
Development of Artificial Intelligence Based
Module to Industrial Network Protection

System

Filip Holik1, Petr Dolezel1, Jan Merta1, and Dominik Stursa1

University of Pardubice, Pardubice, Czech Republic,
petr.dolezel@upce.cz,

WWW home page: http://www.upce.cz/fei

Abstract. The paper deals with the software-defined networking con-
cept applied to industrial networks. This innovative concept supports
network programmability and dynamic implementation of customized
features, including security related ones. In a previous work of the au-
thors, the industrial network protection system (INPS) was designed and
implemented. The INPS provides complex security features of various
traditional and modern security solutions within a single system. In this
paper, the AI module, which is one of the crucial parts of the INPS, is
dealt with. In particular, a detailed report focused on the development
of the AI module decision function is provided. As a result, an artificial
neural network, used for the network traffic evaluation in the AI module,
is developed and comprehensively tested.

Keywords: artificial neural network, industrial networks, software de-
fined networks

1 Introduction

The recent transformation of industrial networks from private and closed net-
works into standardized IP networks brought many advantages, but also in-
troduced new security risks. These networks become connected to cloud data
centers and centralized management systems and integrated Internet of Things
(IoT) devices. These changes lead to increase of traffic volume, heterogeneity
and complexity, resulting in wider scope for potential attacks. This danger is
magnified by the fact, that these networks are nowadays connected to the Inter-
net all the time and they can be therefore theoretically accessed by anyone. To
perform an attack is nowadays easier than anytime in the past. Attacking tools
are now publicly accessible and they require no deep knowledge in order to use
them.

Defense against these threats requires a more comprehensive approach than
just a manual filtering by a human element. An automation with involvement of
artificial intelligence (AI) is nowadays a necessity. There are many commercially
available protection tools which use cloud-based artificial intelligence, but on



2 Filip Holik et al.

the other hand, not so many, which could be deployed locally. This could be an
important fact, if data privacy is an issue.

One of the most promising approaches in this area is utilization of software-
defined networking (SDN), which provides a solid prefiguration for AI imple-
mentation. Unfortunately, the utilization of SDN in security areas is still being
researched. Traditional firewalls were implemented in SDN in many works [3, 6,
18, 19], but AI-based firewalls, on the other hand, were rarely researched. Only
the paper [5] presented a firewall with machine learning for securing cloud data
centers. However, the operation of this firewall was severely limited, as it sup-
ported only two functions: allow and block packets. Such a system does not meet
criteria for modern security systems.

Therefore, a protection system with AI was designed and developed by the
authors of this article in [11]. The solution was called Industrial Network Protec-
tion System (INPS) and its aim was to provide complex security features within
a single system. One of the most crucial parts of the system was the AI module,
used for network traffic evaluation. The work [11] utilized only the basic design
of artificial neural networks and did not explore multiple approaches. The goal
of this contribution is to provide a detailed report focused on the development
of the AI module decision function. Hence, two approaches to the AI module de-
cision function are defined, implemented and tested in order to get the suitable
functionality of the AI module.

The rest of the article is organized as follows. In the next chapter, the idea of
an industrial network protection system is summarized. Then, the AI module is
proposed. The main contribution of this article, the AI module decision function
architecture development, is described within this section. Afterwards, as the
last part of the article, the AI module performance is tested and evaluated.

2 Industrial Network Protection System

This section describes only the overall architecture of INPS. The more detailed
definition can be found in [11].

The INPS is developed to comply with the main operational requirements
of industrial networks, i.e. component lifetime, critical infrastructure, fault tol-
erance, high availability, limited component access, non-upgradability, perfor-
mance, proprietary communication protocols and system certification [12, 23]. It
provides centralized network management with monitoring of data flows in real-
time. Each data flow can be blocked or allowed and the system also supports
more advanced filtering features including redirecting the flow to specified ports,
setting QoS values, and storing payload for the application layer inspection. All
these features can be performed manually or automatically by the AI module.

