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Counting of passengers entering and exiting means of transport is one of the basic functionalities of passenger flow monitoring
systems. Exact numbers of passengers are important in areas such as public transport surveillance, passenger flow prediction,
transport planning, and transport vehicle load monitoring. To allow mass utilization of passenger flow monitoring systems, their
cost must be low. As the overall price is mainly given by prices of the used sensor and processing unit, we propose the utilization of
a visible spectrum camera and data processing algorithms of low time complexity to ensure a low price of the final product. To
guarantee the anonymity of passengers, we suggest orthogonal scanning of a scene. As the precision of the counting is relevantly
influenced by the precision of passenger recognition, we focus on the development of an appropriate recognition method. We
present two opposite approaches which can be used for the passenger recognition in means of transport with and without entrance
steps, or with split level flooring. The first approach is the utilization of an appropriate convolutional neural network (ConvNet),
which is currently the prevailing approach in computer vision. The second approach is the utilization of histograms of oriented
gradients (HOG) features in combination with a support vector machine classifier. This approach is a representative of classical
methods. We study both approaches in terms of practical applications, where real-time processing of data is one of the basic
assumptions. Specifically, we examine classification performance and time complexity of the approaches for various topologies
and settings, respectively. For this purpose, we form and make publicly available a large-scale, class-balanced dataset of labelled
RGB images. We demonstrate that, compared to ConvNets, the HOG-based passenger recognition is more suitable for practical
applications. For an appropriate setting, it defeats the ConvNets in terms of time complexity while keeping excellent classification
performance. To allow verification of theoretical findings, we construct an engineering prototype of the system.

1. Introduction

In passenger transport, person flow monitoring has an in-
dispensable importance. In some areas of public transport,
passenger flow monitoring systems are employed to auto-
mate this task. One of the basic measures, which must be
provided by the system, is the number of transported
passengers. A precise counting of passengers entering and
exiting means of transport has a positive effect on public
transport surveillance, passenger flow prediction, transport
planning, transport vehicle load monitoring, station control
and management, and cost optimization [1, 2].

To ensure a robust and precise counting of passengers in
real time, a passenger flow monitoring system must be based

on an appropriate imaging system and data processing al-
gorithms. In order to allow a mass deployment of such a
monitoring system, a low-cost final solution is equally
important. The solution should also meet legal requirements
where passenger anonymity is of great importance. Spe-
cifically, identification of individuals according to their faces
must be avoided.

The imaging system must ensure the acquisition and
processing of data, i.e., its basic components are a sensor and
a processing unit. In order to develop an inexpensive so-
lution, low price of both components is crucial. While the
lower price limit of the processing unit is mainly given by the
complexities of used data processing algorithms, the lower
price limit of the sensor is given by the used sensing
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technology. Radar sensors [3], laser scanners [4], 3D laser
scanners [5], or infrared sensors [6] are applicable for the
counting of passengers. All these sensors naturally guarantee
a high level of passenger anonymity. Their main drawbacks
are high prices of the sensors and frequent errors in the
counting [7, 8]. For these reasons, cameras operating in the
visible spectrum of light are preferably used for the counting
of persons [9]. Conventional cameras (cameras operating at
wavelengths of visible light) are significantly cheaper,
compared to the previously mentioned sensors. The cameras
can be combined with depth sensing devices [10]. The fusion
of data can result in a more balanced trade-off between false
positives and false negatives [11]. On the other hand, the
depth sensing devices increase the final prices of sensors, i.e.,
utilization of a depth sensing device would increase the final
price of the imaging system.

The automated counting of persons in a scene is usually
carried out in colour images or in sequences of colour
images. Many data processing algorithms aimed at precise
counting of persons in crowded scene images have been
presented [9]. Most of them are designed for overriding
installations of cameras. Cameras installed at public as well
as at private places usually look down on scenes from angles
that typically range between 40° and 80° (from the ground).
Considering low subject distances in transportation means
(a distance between a camera and a passenger), we conclude
that the anonymity of passengers is not guaranteed for such a
setup (i.e., data processing algorithms aimed at processing of
such images cannot be used for the counting of passengers).
Only orthogonally captured images (camera placed above a
scene, looking directly down on the scene) assure a high level
of passenger anonymity (Figure 1).

