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Abstract. Spam detection on social networks is increasingly important owing to the rapid growth of social network 

user base. Sophisticated spam filters must be developed to deal with this complex problem. Traditional machine 

learning approaches such as neural networks, support vector machines and Naïve Bayes classifiers are not effective 

enough to process and utilize complex features present in high-dimensional data on social network spam. Moreo-

ver, the traditional objective criteria of social network spam filters cannot cope with different costs assigned to 

type I and type II errors. To overcome these problems, here we propose a novel cost-sensitive approach to social 

network spam filtering. The proposed approach is composed of two stages. In the first stage, multi-objective evo-

lutionary feature selection is used to minimize both the misclassification cost of the proposed model and the num-

ber of attributes necessary for spam filtering. Then, the approach uses cost-sensitive ensemble learning techniques 

with regularized deep neural networks as base learners. We demonstrate that this approach is effective for social 

network spam filtering on two benchmark datasets. We also show that the proposed approach outperforms other 

popular algorithms used in social network spam filtering, such as random forest, Naïve Bayes or support vector 

machines.  
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1 Introduction 

Generally, spam can be defined as unwanted and unsolicited messages sent to usually a large number of recipients 

[1]. Spam message can be sent over multiple communication channels, such as e-mail, SMS and social networks. 

Statistics show that a large proportion of all messages in social networks are spam messages. For instance, the 

study by Proofpoint, a major company specialized in cyber security, reported that during the first half of 2013 

there has been a 355% growth of social spam. For every seven new social media accounts, five new spammers are 

detected [2]. 

The growing opportunities of social networks and their popularity have attracted many users. These days the base 

of social network users is steadily growing and considerable amount of communication is done through social 

networks. For instance, the Twitter micro-blogging service averaged at 335 million monthly active users in the 

second quarter of 2018 [3]. However, along with legitimate and useful information, inappropriate and unwanted 

content is also released on these networks. Indeed, spam senders target social network users as well. Moreover, 

business social networks like Linkedin are also affected [4]. This has serious economic and social consequences. 

Spam messages decrease work productivity, increase IT support related resources (help desk) and may even result 

in security incidents. Moreover, personal privacy can be threatened and the development of social networks can 

be hindered [5]. This is why a considerable attention is given to spam filtering in social networks. 

Spam messages can be filtered either manually or automatically. Obviously, manual spam filtering (also known as 

crowdsourcing) by identifying spam message and removing it is a time consuming task. Moreover, spam messages 

may contain a security threat, such as links to phishing web sites or servers hosting malware. Therefore, over a 

number of decades researches and practitioners have worked on improving automatic spam filtering algorithms. 

Notably, two types of methods occur in the literature specifically addressing the problem social network spam 

detection, namely graph-based and machine learning methods [6]. The first models social network as a social graph 

[7,8], making use of graph properties, graph clusters and trust relationships. However, the majority of earlier work 

has been aimed at using machine learning techniques. In fact, those are particularly known to be highly accurate 

in detecting spam messages [6]. There is a number of existing machine learning algorithms applied to spam filter-

ing, including neural networks [9], support vector machines (SVMs) [10], Naïve Bayes [11] and random forest 

[12]. 
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Spam filtering task belongs to binary classification problem, each message should be identified either as spam or 

legitimate. Besides a high accuracy algorithm should also perform well when it comes to false positive ratio (le-

gitimate message is classified as spam) to avoid situations where legitimate message is not delivered to the intended 

receiver. The main concept of the machine learning algorithms is to make use of content-based features, this is to 

build a word list and assign a weight to each word accordingly. However, spammers tend to include common 

legitimate messages into the spam message in order to decrease the probability of being detected. In social network 

spam filtering, additional attributes are therefore used, such as those related to sender’s profile and behaviour in 

the social network, see [6] for an overview. 

The state-of-the-art methods in social network spam filtering has recently been surveyed by [6,13,14]. According 

to the surveys, ensemble learning methods, such as bagging and random forest, outperform traditional single clas-

sifiers. The ensemble methods combine the predictions of several base machine learning algorithms in order to 

improve accuracy and robustness over single algorithms. In previous studies, ensemble methods employed tradi-

tional classifiers like decision trees to effectively filter spam messages. However, surprisingly little attention has 

been paid to neural networks with ensemble learning. Recent evidence showed that neural networks equipped with 

regularization techniques may be highly accurate in detecting e-mail and SMS spam [9]. This can be attributed to 

better optimization convergence and resistance to overfitting. To take advantage of these qualities, here we inte-

grate regularized neural networks with ensemble learning methods for social network spam filtering. Another 

problem is the choice of the objective function of the prediction model. Using accuracy, a traditional classification 

performance measure, does not take account of different costs associated with type I and type II error. Moreover, 

using accuracy for often highly imbalanced spam datasets might lead to erroneous conclusions because the minor-

ity class (usually the class of spam messages) has little effect on accuracy compared to the majority class of legit-

imate messages [15]. Therefore, more accurate measures are needed to improve the effectiveness of spam filtering 

methods. As earlier work failed to address this problem, here we propose a cost-sensitive social network spam 

filter that considers misclassification cost (combination of type I and type II errors) in both stages of spam detec-

tion, feature selection and classification. Feature selection aims to both reduce the dimensionality of the feature 

space and improve the prediction performance of the model [16]. Therefore, for the first stage, we adapt a multi-

objective evolutionary feature selection (MOEFS) algorithm called ENORA (Evolutionary NOn-dominated Radial 
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slots-based Algorithm) [17] to minimize both the number of attributes necessary for spam filtering and the mis-

classification cost of the model. Then, in the second stage, cost-sensitive ensemble learning is performed with 

regularized deep neural networks (RDNNs) as base learners. In summary, the contributions of this study are: 

• Developing a novel social network spam detection method integrating a modified MOEFS algo-

rithm and cost-sensitive ensemble-based RDNNs. The novelty of our method lies in considering 

cost-sensitive learning in both feature selection and spam classification. This is also the first study 

using ensemble-based RDNNs for spam detection. 

• Using the benchmark data from the social networking sites Hyves and Twitter, here we show that 

the proposed approach can be more effective than state-of-the-art spam filtering methods in terms 

of misclassification cost, as well as other classification performance measures. 