The architecture of the system can be segmented into four components, as
shown in Fig. 1.

1. The main module - it provides the basic INPS functionality including its
control via two separate web pages - one for traffic monitoring and filter-
ing, and the second for the system settings. The module is integrated into



Industrial Network Protection System 3

Fig. 1. INPS architecture

the ONOS controller and it interacts with its distributed core directly via
customized internal interfaces.

2. The AI module - it performs optional automated filtering. It is located in a
separate package, which uses files with trained artificial neural networks for
determining traffic decisions. These files can be imported directly or via the
application web interface.

3. The ONOS SDN controller - it performs standard networking functions.
Based on the network topology, this can include forwarding, routing, loop
prevention, load-balancing etc. The controller also has the web user interface
for configuration and management of provided features.

4. External AI training application - it is implemented as a stand-alone appli-
cation. It takes an exported traffic map - a file with data flows and manually
set firewall rules. Based on this map, it trains artificial neural networks by
one-time offline learning. The output of the application is a file with trained
neural networks. This file can then be imported to the AI module.

In the next section, a suitable architecture for the AI module decision function
is discussed and developed.

3 Artificial intelligence in INPS

The AI in the INPS has functionality of a decision method. In simple words, this
element determines one of the decision states according to incoming flow char-
acteristics. The state space includes the following items: allow, block, forward to
selected ports, application layer inspection, and four levels of QoS settings (low,
normal, high and critical).



4 Filip Holik et al.

Communication protocols used in industrial networks can be classified into
two basic types - network layer protocols (L3) and transport layer protocols (L4)
[1]. In order to keep the clarity and transparency of the article at the acceptable
level, the more general L4 communication is considered in this work. However,
the more granular functionality, which includes other possible protocols, can be
achieved by the INPS by performing similar steps.

Hence, the AI-based decision method is supposed to decide, based on the in-
coming flow characteristics defined by both source and destination IP addresses
and also by the amount of traffic expressed by packets per second. Each IP ad-
dress is composed from four octets, which are used as unique inputs. In addition,
source and destination port numbers are considered as relevant inputs. There-
fore, eleven inputs specify the decision. It is shown to advantageously solve such
input-output mapping problems using feedforward multilayer neural networks
[13, 7].

An artificial neural network is a group of algorithms that, generally, aims
to recognize relationships in a set of data through a process that emulates the
way the biological neural network operates. A feedforward multilayer neural
network is one of the mostly applied architectures [10]. It consists of two or
more subsequently connected layers of artificial neurons, with signal propagated
only in forward direction.

During last decades, two types of feedforward multilayer neural networks
have proven themselves to be particularly competent for input-output mapping
problems. The first of them is a feedforward neural network with dense (fully
connected) layers (FFNN), the second one is a feedforward convolutional neu-
ral network (CNN). Both mentioned types are considered in this approach as
possible architectures for the AI module decision function.

The procedure of a neural network design involves training set, and valida-
tion set acquisition, training, pruning and validating. The essential information
related to this procedure, as it is adapted for the INPS, is described in the fol-
lowing sections. More information regarding the design, as well as the discussion
to each part of the process, can be found in [10].

3.1 Traning dataset

The used dataset is simulating a highly utilized industrial network and the traffic
was generated by a custom developed application [11]. The traffic map, generated
for a neural network training, contains 80 000 unique data patterns. The dataset
is then divided into training set (70 %), validation set (15 %) and testing set.
Training set is used for a neural network parameters adaptation during training
process, validation set is used to identify the best network configuration during
training, and testing set is used for final AI module evaluation.

3.2 FFNN design

In order to have a capability to solve the problem, the FFNN needs to follow
some statements [10]. Specifically, at least one hidden layer with enough neurons



Industrial Network Protection System 5

needs to be implemented. Besides, monotonic, continuous and bounded transfer
(activation) functions must be applied in neurons of the hidden layer. In this
contribution, a number of hidden layers is set based on experimental results. A
hyperbolic tangent transfer function is considered for the neurons in the hidden
layers. Since the FFNN is intended to be used as a decision element, the softmax
transfer function is considered for the neurons in the output layer. Apparently,
the number of output neurons is defined by the number of elements in the output
state space.