A data processing chain, aimed at counting of persons
in orthogonally captured images, is compounded of three
fundamental steps: person detection, multiperson tracking,
and person counting (Figure 2). In the first step, a pro-
cessed image is examined for the presence of persons. The
following step is the tracking, where all persons detected
within the first step are matched with existing tracking
models of persons. In the case a person cannot be asso-
ciated with any existing model, a new tracking model is
initialized. The last step of the chain is the counting. If a
person described by a tracking model leaves the scene,
which is usually defined by virtual lines, counting is trig-
gered [11]. Naturally, an integral part of this data pro-
cessing chain is an algorithm which splits video data
provided by a camera into individual images.

Accuracy and time complexity of the data processing
chain is primarily given by accuracy and time complexity of
the person detection. Person detection is a process of lo-
cation and recognition of persons in images. Within this
process, possible locations of persons (regions) are proposed
using an appropriate technique. The regions determine
candidate object images, which are classified using an ap-
propriate object recognition system. The proposition of
regions can be carried out using an exhaustive method such
as a sliding window [12] or using an advanced time-efficient
method such as a selective search algorithm [13]. In modern
object detection systems, both the location and the
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recognition are carried out by a single deep neural network
[14-16]. These systems are characterized by high detection
accuracy but high time complexity.

As the analysis shows, a low-cost passenger counting
system should be based on a conventional camera (due to
low prices of visible light cameras). In order to guarantee the
anonymity of passengers, the camera must be placed above a
scene, looking directly down on the scene. For the data
processing, methods capable of processing orthogonally
captured images must be used. The resulting data processing
chain must be robust and precise. To keep the low-cost
requirement, the time complexity of the methods should be
as low as possible. From this perspective, the detection of
passengers seems to be the weak link in the chain.

As the time complexity of the single deep neural network
detectors is high [14-16], we tend to implement a passenger
detector as a two-stage system. When using a robust and
time-efficient region proposal method such as selective
search algorithm [13], the accuracy and computational
complexity of the detector is mainly given by a used object
recognition method. In colour images, the recognition of
persons typically relies on optical flow features [11, 17, 18].
An alternative approach to the detection of persons is the
detection of their heads and shoulders [19]; however, a head
itself can provide a strong feature due to its almost circular
shape. The counting of heads is typically used by counting of
persons in dense crowd images [20, 21]. Recognition of
heads in orthogonally captured images can also rely on the
optic flow analysis [22]. The main disadvantages of optic
flow-based methods are their high computational com-
plexity and noise sensitivity [23].

Considering the importance of passenger recognition for
their counting, we focus on the development of a price-
competitive and time-efficient object recognition system. As
the system is aimed at recognition of passengers, we name it
“the passenger recognition system.” As the trend in object
recognition is still clearly heading towards convolutional
neural networks (ConvNets) [24, 25], we examine the
performance of ConvNets for passenger recognition. Usu-
ally, ConvNet-based object recognition systems have good
classification performance, but their time complexity is
typically high. For this reason, we propose a competitive
approach which is based on histograms of oriented gradients
(HOQG) features [26] and on a support vector machine
(SVM) classifier. For an appropriate setting of parameters,
HOG-based object recognition can have good classification
performance while keeping low time complexity [27].