This paper is a significantly extended version of [18]. The earlier version was limited to ensemble-based RDNNs 

without considering cost-sensitive learning and feature selection. The extension further includes an in-depth liter-

ature review. Furthermore, here we propose a modified MOEFS algorithm and examine the effect of feature se-

lection on spam detection performance. We also compare the results with traditional feature selection methods and 

examine the effect of different misclassification cost ratios on the performance of spam detection models. 

The rest of this paper is organized in the following way. Section 2 reviews recent development in spam detection 

on social networks. Section 3 presents the benchmark datasets. In section 4, we introduce the proposed spam filter. 

Section 5 shows the results of the experiments and a comparative analysis with several state-of-the-art methods 

used for social network spam filtering. In section 6, we conclude this paper and discuss possible future research 

directions. 

2 Spam Detection on Social Networks – A Literature Review 

User base of social networks is growing over the number of years. For instance, Facebook, one of the biggest 

social networks in the world, grew from one billion to two billion users just in 5 years [19]. Social network spam 

has become a major concern of industry and academia because it may include unwanted content, such as insults, 

hate speech or malicious links. Such messages can be seen by the recipient’s followers. Moreover, they may lead 

to confusions and misdirection in public discussions [20]. Fighting social network spam with traditional legal 
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methods has serious limitation, since spam messages in social networks can be sent from different countries. It is 

important to note that spammers may use anonymisers, making it difficult to trace them. To overcome this problem, 

several social network spam filters have recently been developed [6,14]. A list of related studies is showed in Table 

1, presenting the method used, the datasets and the resulting performance evaluation.  

Features related to tweet content and user behaviour were identified and used in machine learning by SVM [21]. 

Song et al. [22] utilized relation features, such as the connectivity and distance between a tweet sender and receiver, 

to detect spam messages. A statistical analysis of language used in tweets represents an alternative approach [23], 

which identifies spam tweets in isolation (i.e., without user information) using their trending topics. Similarly, 

Antonakaki et al. [24] exploited trending topics to detect spam campaigns in Twitter. 

An SVM classifier was used by Lee and Kim [25] to detect suspicious URLs in tweets. Their system makes use 

of correlated URL redirect chains extracted from tweets. URLs in social media have also been used in the behav-

iour-based spam detection system proposed in [26]. More precisely, the behavioral signals were obtained from 

both the URL sender and receiver. In other words, a high accuracy was achieved without using other tweets’ 

attributes such as those based on message content.  

In addition to spam messages detection, recent studies have also considered an alternative task of social spammer 

(profile) detection. A Naïve Bayes classifier was proposed in [27] to detect spammers in Twitter. In [28], the so-

called “social bridges” were identified to detect spammers in Twitter. These are reported as the major supporters 

of malicious users and a graph-topology based classifier was used to detect such bridge linkages. A hybrid ap-

proach for identifying spam profiles was proposed in [29], combining social media analytics and firefly algorithm 

with chaotic maps for spam detection in Twitter marketing. A large Twitter dataset was used in [5] to demonstrate 

that feature distributions between spammers and legitimate users are different. These feature distributions were 

used in a social spammer detection framework that integrated this information with a social regularization term 

incorporate into a classification model. Another way to tackle the issue of detecting spammers in Twitter was 

described in [30]. A multilayer social network was defined and the identification of spammers was based on the 

existence of overlapping community-based features of users represented in the form of Hypergraphs, such as struc-

tural behaviour and URL characteristics. A unified approach was proposed in [31], utilizing the fact that social 
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spammers tend to post more spam messages. Indeed, it was shown that combining social spammer filtering with 

spam message filtering improves the performance of both tasks. 

 

Table 1: Summary of previous studies on social network spam filtering 

Study 
Feature  

selection 

Classification  

method 
Dataset (spam/legitimate) Performance 

[45] No RF Facebook profiles (173/827) 

Twitter profiles (500/500) 

FPR=2%, FNR=1% 

FPR=2.5%, FNR=3% 

[42] No Decorate MySpace profiles (627/388) 

Twitter profiles (168/104) 

Acc=99.21% 

Acc=88.98% 

[27] No NB Twitter profiles (14/486) F1-score=0.917 

[21] IG, χ2 SVM Twitter messages (355/710) Acc=87.2% 

[43] No Boosting RF Twitter profiles (22,223/19,297) Acc=98.42% 

[46] No Active learning Facebook profiles - 

[47] No Suspension algorithm Twitter profiles (100/200) - 

[22] Relief,  

IG, χ2 

LogitBoost,  

Bayes Net 

Twitter messages (10 K/10 K) TPR=99.7%, 

FPR=0.6% 

[48] No RF Twitter campaigns (744/580) Acc=94.5% 

[34] No SSL Hyves messages (698/497) AUC=0.801 

[49] No RF Twitter profiles (2,060/20,000) F1-score=0.900 

[23] No SVM Twitter messages (168 K/340 K) F1-score=0.883 

[25] No SVM Twitter messages 

(26,950/156,896) 

Acc=91.87% 

[50] No ADTree Facebook profiles (1,000/1,000) AUC=0.985 

[51] No NB, C4.5 Facebook profiles (165/155) and 

Twitter profiles (160/145) 

Acc=95.7% 

[52] No DenStream+ 

K-means 

Twitter profiles (208/3,031) Acc=98.00% 

[26]  No RF Twitter messages (124/214) F1-score=0.859, 

AUC=0.921 

[20] No SVM SinaWeibo profiles 

(11,488/17,646) 

F1-score=0.996 

[24] No DT Twitter (63,612/6.6 M) TPR=81%, 

FPR=0.59% 

[53] No ELM Sina Weibo profiles 

(14,796/64,419) 

F1-score=0.996 

[31] No Co-detection of  

spammers and  

messages 

Sina Weibo messages 

(25,681/27,803) 

Sina Weibo profiles 

(1,496/3,594) 

F1-score=0.927 

F1-score=0.795 

[32] No ELM Sina Weibo messages (500/500) F1-score=0.996 

[37] χ2 SVM Youtube messages 

(210,283/845,092) 

Acc=88.05, 

AUC=0.872 

[7] No Unsupervised graph- 

based approach 

Twitter profiles (2,072/17,322; 

