
veloped FIA will find application in the food quality control if 
the presented assumption is confirmed. 

Fig. 4

Fig. 5

Fig. 6
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