Recognition of passengers in orthogonally captured
images using the HOG features and the SVM classifier, based
on object images which comprise of heads and shoulders of
passengers, has proven useful in scenes without height
differences [19]. Modern public means of transport are
increasingly low-floor (i.e., there is no or negligible height
difference in the area of a doorway), but a substantial part of
operated buses, trams, trains, and trolleybuses are high-floor
[28-30]. Considering this fact, we conclude that the ro-
bustness of the HOG-based passenger recognition system
must be verified in the context of variable distances between
a camera lens and passenger heads. We also consider that the
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FiGure 1: Examples of images orthogonally captured in a tram. Identification of persons in the images according to their faces is implausible.
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F1GURE 2: Overall diagram of a person counting system. The system processes images streamed by a monocular camera. Each image is firstly
examined for a presence of persons. Positive samples are then associated with existing tracking models of persons. If sample is not associated
with any existing model, a new model is initialized. If a tracking model leaves scene, which is defined by virtual lines, counting is triggered.

time complexity of the system can be reduced once the object
image contains only the heads of the passengers (omitting
the shoulders will result in smaller object images and
consequently reduce data processing time). We deduce the
suitability of such an approach from remarkable results of
HOG-based object recognition systems on similar tasks, e.g.,
for grape detection [31, 32] (see Figure 3; the round shape of
grapes is similar to the shape of heads).

Within this article, we study the classification perfor-
mances and time complexities of passenger recognition
systems. The systems are aimed at recognition of passengers
in orthogonally captured images, where the recognition
quality is not adversely affected by the variable distance
between the passenger and camera sensor. The passenger
recognition systems are based either on ConvNets or on
HOG features. Both approaches rely on the detection of
heads. In the case of ConvNet-based systems, we consider
ConvNets of various topologies. In the case of the HOG-
based system, we examine various settings of parameters.
We validate the theoretical results in a real-world applica-
tion. For this purpose, we develop an engineering prototype
of the system.

2. Material and Methods

2.1. Engineering Prototype of the System. Two basic com-
ponents of the system are the sensor and the processing unit
(Figure 4). In our case, we use an industrial colour camera
Basler acA2500-60uc [34] as the sensor. The camera is placed
in a means of transport, at the ceiling near a door. The optical
axis of the camera is perpendicular to the vehicle floor.
Considering the construction of means of transport, we
expect the average subject distances to be from 0.2m to 1 m.
The camera should monitor an area of about 2.4 m x 2.0 m.
With respect to these parameters, we equipped the camera
with a Computar M3514-MP lens [35]. The output of the
camera (i.e., the input of the data processing chain) is a
sequence of RGB images.

We use the prototype for a data collection as well as for
the validation of the proposed recognition methods, i.e., the
prototype must be capable of processing acquired images in
real time. In order to allow testing of all proposed solutions
(including solutions based on ConvNets), we use a single-
board computer VOB-P3310. It offers an NVIDIA Tegra X2
(2.0 GHz, 6 cores) CPU together with 8 GB RAM and it
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FiGure 3: Comparison of head (three images in (a)) and grape images (three images in (b)). For each category, we provide an original RGB
image, an image obtained by filtering of the RGB image using the Canny edge detector [33], and gradients obtained using a HOG descriptor
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FIGURE 4: Architecture of person flow monitoring system (side view). Crossing space between lines causes person to be counted.

provides wide communication possibilities (USB 2.0, 3.0,
SATA, WiFi) [36].

2.2. Passenger Recognition. Candidate object images may or
may not contain complete heads of passengers (Figure 5).
According to this criterion, the images are classified either as
“head” or “not head” by a passenger recognition system.
Inputs of the recognition system are sized normalized RGB
object images of dimensions 51 x 51 pixels ([51, 51] px). Its
outputs are labels of the images, where labels “head” and
“not head” are allowed.

2.2.1. Passenger Recognition Based on ConvNets. In terms of
classification accuracy, the state-of-the-art object recogni-
tion systems are based on one of the successful deep
ConvNet architectures [37]. Mostly, they process raw image
data (i.e., no image preprocessing is usually carried out).
They consist of multiple layers arranged in a feed-forward
manner. Upper and lower level layers ensure feature ex-
traction and classification of object images, respectively. The

feature extraction is usually carried out using convolutional
and pooling layers, where the convolutional layers are
typically combined with a ReLU activation function. The
classification is generally ensured by a softmax activation
function. The function processes data at the output of the last
network layer, where a fully connected layer is placed. The
number of neurons of this layer corresponds to the number
of object classes [38]. The main drawback of the state-of-the-
art deep ConvNet architectures is their high computational
demands.