1,617/19,312; 3,109/12,128) 

Acc=92.3% 

[16] GI, IG,  

MDA 

RF Twitter messages (30 K/120 K) AUC=0.920 

[40] No RF+unsupervised  Twitter messages (1 M/ 1 M) Acc=95% 
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learning 

[38] χ2 RF Twitter messages (3,648/4,000) Acc=93.2%, 

AUC=0.983 

[5] No SVM Twitter profiles (4,414/5,666) F1-score=0.879 

[54] No RF Facebook messages (600/600) F1-score=0.987 

[33] No SSL Sina Weibo profiles (135/2,865) F1-score=0.920 

[55] IG, χ2 RF Twitter (9,945/90,055) Acc=97.11%, F1-

score=0.838 

[39] WOA- 

wrapper 

SVM+WOA Twitter profiles (204/196) Acc=93.73% 

[29] No K-Means+FA Twitter profiles (4,923/9,312) Acc=97.87% 

[30] No Unsupervised  

SpamCom 

Twitter profiles (22,223/19,276) F1-score=0.880 

[8] RST Graph-based  

greedy algorithm 

Twitter messages (93,791/250 K) Acc=81.04% 

[41] No SSL Twitter messages (48,849/22,185) Acc>95% 

[36] PSO Decision tree Facebook profiles (200 K) Acc=92% 

[35] CBF,  

IWSS 

RDNN Hyves messages (466/355) Acc=92.81%, 

AUC=0.961 

This  

study 

MOEFS Cost-sensitive ensem-

bles of RDNNs 

Hyves messages (466/355) 

Twitter messages (4,198/57,476)  

 

Legend: Acc – accuracy, AUC – area under ROC curve, CBF – correlation-based filter, ELM – extreme learning machine, FA – firefly algo-

rithm, GI – Gini index, IG – information gain, IWSS – incremental wrapper feature subset selection, MDA – mean decrease accuracy, NB – 

Naïve Bayes, PSO – particle swarm optimization, RF – random forest, RST – rough set theory, SSL – semi-supervised learning, WOA – whale 

optimization algorithm.  

 

Although Twitter represents the most frequently used source of data, alternative social networks have also been 

examined. For example, data from Sina Weibo were used to study features related to message content and user 

behaviour in [20,31]. The most important features were then used in the SVM classifier for spam detection. Ex-

treme learning machines were used by [32] on a similar dataset. A semi-supervised social media spammer filtering 

approach was developed in [33]. This approach outperformed traditional supervised classifiers for the spammer 

detection task. Similar results were obtained for spam message detection in Hyves social network [34]. Using the 

same dataset, significant improvements were achieved by combining data oversampling with RDNNs [35]. 

In recent years, there has been an increasing interest in dimensionality reduction techniques with the aim of im-

proving the prediction performance and stability of social network spam filters [16]. Several researchers employed 

feature selection and extraction methodologies to identify the most important features for social network spam 

filtering. The concept of rough set theory was applied in [8], concluding that the used methodology selected a 

smaller subset of features than those of the baseline methodologies (information gain, consistency subset evalua-

tion, correlation-based feature selection (CBF), community detection and χ2 evaluation). By considering important 
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features of the posts and their corresponding comments, and finally applying the feature selection techniques, the 

method proposed in [36] selected the most effective features to detect spam using machine learning techniques. A 

probabilistic generative model (latent Dirichlet allocation) was proposed in [37] to detect the latent semantics from 

user-generated comments. Incremental learning was then used to address the issue of the changing feature space. 

Three traditional feature selection methods were used in [16], including information gain, Gini index and mean 

decrease accuracy. The latter measures attribute importance based on the accuracy of the RF classifier. Evolution-

ary search algorithm was used in combination with χ2 evaluation criterion by [38] to identify the reduced set of 

attributes for spam filtering in Twitter microblogging social network. Even better accuracy than the previously 

mentioned filter-based methods can be achieved using wrapper-based feature selection [39]. However, this ap-

proach is reportedly computationally intensive because the classifier must be trained on each feature subset. The 

main limitation of the wrapper-based approach proposed in [39] is the use of classification accuracy as the evalu-

ation measure due to its unsuitability for different misclassification cost of spam and legitimate classes. 

Regarding the classification methods used to categorize spam and legitimate messages (profiles), traditional ma-

chine learning methods have dominated in earlier research, such as Naïve Bayes, SVM and random forest. To 

make use of unlabelled messages in the dataset, several studies have used methods with unsupervised learning in 

addition to supervised learning [40,41]. Ensemble-based approaches, such as Decorate [42] and boosting [43], 

have been effectively used in a few studies, demonstrating that those methods can be more accurate in detecting 

spam than single classifiers. This can be attributed to the diversity of the base learners that reduces the problem of 

over-fitting. However, the main limitation of the mentioned studies is the application of decision trees as base 

learners, which suffer from several drawbacks, such as poor capacity to deal with high-dimensional datasets [35]. 

In summary, previous related literature attempted to overcome the problem of high-dimensional data (the curse of 

dimensionality) by selecting the most important features, regardless of whether content-based features or user 

behaviour features. This was mainly due to the risk of overfitting or poor convergence of the used classification 

methods. However, useful information may be hidden in higher-order features that can be extracted by using deep 

neural networks [9]. In fact, additional hidden layers enable the recombination of features and thus to capture 

higher complexity and abstraction in high-dimensional datasets [44]. Moreover, ensemble methods have become 

popular in social network spam detection tasks due to their capacity to reduce the risk of overfitting and variance 



9 

 

[14]. In order to take advantage of these approaches, here we use RDNNs as base learners in several ensemble 

learning schemes, including boosting, bagging and random subspace. 

3 Datasets 

In this study, we used two benchmark datasets, one obtained from Hyves, the Dutch social networking site, while 

the other obtained from Twitter.  

2.1 Hyves dataset 

The original Hyves dataset contained both labelled and unlabelled messages1. As we use a supervised learning 

approach here, we excluded the unlabelled (unannotated) messages from the dataset. Since the details on this 

dataset can be found in [34], we provide only a brief description in this study. 