FFNN design especially consists of training and pruning. The result of train-
ing provides suitable weights and biases of FFNN. The pruning is superior to
the training and it should convert the redundantly-designed network into a sim-
pler one with no decrease of the performance. In our work, the pruning is based
on the repeated training of various FFNNs with different topologies. A mean
square error function (E), applied to the validation set, works for us as a cost
function. It detects the performance quality of the network. Since the training
is a stochastic process, 100 training performances for every considered topology
are executed in order to get statistically significant results.

The training parameters are set according to the pilot study and based on
the previous authors’ experience. Specifically, the Nguyen-Widrow technique [21]
is used for the initial setting of the weights and biases in the beginning of the
training. Then, the Levenberg-Marquardt search technique [9] is applied for the
weights and biases adaptation. The input values in the training set are nor-
malized in order to avoid the unequal influence of individual values during the
training process. The parameters of the training and pruning process, including
the formal parameters of all the applied techniques, are summarized in Table 1.

Table 1. Parameters of the experiments with FFNN

Training algorithm Levenberg-Marquardt search technique
Initialization Nguyen-Widrow technique
Maximum epochs 500
Stopping criterion Maximum epochs reached
Adaptive coefficient µ 0.001
Increment µ 10
Decrement µ 0.1

Box plots with the resulting cost function value obtained for various FFNN
topologies during training process are shown in Fig. 2. Each box plot consists of
median value (central mark), 25th and 75th percentiles (edges of the boxes) and
extreme data points (the whiskers). It is clearly visible, that the most suitable
performance is provided using a topology with ten neurons in one hidden layer.
The topologies with two hidden layers fail to provide better results. However,
best representatives of all topologies will be also tested using testing set.



6 Filip Holik et al.

[2-1] [4-1] [6-1] [10-1] [12-1] [15-1] [5-5-1] [7-7-1]

Topology

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

E

Fig. 2. Resulting values of error function for various FFNN topologies.

3.3 CNN design

With current possibilities in parallel computing, CNNs are considered a leading
topology among neural networks. A list of well-recognized CNN topologies can
be found in [2].

Convolutional neural network layers mainly include three representatives,
namely convolutional layer, pooling layer and dense (fully-connected) layer. A
good summary of convolutional neural networks and how to implement them
can be found in [8].

In these days, a huge number of various topologies of CNNs are available for
implementation. In this paper, five different architectures are selected for possible
application. Architectures Net1 and Net2 are relatively simple. They consist of
the sequence of convolutional layers and max-pooling layers. Both architectures
end with a last hidden dense layer with 512 neurons. Then, a softmax layer is
applied as the output layer to classify the output. Both architectures are adapted
from [20]. In addition to these networks, more complex and widely accepted
topologies are selected; LeNet-5 [4, 17], AlexNet [16] and VGG-16 net [22].

As well as in the previous case, the mentioned architectures are trained in or-
der to map correctly the dataset described in section 3.1. However, it is generally
accepted feature of CNNs, that the performance is especially high when applied
to multidimensional data processing. Image processing can be stressed as one of
the most obvious examples [15]. Hence, it could be useful to find an operation of
transformation, which transforms eleven inputs, considered as inputs to the AI
module decision function, into two or three-dimensional structure, preferably a
graphical figure. As the first engineering approach to this transformation, a polar



Industrial Network Protection System 7

line chart is suggested in this article, as demonstrated in Fig. 3. The operation
is referred to in the further text as depiction.

Fig. 3. Demonstration of visualization of multidimensional data in 2D. In this demon-
stration, a 6-dimensional vector [1, 0.2, 0.8, 0.6, 0.8 , 0.4] is visualized.