The passenger recognition can be simply implemented as
a ConvNet of an appropriate architecture, where the net-
work ensures both feature extraction and classification
(Figure 6). As a low time complexity of the system is crucial,
we test the performance of five ConvNet architectures of
different complexities.

The simplest architecture, Netl, consists of one con-
volutional layer (32 filters with 3 x 3 px kernels), one max-
pooling layer (2 x 2 px nonoverlapping pools), and two fully
connected layers of 512 and 2 neurons, respectively. The
classification is carried out using the softmax function. In the
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FIGURE 5: Detection of passengers in orthogonally acquired video data. Candidate object images proposed by a search algorithm (yellow
rectangles) are tested. Some of them are classified as “head” (red rectangles), which represents the locations of passengers.

second simplest architecture, Net2, we replace the con-
volutional and the max-pooling layers by the sequence of
layers: convolutional layer (32, 3 x 3) + convolutional layer
(32, 3 x3)+ max-pooling layer + convolutional layer (64,
3 x 3) 4+ convolutional layer (64, 3 x 3) + max-pooling layer,
where 2 x2 px nonoverlapping pools are used at both
pooling layers. In both networks, we use ReLU activation
functions at the convolution and fully connected layers. To
reduce overfitting, we place dropout layers after each max-
pooling layer and after the first fully connected layers in both
networks. The dropout rate is 25% and 50% for the max-
pooling and the fully connected layers, respectively.

The remaining three architectures studied within this
article are the well-known LeNet-5 [39, 40], AlexNet [41],
and VGG-16 net [42]. The networks are ordered according
to their complexities. The LeNet-5 is the pioneering Con-
vNet of a relatively simple architecture. AlexNet is probably
the most cited deep ConvNet with a huge number of in-
dustrial and engineering applications. VGG-16 is a repre-
sentative of very deep ConvNets. As it consists of only 13 and
3 convolutional and fully connected layers, respectively, the
real-time processing of data by VGG-16 implemented in the
engineering prototype (Section 2.1) is still possible.

We train all the networks from scratch with initial
weights set randomly with normal distribution (mean=0,
standard deviation =0.05). In addition, we use transfer
learning (TL) for AlexNet and VGG-16 in order to test the
possibility of better performance [41, 42]. For both archi-
tectures, we fine-tune the last three layers of the pretrained
networks.

Due to a stochastic character of the training process, we
repeat the training a hundred times for each network and
training strategy. For each training, we randomly split up a
training set into training and validation subsets at the ratio 85:
15. For each training subset, we run the training in a batch
mode for 100 epochs with batches of 32 images. We randomly
shuftle data in training subsets for each epoch. We use an
ADAM optimizer [43] with initial learning rate setup at 10~
and exponential decay rates for the first and second moment
estimates setup at 0.9 and 0.999, respectively. The optimizer
and setting of the hyperparameters are the results of a pilot
study. We minimize a binary cross-entropy function:

Convolutional
neural network

FIGURE 6: Vision pipeline of the passenger recognition systems
based on ConvNets.

1 &, -
EconyNet = > Z[)’j ln(}’j) +(1 _)’j)ln(l _yj)]’ (1)
=

where n is the number of images in the training subsetand y;
and y; are an actual and a predicted class of the j-th object
image, respectively. We validate each such trained network
on the corresponding validation subset using the cross-
entropy function (1).

2.2.2. Passenger Recognition Based on HOG and SVM.
Herein, we present a passenger recognition system devel-
oped using traditional computer vision techniques. A vision
pipeline of the system consists of three successive steps:
image preprocessing, feature extraction, and classification
(Figure 7). For the feature extraction and classification, we
use the HOG descriptor and SVM classifier, respectively. In
order to reduce the time complexity of the system, we
convert input RGB images to the grayscale format within the
image preprocessing. The conversion is carried out
according to the ITU-R recommendation BT.601 [44]. The
second step of the preprocessing is the unity-based nor-
malization of the grayscale images [31].