The dataset includes the following types of information: message content, spam report and user information. The 

messages were collected from publicly accessible profile or group pages. At least two spam reports were created 

for each message to obtain reliable categorization of messages into “spam” or “not spam”. The user policy of 

Hyves was used to define spam messages. Specifically, unsolicited and promotional messages were labelled as 

spam. 

The Hyves dataset contained 466 spam messages and 355 legitimate messages. The messages were represented as 

the arrays of JSON objects with the following fields: the annotation of the object (either spam or legitimate), 

anonymized IDs of the reporters of the message, anonymized ID of the author of the message, and bag of words 

representation of the message (an anonymized ID was assigned to each word). 

2.2 Twitter dataset 

The Twitter dataset was originally used by [55]. The original Twitter dataset consisted of 100,000 tweets collected 

from 92,720 users in May 2016. The authors labelled the dataset manually and provided the links to the used tweets 

along with their labels2. Among those messages, 90,055 were identified as legitimate. We attempted to download 

all the tweets in July 2018. However, many messages were filtered and removed by that time. As a result, our 

dataset consisted of 61,675 tweets, 4,198 of them labelled as spam.  

 
1 http://ilps.science.uva.nl/framework-unsupervised-spam-detection-social-networking-sites/ 
2 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182487#pone.0182487.s003 
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2.3 Data pre-processing 

To represent message content in both datasets, we used tf.idf weighting scheme in the bag-of-words fashion. The 

weight vij for the i-the word in the j-th message can be calculated as follows: 

vij = (1 + log(tfij)) × log(N/dfi),               (1) 

where tfij represents term frequency, dfi is document frequency, and N is the number of messages. We used top 

2000 words according to their weights. This number was reported to be sufficient to perform document classifica-

tion in previous studies [56]. 

For the Hyves dataset, the information about spam reports and users were considered as additional attributes, 

namely the number of user spam reports (it is assumed that the more spam reports received, the more likely the 

message is spam) and the number of all messages written by author (assuming that author with many spam mes-

sages is more likely to post another spam message). 

In addition to the text representation of the Twitter dataset, the information included in the JSON objects were 

extracted in accordance with the original study [55]. Those features can be categorized into: (1) tweet-based, such 

as type of tweet, numbers of retweets, hashtags and mentions, and (2) profile-based, such as the numbers of fol-

lowers, friends and statuses (see [55] for all the details). 

4 Methods 

Since the main interest of the paper is the proposal of a social network spam filter based on the combination of 

MOEFS and cost-sensitive RDNN with ensemble learning, we provide a description of these methods in this sec-

tion. The proposed conceptual framework for social network spam filtering is presented in Figure 2. 

 

Figure 1: Conceptual framework for social network spam filtering 

4.1 Multi-objective evolutionary feature selection 
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Related studies have demonstrated that the prediction performance of models for spam filtering can be significantly 

improved using feature selection [16]. This step aims to improve model accuracy and stability by choosing a subset 

of only relevant input attributes. Thus, the dimensionality of the feature space is reduced. This may have consid-

erable importance for the spam filtering models, because social network administrators can better understand the 

characteristics of spam messages and the attributes’ acquisition time and cost can be reduced. 

In the literature [57], three categories of feature selection methods are distinguished, namely filters, embedded 

methods and wrappers. For filters, no learning algorithms is necessary to be involved because only data character-

istics are used to evaluate the importance of attributes. In contrast, a specific prediction model is used in embedded 

methods. The relevance of each attribute is then evaluated while training that model. Wrappers are more compu-

tationally intensive, compared to the two approaches, because they employ enumeration algorithms to find the 

subset of attributes with the best performance of the prediction model. 

As indicated above, two main objectives should be taken into account in feature selection for social network spam 

filtering: minimizing the prediction error and minimizing the number of selected features. The latter objective is 

important for improving the prediction model’s stability and interpretability. However, as suggested in [17], these 

two objectives are often in conflict with each other. To address this issue, MOEFS has been successfully used in 

wrapper-based feature selection [17,58]. Notably, the ENORA algorithm was recently employed for this task [58], 

outperforming other baseline algorithms. 

A wrapper-based approach has been effectively applied to optimize the SVM performance in social network spam 

filtering [39]. However, to the best of our knowledge, no related work has investigated the use of multiple objec-

tives in feature selection. Here, we propose a wrapper-based MOEFS to minimize the misclassification cost (MC) 

of the spam filtering model on the one hand while minimizing the number of selected features on the other hand. 

In other words, we adapt ENORA to feature selection for cost-sensitive classification task. The detailed description 

of the ENORA algorithm is presented in [17]. Therefore, for the sake of clarity, we summarize only our modifica-

tions in this section. 

Adopting the recommendation of Jiménez et al. [17], we use one crossing and one mutation operator in the ENORA 

algorithm. More precisely, self-adaptive crossover and mutation are used, which provides favorable diversity in 
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the population of solutions and maintains the convergence of the algorithm. As a result, only the probability of 

variation must be decided to control the evolution of the population.  

To initialize the population of solutions, the number of individuals (solutions) in the population must be fixed. 

Each solution is represented by a fixed-length bit set, one bit for each attribute (1 if the attribute was selected and 

0 if not selected). Thus, the length corresponds to the number of attributes. Additionally, two discrete parameters 

dI and eI represent crossover and mutation, respectively. As a result, an individual I is represented as follows: 

I = {b1
I, b2

I, … , bm
I, dI, eI},               (2) 

where bj
I ∈{0,1}, j=1,2, …, m, m is the number of attributes, dI ∈{0,1}, and eI ∈{0,1}. Each individual is evaluated 

using two fitness functions, f1(I) and f2(I), representing two objectives in MOEFS: 

{
    𝑓1(𝐼) = MC(𝐼)

𝑓2(𝐼) = 𝐶(𝐼)
,                (3) 

where C(I) is the cardinality of the subset of attributes (i.e., the number of selected attributes) and the calculation 

of MC(I) is as follows.  