Therefore, the whole dataset (see Section 3.1) is normalized and transformed
to a set of filled polar line chart figures. The charts are stored as [122 x 122] px
grayscale images. A selected group of resulting images is demonstrated in Fig. 4.

Fig. 4. Examples of transformed dataset.

Consequently, the training of the selected architectures is performed. The
ADAM search technique is used as an optimizer based on its generally acceptable
performance [14]. Initial weights are set randomly in this case, with Gaussian
distribution (location = 0, scale = 0.05).Similarly to the previous training, the
training processes are executed a hundred times and the same cost function is
computed over the validation set - see Table 2 for all the parameters of the
training processes. The resulting values are shown in Fig. 5. After the training



8 Filip Holik et al.

process, LeNet-5 is indicated to be the correct CNN to be implemented for the AI
module decision function. However, the best representatives of each architecture
are tested in the next section.

Table 2. Parameters of the experiments with CNN

Input shape 122 x 122 x 1
Training algorithm ADAM algorithm
Initialization Normal distribution (mean = 0, std = 0.05)
Maximum epochs 50
Stopping criterion Maximum epochs reached
Learning rate α 0.001
Exponential decay rate 1 β1 0.9
Exponential decay rate 2 β2 0.999

Net1 Net2 LeNet-5 AlexNet VGG-16

0

0.1

0.2

0.3

0.4

0.5

0.6

E

Fig. 5. Resulting values of error function for various CNN topologies.

4 FFNN and CNN testing and evaluation

In the previous sections, two architectures of feedforward multilayer artificial
neural networks are designed to be implemented as a decision method in the AI
module. Both are drawn up in Fig. 6.



Industrial Network Protection System 9

�� ���

��
��

�
��
�


��
�

��
�
��

���
�������

�
�
��

�
����

�

��

�
��

�
��

���
�������

�
�
��

�
����

���
�

�
�
�
�

�

��
�
��

�
�
�
��

�
�
�
��

�
��

�
���

�
�
�
��

��
��

��

� �� ��

��
��

�
��
�


��
�

��
�
��

���
�������

�
�
��

�
����

�

��

�
��

�
��

���
�������

�
�
��

�
����

���
�

�
�
�
�����

�

�
�
�
�

�

��
�
��

��
�
��

��
���

�
�
��

�
�
��

�
�
�
��

�
��

� �� ��

Fig. 6. Considered architectures of AI module.

Now, the best representatives of both architectures are tested using the test-
ing set (see Section 3.1). Note that the data in the testing set are not used
during training. Accuracy, defined as the ratio of correctly made decisions to all
performed decisions, is used as the metric. The resulting values of the metric are
shown in Table 3.

The results show a number of interesting outcomes. Above all, the highest
accuracy is provided by the VGG-16 architecture in combination with depiction
of inputs. Thus, a best value of error function during training does not guarantee
a best accuracy over the testing set. Then, feedforward neural networks with
dense layers provide generally less variant results. Convolutional architectures,
on the other hand, go from totally unacceptable to a very reasonable behavior.

5 Conclusion

As a continuation of previous work of the authors, the development of the AI
module, which is a part of the industrial network protection system, is dealt
with in this article. Two architectures, based on feedforward multilayer neu-
ral networks, are considered for implementation as decision function for the AI
module. The extensive development of both architectures is performed then in
order to achieve a high accuracy of decision making of the AI module. The tests
presented at the end of the paper indicate, that the highest accuracy is provided
by the VGG-16 architecture in combination with depiction of inputs.



10 Filip Holik et al.

Table 3. Testing results

Topology Accuracy
2-1 0.7920
4-1 0.9088
6-1 0.9126
10-1 0.9188
12-1 0.8918
15-1 0.9097
5-5-1 0.9084
7-7-1 0.8664
Net1 0.8301
Net2 0.8752
LeNet 0.8346
AlexNet 0.7262
VGG-16 0.9501

However, this outcome should definitely be understood as the preliminary re-
sult, since many aspects of the development procedure still need to be examined.
First of all, there exist many possibilities of depiction process. In this paper, only
one is considered. It is indispensable possibility of totally different results with
different depiction process. The other thing is a computational complexity. The
protection system is supposed to provide efficient real-time traffic monitoring
and depiction process could be one of the weak spots from this point of view.
Hence, these aspects are aimed to be deal with in the future works.