The HOG descriptor encodes local shape information
from regions within an image into a feature vector [26]. The
descriptor has five parameters: number of bins, orientation
binning, size of cells (in pixels), number of cells in blocks,
and number of overlapping cells between adjacent blocks. As
the size of cells significantly influences the final performance
of image recognition systems [27] (Figure 8), we study the
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FI1GURE 7: Vision pipeline of the passenger recognition system based on the HOG descriptor and on the SVM classifier. The conversion
combined with the normalization is aimed at reducing of time complexity of the system.

FIGURE 8: From left to right: the original object image [51, 51] px and images with highlighted gradients of HOG features for cell of sizes

(16,

16] px, [8, 8] px, and [6, 6] px, respectively. The length of white abscissae is related to the gradients in the image.

influence of this parameter on the classification performance
of the HOG-based passenger recognition system. Specifi-
cally, we consider cells of sizes [6,6], [8,8],.. ., [16,16] px.
For the remaining parameters, we use a conservative setting
which has proven to be efficient: linear gradient voting into 9
bins linearly spread over 0 to 180 degrees, blocks of 2 x 2
cells, and 1 overlapping cell between adjacent blocks in both
directions.

Training of the SVM classifier is an optimization
problem which searches for a hyperplane with a maximal
margin from the training data [45]. In the case that the data
is not linearly separable, the data must be transformed into a
linearly separable problem using an appropriate kernel
function. For strongly nonlinear problems, selection of the
kernel function is crucial. Considering this fact, we test the
influence of various kernels on the performance of the
HOG-based passenger recognition system. Specifically, we
focus on the well-established linear, Gaussian radial basis
function (RBF), and polynomial kernel functions (we use
polynomial kernel with order equal to 2 and 3).

Performances of SVM classifiers are also influenced by
settings of their regularization constants. In the case that an
SVM classifier uses the RBF kernel, its performance is
further influenced by kernel width. In a pilot study, we have
found setting of the regularization constant at 1 to be op-
timal. We use a subsampling-based heuristic procedure to
find the optimal setting of the kernel width.

As classification performances of classifiers strongly
depend on the composition of training sets, we search for a
setting ensuring the best performance of the HOG-based
passenger recognition system. We carry out the search in the
manner described in Section 2.2.1. Specifically, we randomly
split up the training set into training and validation subsets
at the ratio 85:15, and we train and validate the system on

the subsets. We repeat the training-validation process a
hundred times for each possible combination of kernel
function and cell size. We carry out the validation on
corresponding validation subsets using a loss function that is
given as a sum of misclassified observations, i.e.,

ESVMZZI{}?j:#yj}’ (2)

j=1

where I{-} is the indicator function.

2.3. Evaluation of Passenger Recognition. Two key aspects of
the presented passenger recognition systems are their
classification performances and their time complexities. A
common practice of the evaluation of the classification
performance is calculation of accuracy over a testing set (a
dataset independent of the training set). For the classifica-
tion of images into categories “positive” and “negative,” the
accuracy is given as follows:

[TP| +|TN|
ITP| +|FP| +|TN]| +|FN[

accuracy = (3)
where |TP| is the number of correctly classified positive
images, |[FN] is the number of misclassified positive images,
|FP]| is the number of misclassified negative images, and |TN]|
is the number of correctly classified negative images.

To evaluate the classification performance comprehen-
sively, we use three additional measures [31, 46]:

. |TP|
= 4
precision 'TP| +[EP] (4)
TP
recall = ITP] (5)

|TP| +|FN[



Journal of Advanced Transportation

2
F1 - score = - g (6)
recall ™ + precision

To evaluate the time complexities of the systems, we
measure times that the systems needed to process the testing
set. To keep the results independent on the used hardware,
we operate with a relative computational time. For the j-th
evaluated system, its relative computational time is given as
follows:

£,

j
=t %100, 7
7o max{ty,ty, ..., b} O

where £ is time the j-th system needs to process the data and
k is the number of all evaluated systems.