On the one hand, the wrong prediction of a message that is spam (type II error) leads to the loss of time because 

the user needs to read the message, delete it and report a spam message (or spamming profile), respectively. On 

the other hand, predicting a spam message when it would be legitimate (type I error) may result in its automatic 

filtering and ignoring by the user or eventually in its automatic deletion. This case is considered more serious than 

the former one because we want to avoid labelling legitimate message as spam [59]. Several spam filtering studies 

have combined those two errors into a MC [59,60], which is considered a crucial criterion in the evaluation of 

spam filtering effectiveness [60]. However, this measure has rarely been utilized as the objective criterion in learn-

ing by classification models [59]. In other words, previous literature has inadequately studied cost-sensitive social 

network spam filtering. 

Table 2 shows the confusion matrix used to calculate MC(I), which combines type I and type II errors as follows: 

MC𝜆(𝐼) =
1

1+𝜆
× FNR +

𝜆

1+𝜆
× FPR ,                    (4) 

where λ is a misclassification cost ratio comparing the degree of seriousness of type I error compared to type II 

error, FNR and FPR denote false positive and false negative rate, respectively: 
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FNR =
FN

TP+FN
 ,                 (5) 

FPR =
FP

TN+FP
.                 (6) 

In our experiments, we adopted the values of the misclassification cost ratio λ considered in previous studies 

[59,60], resulting in three different ratios used, λ=1, λ=3 and λ=7. Note that for λ=1, MCλ(I) is the average of FNR 

and FPR. The proposed ENORA algorithm for MOEFS can be defined as follows: 

Algorithm 1: ENORA for MOEFS 

Input: The number of individuals in population N; the number of attributes in dataset m; the number 

of iterations T 

Output: The population of non-dominated individuals Pf 

Initialize population P; 

Evaluate all individuals of P using f1 and f2; 

For t=1 to T { 

Q ← ∅; 

For I=1 to N { 

Parent1, Parent2 ← Binary tournament selection from P; 

Child1, Child2 ← Self-adaptive variation Parent1, Parent2; 

Evaluate Child1, Child2 using f1 and f2; 

Q ← Q ∪ {Child1, Child2}; 

I ← I + 2; 

} 

R ← P ∪ Q; 

P ← N Best individuals from R according to the rank-crowding-better function in R; 

} 

Pf ←P; 

 

Table 2: Confusion matrix for social network spam filtering 

Prediction/Actual Positive Negative 

Positive (spam) TP FP (type I error) 

Negative (legitimate) FN (type II error) TN 
Legend: TP, FP, FN and TN are the numbers of messages classified as true positive, false positive, false negative and true negative. 

First, the initial population P is randomly generated as described in [17,58]. Specifically, a number q ∈ {1, 2, …, 

m} is randomly generated, and q random bits in the individual I are fixed to 1, while the remaining m−n bits are 

fixed to 0. Parameters dI  and eI  are randomly generated from {0,1}. Then, binary tournament selection is used to 

obtain parents Parent1 and Parent2. The parents are crossed and mutated using self-adaptive variation, and the 

offspring is evaluated and added to an initially empty auxiliary population Q. Then, the rank-crowding-better 

function [58] is used to choose the N best individuals of an auxiliary population R. This function is based on the 

crowding distance of an individual I in a population P: 
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𝑐𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝐼) =
𝑓1

𝑠𝑢𝑝1
𝐼

−𝑓1
𝑖𝑛𝑓1

𝐼

𝑓1
𝑚𝑎𝑥−𝑓1

𝑚𝑖𝑛 +
𝑓2

𝑠𝑢𝑝2
𝐼

−𝑓2
𝑖𝑛𝑓2

𝐼

𝑓2
𝑚𝑎𝑥−𝑓2

𝑚𝑖𝑛 ,            (7) 

where 𝑓1
𝑠𝑢𝑝1

𝐼

 and 𝑓2
𝑠𝑢𝑝2

𝐼

 (resp. 𝑓1
𝑖𝑛𝑓1

𝐼

 and 𝑓2
𝑖𝑛𝑓2

𝐼

) are the values of the objective functions for the individual higher 

(lower) adjacent in the objective function to the individual I. 

4.2 Cost-sensitive ensemble-based regularized deep neural networks 

The model of RDNN used in this study is the multilayer perceptron neural network with multiple hidden layers 

that process complex relations between the input features and output categories. However, such a structure results 

in the large number of connections, leading to sampling noise. Therefore, intensive adaptation of training data may 

result in overfitting. To address this issue, we used dropout regularization. Indeed, increased accuracy may be 

achieved by dropping units from the neural network, including all their incoming and outgoing connections. The 

dropout regularization randomly changes the given ratio of the activations’ values to zero while training is per-

formed and therefore hidden units that produce the same result are ignored. In addition, we employed rectified 

linear units instead of traditional sigmoidal units in order to avoid poor local minima of training error and slow 

optimization convergence [61]. This is done by producing partial derivative equal to one, in case the rectified linear 

unit is activated. It is also worth to add that these units saturate when reaching one. This might be useful when 

hidden activations are selected as input features for the classifier. The mini-batch gradient descent was used as a 

training algorithm for the RDNN. Connection weights are updated for every mini-batch of training data in the 

following way:  

wt+1 = wt – η∇θJ(wt; x(i:i+n); y(i:i+n)),               (7) 

where w is connection weight, t denotes time, η is learning rate, J is an objective function, xi and yi are the inputs 

and output of the i-the data sample within every mini-batch, and n is the number of data samples in the mini-batch. 

By using the mini-batches a stable convergence can be achieved during the RDNN learning. 

The goal of ensemble learning algorithms is to combine the predictions of multiple base estimators constructed 

with the defined learning algorithm. This approach leads to better generalizability and robustness over single esti-

mators. There are two main classes of ensemble learning algorithms, averaging and boosting. The fundamental 

concept of averaging is to construct several estimators independently from each other and calculate the average of 
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their predictions. By reducing variance, the combined estimator is more accurate than single base estimator. By 

contrast, boosting builds the base estimators sequentially. Thus, several sequential weak models are combined to 

achieve a good ensemble. Here we used three conventional ensemble learning algorithms, namely Adaboost M1 

[62], bagging [63] and random subspace [64]. 

The Adaboost M1 algorithm was developed to produce predictions with high accuracy utilizing a number of weak 

base learners. The algorithm keeps building the learners until there are no errors in training data predictions or the 

limit numbers of models is exceeded. This is done by increasing the weights of incorrectly predicted data. Finally, 

the predictions from all the models are combined by using a weighted majority vote to obtain the final predictions. 