References

1. IEC 61850-5: Communication networks and systems in substation (2003)
2. Aloysius, N., Geetha, M.: A review on deep convolutional neural networks. In: 2017

International Conference on Communication and Signal Processing (ICCSP). pp.
0588–0592 (April 2017)

3. Bakhareva, N., Polezhaev, P., Ushakov, Y., Shukhman, A.: SDN-based firewall
implementation for large corporate networks (2019)

4. Bottou, L., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Jackel, L.D., LeCun,
Y., Muller, U.A., Sackinger, E., Simard, P., Vapnik, V.: Comparison of classifier
methods: a case study in handwritten digit recognition. In: Proceedings of the
12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference
C: Signal Processing (Cat. No.94CH3440-5). vol. 2, pp. 77–82 vol.2 (Oct 1994)

5. Cheng, Q., Wu, C., Zhou, H., Zhang, Y., Wang, R., Ruan, W.: Guarding the
perimeter of cloud-based enterprise networks: An intelligent SDN firewall. In: 2018
IEEE 20th International Conference on High Performance Computing and Com-
munications; IEEE 16th International Conference on Smart City; IEEE 4th Inter-
national Conference on Data Science and Systems (HPCC/SmartCity/DSS). pp.
897–902 (June 2018)

6. Fiessler, A., Lorenz, C., Hager, S., Scheuermann, B.: Fireflow - high performance
hybrid SDN-firewalls with OpenFlow. vol. 2018-October, pp. 267–270 (2019)



Industrial Network Protection System 11

7. Gencay, R., Liu, T.: Nonlinear modelling and prediction with feedforward and
recurrent networks. PHYSICA D 108(1-2), 119–134 (SEP 15 1997)

8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

9. Hagan, M., Menhaj, M.: Training feedforward networks with the Marquardt algo-
rithm. IEEE Transactions on Neural Networks 5(6), 989–993 (Nov 1994)

10. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1999)
11. Holik, F., Dolezel, P.: Industrial network protection by SDN-based IPS with AI.

Communications in Computer and Information Science (2020, In press)
12. Holik, F.: Meeting smart city latency demands with SDN. Studies in Computa-

tional Intelligence pp. 43–54 (2020)
13. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-

versal approximators. Neural Networks 2(5), 359–366 (1989)
14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR

abs/1412.6980 (2014), http://arxiv.org/abs/1412.6980
15. Kizuna, H., Sato, H.: The entering and exiting management system by person spec-

ification using deep-cnn. In: 2017 Fifth International Symposium on Computing
and Networking (CANDAR). pp. 542–545 (Nov 2017)

16. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. vol. 2, pp. 1097–1105 (2012)

17. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (Nov 1998)

18. Li, H., Wei, F., Hu, H.: Enabling dynamic network access control with anomaly-
based IDS and SDN. pp. 13–16 (2019)

19. Mahamat Charfadine, S., Flauzac, O., Nolot, F., Rabat, C., Gonzalez, C.: Secure
exchanges activity in function of event detection with the SDN. Lecture Notes of
the Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST 275, 315–324 (2019)

20. Millstein, F.: Deep Learning with Keras. CreateSpace Independent Publishing Plat-
form (2018)

21. Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks
by choosing initial values of the adaptive weights. pp. 21–26 (1990)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv 1409.1556 (09 2014)

23. Stouffer, K.A., Falco, J.A., Scarfone, K.A.: Sp 800-82. guide to industrial con-
trol systems (ICS) security: Supervisory control and data acquisition (SCADA)
systems, distributed control systems (DCS), and other control system configura-
tions such as programmable logic controllers (PLC). Tech. rep., Gaithersburg, MD,
United States (2011)