We carry out the evaluation of passenger recognition
systems using the best models obtained within the training
process (see Sections 2.2.1 and 2.2.2). In the case of Con-
vNet-based systems, we use for each architecture, the model
with the smallest value of the cost function (1) obtained by its
validation. In the case of the HOG-based system, we use for
each setting the model with the smallest value of the cost
function (2) obtained by its validation.

2.4. Training and Testing Sets. Quality and composition of
the training and testing sets conspicuously influence the
overall performance of object recognition systems in real-life
applications. Data included in the sets should reflect as many
aspects of the real situation as possible. Considering this fact,
we base the sets on video sequences acquired in the means of
public transport and similar public places under various
light conditions, using the engineering prototype.

A set of candidate object images generated by a search
algorithm from a frame is imbalanced (often highly) [12, 13]
with a predominance of images without complete heads
(Figure 5). As conventional SVMs are not suitable for the
imbalanced learning tasks [47], the training and testing sets
must be balanced to get unbiased results. Considering these
facts, we create the sets manually to ensure the balance of the
classes in the sets.

Specifically, we perform four distinct video recording
experiments. They are set to simulate the real situation as
well as to comprehend the architecture of the assumed
person flow monitoring system (see Figure 4). All the ex-
periments include stairs and a group of persons walking
under the acquisition sensor. Men, women, and children as
well as people with and without a head cover (hats, scarves,
caps, and hoods) are included. Since the used camera lens is
focused manually (once for each experiment), the acquired
frames show certain blurring according to the specific
distance between the object and the lens. We varied loca-
tions, lighting conditions, number of frames, mean distance
between persons Dpp (mean distance between a subject and
two other nearest persons), and minimal and maximal
distances between a head and the sensor, min Dyg and
max Dy, in each experiment (Table 1).

We cut out and size normalize 6020 unique object
images from the video data (dimension of the normalized
images are [51, 51] px). We label the images according to the

presence/absence of heads (Figure 9). We mix and divide the
labelled images into the training and testing sets according to
Table 2. We make the sets publicly available at [48]. The sets
contain large-scale class-balanced data which make them
universally applicable (the sets can be used to design any
classifier including classifiers, which are not suitable to be
trained with imbalanced training sets).

3. Results

3.1. Validation of Passenger Recognition Systems. We train
and validate each proposed architecture (ConvNet-based
system) and each setting (HOG-based system) a hundred
times. To show the validation results, we use box plots.
Results obtained for the systems based on ConvNets are
shown in Figure 10. The central lines in the graphs are
medians of the loss function (1); the edges of the boxes are
25th and 75th percentiles; and the whiskers indicate the
variability outside the upper and lower quartiles. The data
are grouped according to the architectures and training
strategies (x-axis). The values on the y-axis correspond to the
loss function values.

Figure 11 shows validation results obtained for the
HOG-based passenger recognition system using the loss
function (2). We use a separate graph for each kernel
function. Data in the graphs are grouped according to the
sizes of cells. Outliers are symbolized using stars.

3.2. Classification Performance of Passenger Recognition
Systems. In Table 3, we summarize evaluation results ob-
tained from the testing set using the measures (3)-(6). The
results are grouped into two sections according to the ap-
proach they are based on. The best results obtained for each
measure are in bold for both approaches.

3.3. Time Complexities of Passenger Recognition Systems.
We display relative computational times (7) as a bar graph
(the lower chart in Figure 12), where the time and evaluated
systems are on the y- and x-axes, respectively. Above each
result, we display the Fl-score (6) of the system as a bar
graph (the upper chart in Figure 12), where the F1-score and
evaluated systems are on the y- and x-axes, respectively.

4. Discussion

The main objective of the presented work is comparison of
the two well-established object recognition approaches for
the passenger recognition task. As the evaluation results
(Table 3) show, for the cells of size [10,10] px and the
polynomial kernel function of degree 3, the classification
performance of the HOG-based system slightly exceeds the
classification performance of ConvNet-based systems. For
this setting, the HOG-based system has the highest values of
all four measures. The ConvNet-based systems show the best
results for only one measure at a time (aside from LeNet-5
with highest accuracy and F1-score). Except for recall, the
HOG-based system also exceeds the ConvNet-based systems
in sizes of the performance measure values. Further, for this
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TaBLE 1: Parameters of the video recording experiments. For each experiment, a location, lighting conditions, number of frames, mean
distance between persons Dpp, and minimal and maximal distances between a head and the sensor, min Dy;¢ and max Dy, are specified.
Note that individual persons can be present in multiple frames in different positions.