The algorithm is defined as follows:  

Algorithm 2: Adaboost M1 with cost-sensitive RDNNs as base learners 

Input: The set D of training data (xi; yi), i=1,2, … ,n; the number B of base cost-sensitive RDNNs 

Output: Ensemble of base cost-sensitive RDNNs {Cb} 

For b=1 to B { 

Construct a base RDNN Cb on weighted training data D*=(w1D1
b, w2D2

b, … , wnDn
b); 

Calculate the probability estimates of the expected cost eb=1/n Σ wib×ξi
b (ξi

b=0 if Di classified correctly, 

ξi
b=1 if Di classified as FN, ξi

b=λ otherwise); 

Set weight cb=0.5×log((1–errb)/errb); 

If errb<0.5, set  wib+1=wib×exp(cbξi
b); 

Otherwise, set all weights wib=1 and restart the algorithm; 

} 

Combine base cost-sensitive RDNNs Cb, b=1,2,…,B into an ensemble {Cb} by weighted majority voting; 

The main idea behind bagging is to construct multiple instances of black-box estimator on the random subsets of 

the original training data. To produce an aggregated prediction, separate predictions are then combined by using 

the voting procedure. Thus, the variance of base estimator is reduced by applying randomization during the process 

of building ensembles. The bagging algorithm employed here can be defined as follows: 

Algorithm 3: Bagging with cost-sensitive RDNNs as base learners 

Input: The set D of training data (xi; yi), i=1,2, … ,n; the number B of base cost-sensitive RDNNs 

Output: Ensemble of base cost-sensitive RDNNs {Cb} 

For b=1 to B { 

Create a bootstrapped replicate Db of the training data set D; 

Construct a base cost-sensitive RDNN Cb on Db; 

} 

Combine base cost-sensitive RDNNs Cb, b=1,2,…,B into an ensemble {Cb} by simple majority voting; 

The random subspace algorithm was proposed to handle the problem of trade-off between overfitting and achiev-

ing the highest accuracy. In fact, the random subspace algorithm is similar to bagging. The main difference is in 

the way they draw the random subsets of training data. In random subspace, these subsets are produced as the 
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random subsets of the features. The random subspace algorithm applied here for social network spam filtering can 

be defined as follows: 

Algorithm 4: Random subspace with cost-sensitive RDNNs as base learners 

Input: The set D of training data (xi; yi), i=1,2, … ,n; the number B of base cost-sensitive RDNNs 

Output: Ensemble of base cost-sensitive RDNNs {Cb} 

For b=1 to B { 

Select an r-dimensional random subspace Db from the original training data set D; 

Construct a base cost-sensitive RDNN Cb in Db; 

} 

Combine base cost-sensitive RDNNs Cb, b=1,2,…,B into an ensemble {Cb} by simple majority voting; 

The time complexity of the proposed method can be obtained as follows. When disregarding MOEFS, the time 

complexity of the cost-sensitive ensemble-based RDNN is O(B×nmb×T×(m×n1+n1×n2+n2×n3+n3×n4)), where B is 

the number of the base learners, nmb is the number of mini-batches, T is the number of epochs, m is the number of 

features, n1, n2 and n3 are the numbers of neurons in the first, second and third hidden layer, respectively, and n4 is 

the number of neurons in the output layer. When MOEFS is performed using ENORA with l objectives and N 

individuals in the population, the time complexity is O(l×N2+B×nmb×T×(mselected×n1+n1×n2+n2×n3+n3×n4)) in the 

worst case. Note that the time complexity of ENORA for MOEFS is only O(l×N) in the best case. Hence, besides 

the number of neurons and hidden layers in the base RDNNs, the time complexity largely depends on the feature 

reduction rate of MOEFS. 

5 Experimental Results 

In this section, we first describe the setting of all experiments and then we present the results in terms of five 

prediction measures: MC, detection accuracy (Acc), AUC, FNR and FPR, and F1-score. FNR represents the per-

centage of spam messages incorrectly predicted as legitimate, while FPR is the percentage of legitimate messages 

incorrectly predicted as spam. F1-score combines precision and recall, where precision is a fraction of messages 

correctly classified as spam out of all the messages the algorithm classifies as spam, whereas recall is the fraction 

of messages correctly classified as spam out of all the spam messages. 10-fold cross-validation was used to avoid 

overfitting and evaluate the prediction performance. To address the problem of the imbalanced Twitter dataset, we 

used a distribution-based balancing algorithm to under-sample the majority class of legitimate messages in the 

training data. More precisely, the original training data in the majority class were replaced based on learning their 
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Gaussian probability distribution. This reportedly reduced over-lapping between spam and legitimate class in re-

lated spam filtering studies [35,65].  

In the first run of experiments, MOEFS was performed on both datasets. In agreement with [17], random forest 

was used as the prediction method in the wrapper-based MOEFS because it is considered a state-of-the-art bench-

mark algorithm in the spam filtering literature [38,54,55]. For the ENORA search algorithm, the number of indi-

viduals in the population was set to 100 and the number of generations to evolve the population was 10. As hinted 

above, the MOEFS was performed for different values of misclassification cost ratio, λ=1, λ=3 and λ=7. The results 

of random forest without feature selection and with MOEFS are presented in Figure 2. It demonstrates that MC 

was substantially decreased when applying random forest with the set of features reduced using MOEFS. In fact, 

the differences in MC1, MC3 and MC7 were significant at p=0.01 (using the Student’s paired t-test), except for 

MC1 for the Twitter dataset, suggesting that MOEFS is effective in decreasing MC of the social network spam 

filter. In addition, at the same time, the number of features was reduced for both datasets. For the Hyves dataset, 

the use of MOEFS resulted in 854, 725 and 721 features on average for λ=1, λ=3 and λ=7, respectively, while for 

the Twitter dataset, the average number of features was 741, 738 and 734. In other words, more than half of the 

attributes were removed as irrelevant and thus the dimensionality of the feature space was substantially reduced. 

The feature subsets obtained in this stage were further used in training the RDNN with ensemble learning. 