Location Light No. of frames Dopp min Dy max Dy
Outdoors Ambient, strong 1720 0.00-0.50 1.2 1.6
Indoors Ambient, strong 1700 0.25-0.75 0.6 1.8
Indoors Ambient, weak 1400 0.25-0.75 0.4 1.4
Indoors Artificial, weak 1200 0.50-1.00 0.2 1.0

(®)

FIGURE 9: Examples of object images in the sets. The first three images (a) are labelled as “head” while the remaining three (b) are labelled as
“not head.”

TaBLE 2: Dataset.

Set Training Testing
Class “Head” “Not head” “Head” “Not head”
No. of images 2008 2012 1000 1000
—:— ; T T T T T
1
i i
\ 1
P !
R —
1072 | .
. i
& _ -
= ! : -
- .
1
. ' | . |
| | il | il
107 L - — 3
1 1 1 1 1 1 1
Netl Net2 LeNet-5 AlexNet VGG-16 AlexNet (TL) VGG-16 (TL)

FiGure 10: Boxplot representation of loss function values (y-axis) obtained by validation of ConvNet-based passenger recognition systems.
Architectures of the ConvNets and training strategy are at x-axis (TL = transfer learning, otherwise, the network was trained from scratch).
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FiGure 11: Boxplot representation of loss function values (y-axis) obtained by validation of the HOG-based passenger recognition system.
Results are displayed in separate graphs with respect to used kernel function. In each graph, the data are grouped according to the sizes of
cells (x-axis).

TaBLE 3: Evaluation of classification performance of ConvNet-based (first section) and HOG-based (second section) passenger recognition

systems using the measures (3)-(6).

Classifier Accuracy Precision Recall Fl-score
Netl 0.949 0.950 0.948 0.949
Net2 0.953 0.947 0.961 0.954
LeNet-5 0.956 0.946 0.966 0.956
AlexNet 0.947 0.921 0.977 0.948
VGG_16 0.928 0.903 0.958 0.930
SVM with RBF kernel function, cell size [6, 6] px 0.949 0.957 0.941 0.949
SVM with linear kernel function, cell size [6, 6] px 0.939 0.947 0.931 0.939
SVM, polynomial degree =2, cell size [6, 6] px 0.946 0.946 0.947 0.946
SVM, polynomial degree =3, cell size [6, 6] px 0.953 0.953 0.947 0.950
SVM with RBF kernel function, cell size [8, 8] px 0.949 0.952 0.945 0.948
SVM with linear kernel function, cell size [8, 8] px 0.938 0.941 0.934 0.937
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TaBLE 3: Continued.

Classifier Accuracy Precision Recall Fl-score
SVM, polynomial degree =2, cell size [8, 8] px 0.947 0.951 0.943 0.947
SVM, polynomial degree =3, cell size [8, 8] px 0.948 0.949 0.946 0.948
SVM with RBF kernel function, cell size [10, 10] px 0.956 0.964 0.947 0.956
SVM with linear kernel function, cell size [10, 10] px 0.943 0.946 0.939 0.943
SVM, polynomial degree =2, cell size [10, 10] px 0.947 0.947 0.948 0.948
SVM, polynomial degree =3, cell size [10, 10] px 0.959 0.957 0.961 0.959
SVM with RBF kernel function, cell size [12, 12] px 0.953 0.956 0.948 0.952
SVM with linear kernel function, cell size [12, 12] px 0.935 0.939 0.930 0.934
SVM, polynomial degree =2, cell size [12, 12] px 0.950 0.955 0.945 0.950
SVM, polynomial degree =3, cell size [12, 12] px 0.950 0.957 0.942 0.949
SVM with RBF kernel function, cell size [14, 14] px 0.929 0.925 0.913 0.919
SVM with linear kernel function, cell size [14, 14] px 0.919 0.925 0.913 0.919
SVM, polynomial degree =2, cell size [14, 14] px 0.929 0.936 0.922 0.929
SVM, polynomial degree =3, cell size [14, 14] px 0.921 0.920 0.923 0.922
SVM with RBF kernel function, cell size [16, 16] px 0.952 0.955 0.949 0.952
SVM with linear kernel function, cell size [16, 16] px 0.942 0.949 0.934 0.941
SVM, polynomial degree =2, cell size [16, 16] px 0.948 0.951 0.944 0.948
SVM, polynomial degree =3, cell size [16, 16] px 0.943 0.943 0.943 0.943

Note: best results are in bold.
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FIGURE 12: Relative computational times of the passenger recognition systems in comparison with F1-score of each system.
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setting, the HOG-based system has significantly lower time
complexity when compared to the ConvNet-based systems
(Figure 12). Considering all these facts, we conclude that the
HOG-based passenger recognition system, with polynomial
kernel function of degree 3 and cells of size [10, 10] px, best
fits the requirements for implementation into the low-cost
automated real-time passenger counting system. This is in
agreement with an earlier study of passenger recognition
without the height differential [19].

The well-established ConvNets such as AlexNet and
VGG-16 are expected to be a good basis of object recognition
systems. As the validation results (Figure 10) show, they
feature good learning ability, resulting in small loss function
values. A similar ability can be observed for the AlexNet.
From this perspective, the proposed networks Netl and Net2
seem to be insufficient. However, their classification per-
formance evaluated on the testing set (Table 3) is comparable
with AlexNet- and LeNet-5-based systems (there is no clear
winner among these four networks). Surprisingly, the VGG-
16-based system has the worst performance in the category
of the ConvNet-based systems. The most likely explanation
of this phenomenon is a relatively high learning capacity of
VGG-16 (compared to the other presented architects) that
may cause overfitting on the head recognition task. Con-
sidering the high time complexity of VGG-16 (Figure 12), we
conclude that, despite expectations, VGG-16 is not appro-
priate for the passenger recognition.

We also investigated possible benefits of the transfer
learning by the training of ConvNet-based passenger rec-
ognition systems. We observe a lower variability in the cost
function values for the networks trained using TL, when
compared to the networks trained from scratch (Figure 10).
Also, the medians of the cost function values are shifted
towards smaller values for TL. We conclude that a model
with a low cost function value can be more likely obtained
using TL than by its training from scratch.

The size of cells has been reported to be the seminal
parameter predetermining the performance of object rec-
ognition systems which are based on HOG features [27]. The
experimental results presented in this article confirm this
finding. An incorrect setting of the cell size results in inferior
classification (compare results obtained for cells of size [10,
10] px and [14, 14] px in Figure 11 and Table 3). Also, the
time complexity of the HOG-based system strongly depends
on the setting of this parameter (compare, e.g., results for
cells of size [6, 6] px and [10, 10] px in Figure 12).

5. Conclusions

Presently, deep ConvNets are usually considered as the first
choice when developing an image recognition system. We
established that image recognition systems with equally
good classification performances can be developed using
traditional computer vision methods. When appropriately
designed and setup, such systems can beat ConvNets-based
solutions in terms of time efficiency which is particularly
important in real-world applications. This is also the case of
the HOG-based passenger recognition system, where the
utilization of HOG features in combination with the SVM
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classifier can result in time-efficient and accurate passenger
recognition. In this context, we showed that passenger heads
are sufficient for the precise while fast passenger recognition.
We also showed that the HOG-based system is highly
flexible, as it can be employed in both low-floor and high-
floor means of transport. Its implementation into a pas-
senger monitoring system is being currently developed,
allowing us utilization of a basic processing unit. Cost
savings on the unit is reflected in the final price of the person
flow monitoring system and thus supports its mass use in
means of transport all over the world.
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