 

Figure 2: Misclassification cost for random forest without feature selection vs. random forest with MOEFS 
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The RDNN with ensemble learning was trained with the following setting: number of hidden layers = {1, 2, 3}, 

number of units in hidden layers = {10, 20, 50}, and learning rate was set to η = 0.1, size of mini-batches = 100, 

dropout rate for input layer = 0.2; dropout rate for hidden layers = 0.5, and number of iterations = 1000. The best 

setting of the RDNN structure (in most experiments, it was 2 hidden layers with 50 and 20 units, respectively) was 

obtained by using grid search. Furthermore, 10 iterations were used in the learning of Adaboost M1 ensemble, the 

size of each bag in bagging was 100, and the size of each subspace was 50% of all attributes in the random subspace 

algorithm. The learning of bagging and random subspace was also performed in 10 iterations. 

To demonstrate the effectiveness of the proposed social network spam filter, we compared its performance with 

several methods used in previous studies for spam filtering, namely the single RDNN [18], Naïve Bayes [27], 

SVM [5,37], Adaboost M1 with decision stump as base learner [66], and random forest [38,54,55]. Note that all 

the compared methods were trained in the cost-sensitive mode, this is with, respectively, MC1, MC3 and MC7 as 

objective functions. The settings of these algorithms were as follows: single RDNN (the same setting as for the 

RDNN with ensemble learning); SVM (sequential minimal optimization algorithm with C = {20, 21, … , 26} (C = 

22 worked best) and polynomial kernel function); Adaboost M1 with 10 iterations and decision stump as base 

learner; and 100 random trees were used in random forest. All the experiments were performed in Weka 3.7.13 

environment. 

A brief description of the comparative methods is given as follows:  

The Naïve Bayes classifier utilizes information learnt from training data in order to calculate the probability of 

spam or legitimate class taking into consideration words found in the message. The SVM learning is based on 

structural risk minimization. Specifically, SVM finds the optimal separating hyperplane that represents the maxi-

mum margin between two classes and the corresponding decision boundaries are defined by the so-called support 

vectors. As a result, this algorithm can effectively handle high-dimensional data. Finally, random forest consists 

of multiple tree predictors. Each of them is influenced by the values of an independently sampled random vector. 

Therefore, all the trees in the forest share the same distribution. 

The results of the experiments for MC ratio λ=1 are summarized in Table 3. The results show that the RDNN with 

bagging performed best in terms of MC1 for both datasets. Besides the RDNN with ensemble learning, the single 
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RDNN and random forest also performed well. Student’s paired t-tests were performed to compare the results 

statistically. The results that are statistically similar to the best performer at p=0.05 are in bold in Table 3. 

Table 3: Results of the experiments for λ=1 

 Hyves dataset 

Method MC1 [%] Acc [%] AUC FNR [%] FPR [%] F1-score 

Naïve Bayes 25.97±3.74 76.61±3.41 0.931±0.033 45.1±8.0 6.9±5.1 0.819±0.026 

SVM 9.70±3.38 90.13±3.47 0.903±0.034 8.5±4.2 10.9±5.0 0.911±0.032 

AdaBoost M1 9.88±3.42 89.16±3.68 0.906±0.037 2.8±1.8 16.9±5.4 0.896±0.038 

Random forest 7.43±2.49 92.33±2.78 0.961±0.026 5.7±1.8 9.2±4.7 0.930±0.026 

single RDNN 9.04±3.01 90.86±3.10 0.954±0.023 8.4±3.5 9.6±4.3 0.918±0.029 

RDNN with AB 8.70±3.80 91.23±3.85 0.947±0.029 8.2±3.9 9.2±4.5 0.921±0.035 

RDNN with Bagging 7.39±2.26 92.33±2.38 0.958±0.023 5.3±2.3 9.4±3.6 0.930±0.023 

RDNN with RanSub 7.76±1.72 91.84±1.81 0.964±0.017 4.8±2.2 10.7±2.8 0.925±0.017 

 Twitter dataset 

Method MC1 [%] Acc [%] AUC FNR [%] FPR [%] F1-score 

Naïve Bayes 23.91±1.12 76.76±0.41 0.818±0.010 24.7±2.4 23.1±0.5 0.818±0.010 

SVM 16.54±0.90 87.27±0.66 0.835±0.009 20.9±1.9 12.1±0.7 0.835±0.009 

AdaBoost M1 26.48±1.46 79.22±0.52 0.758±0.019 33.1±2.9 19.9±0.5 0.758±0.019 

Random forest 17.26±0.85 88.17±0.48 0.899±0.009 23.5±1.8 11.0±0.5 0.902±0.003 

single RDNN 16.04±1.07 88.98±1.71 0.914±0.008 21.8±3.0 10.2±2.0 0.914±0.009 

RDNN with AB 17.03±0.61 86.09±1.71 0.896±0.007 20.7±2.9 13.4±2.0 0.888±0.011 

RDNN with Bagging 15.42±1.02 90.02±0.50 0.918±0.007 21.7±2.1 9.1±0.6 0.915±0.004 

RDNN with RanSub 17.32±1.26 87.58±0.77 0.906±0.010 23.0±2.2 11.6±0.8 0.898±0.005 

The results in Table 3 show that the RDNN with ensemble learning performed well in terms of both FNR and FPR 

for both datasets. In other words, the performance was well balanced for both spam and legitimate classes. This 

was also confirmed with the high values of AUC. Moreover, the RDNN with bagging, together with random forest 

and single RDNN, respectively, performed best in terms of F1-score, indicating a balanced performance in both 

the precision and the recall for the Hyves and Twitter datasets. Notably, we obtained better results than those 

reported in the original study using the Hyves dataset (AUC=0.801) [34]. However, this original study was based 

on a simple spam score combining messages’ own and neighbour characteristics. More precisely, the best perfor-

mance in terms of accuracy was achieved by using the RDNN with bagging. As presented in Table 3, this can be 

mainly attributed to the low values of both FNR and FPR on both datasets. In other words, this method performs 

particularly well in predicting both the spam and legitimate classes. For the Hyves dataset, the RDNN with random 

subspace performed even better in terms of FNR but it failed to classify the legitimate messages compared with 

the remaining ensemble methods. Finally, the RDNN with AB performed reasonably well with respect to both 

classes, resulting in high accuracy and AUC. Regarding the other comparative methods, they were significantly 
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outperformed by the best spam filter in terms of MC1, except random forest and single RDNN. For the Twitter 

dataset, SVM performed also reasonably well in terms of MC1 and FNR. This agrees with the original study [55]. 

We must admit that even higher accuracy was achieved in [55] which can be explained by the fact that Twitter 

removed the most obvious spam messages in the meantime. Moreover, the compared method in [55] performed 

well on the majority (legitimate) class only. Therefore, comparable accuracy can be easily obtained by giving 

priority to FPR in our method, this is when increasing MC ratio λ.  

Table 4 presents the results of the experiments for MC ratio λ=3. As expected, the performance of almost all 

methods improved in terms of FPR compared with the results for λ=1. However, this was achieved at the cost of 

higher FNR, resulting in lower accuracy for the Hyves dataset. In this case, the RDNN with AB and RDNN with 

bagging performed reasonably well in terms of both measures, FNR and FPR. Notably, the RDNN with Adaboost 

performed best for MC3. However, only Naïve Bayes was significantly outperformed for this evaluation measure 

(at p=0.05). Further improvement in FPR can be seen in the results for λ=7 (Table 5). Again, several methods 

performed relatively weakly in terms of FNR. In case of the RDNN with bagging and random subspace, this 

resulted in a low overall accuracy. Notably, the accuracy of those methods was significantly lower than that of the 

RDNN with Adaboost. In contrast, the RDNN with random subspace outperformed the other methods in terms of 

MC7. However, this was achieved at the cost of relatively poor performance on the spam class. Regarding accuracy, 

similarly as for λ=1, Naïve Bayes, SVM and AdaBoost M1 methods were significantly outperformed by the 

RDNNs with ensemble learning.  

By contrast to the Hyves dataset, higher accuracy and F1-score were achieved for the Twitter dataset due to the 

high imbalance of classes in favour of legitimate messages. For the same reason, FNR dropped substantially, as 

compared with the baseline for λ=1. 

Table 4: Results of the experiments for λ=3 

 Hyves dataset 

Method MC3 [%] Acc [%] AUC FNR [%] FPR [%] F1-score 

Naïve Bayes 19.28±3.24 71.01±3.95 0.927±0.037 59.1±8.6 6.0±3.8 0.787±0.026 

SVM 10.96±4.32 89.16±3.91 0.892±0.038 10.4±4.4 11.1±5.2 0.903±0.036 

AdaBoost M1 11.00±3.68 88.18±3.63 0.938±0.029 14.4±4.7 9.9±4.1 0.896±0.032 

Random forest 8.90±3.14 90.38±2.96 0.959±0.027 11.8±3.3 7.9±3.6 0.916±0.026 

single RDNN 9.81±3.71 88.79±3.61 0.946±0.026 15.5±5.0 7.9±4.2 0.903±0.031 

RDNN with AB 8.83±2.98 90.02±3.25 0.941±0.026 13.5±5.9 7.3±3.4 0.913±0.028 

RDNN with Bagging 9.28±2.21 89.89±1.96 0.953±0.022 12.7±3.8 8.1±3.1 0.912±0.017 
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RDNN with RanSub 10.22±4.39 86.98±6.01 0.956±0.023 21.6±12.0 6.4±3.4 0.892±0.046 

 Twitter dataset 

Method MC3 [%] Acc [%] AUC FNR [%] FPR [%] F1-score 

Naïve Bayes 23.72±0.83 76.83±0.44 0.819±0.012 26.0±3.9 23.0±0.6 0.823±0.003 

SVM 12.75±0.83 91.32±0.85 0.817±0.013 29.5±2.8 7.2±1.0 0.923±0.006 

AdaBoost M1 22.80±2.65 89.96±5.45 0.756±0.025 75.4±24.1 5.3±7.4 0.894±0.029 

Random forest 10.85±0.93 94.16±0.95 0.903±0.011 31.5±2.3 4.0±1.0 0.944±0.008 

single RDNN 10.69±0.71 94.62±0.74 0.906±0.010 32.6±2.3 3.4±0.8 0.948±0.006 

RDNN with AB 11.86±1.15 92.41±1.89 0.889±0.007 29.5±2.9 6.0±2.2 0.932±0.014 

RDNN with Bagging 10.10±0.43 95.60±0.41 0.914±0.011 33.6±1.6 2.3±0.5 0.956±0.003 

RDNN with RanSub 10.86±0.76 96.16±0.37 0.910±0.010 39.8±2.7 1.2±0.3 0.959±0.004 

Table 5: Results of the experiments for λ=7  

 Hyves dataset 

Method MC7 [%] Acc [%] AUC FNR [%] FPR [%] F1-score 

Naïve Bayes 12.29±2.99 69.06±2.85 0.927±0.037 65.3±7.2 4.7±3.8 0.778±0.019 

SVM 10.85±3.65 87.21±2.52 0.868±0.025 16.3±5.3 10.1±4.5 0.888±0.022 

AdaBoost M1 10.46±4.08 88.06±3.86 0.939±0.028 14.7±4.6 9.9±4.3 0.895±0.034 

Random forest 9.16±3.22 89.40±2.26 0.959±0.027 13.2±2.2 8.6±3.7 0.907±0.021 

single RDNN 8.86±4.13 88.79±3.48 0.945±0.028 15.5±5.2 7.9±4.6 0.903±0.030 

RDNN with AB 8.94±3.82 90.14±3.31 0.941±0.022 11.6±3.7 8.6±4.1 0.913±0.030 

RDNN with Bagging 8.97±2.76 86.53±2.32 0.952±0.024 13.3±3.1 8.4±3.1 0.908±0.020 

RDNN with RanSub 8.30±2.61 84.53±6.71 0.956±0.022 28.9±17.9 5.4±3.5 0.877±0.042 

 Twitter dataset 

Method MC7 [%] Acc [%] AUC FNR [%] FPR [%] F1-score 

Naïve Bayes 23.64±0.65 76.72±0.57 0.817±0.013 29.1±3.7 22.9±0.6 0.822±0.004 

SVM 7.66±0.58 94.18±0.53 0.802±0.012 36.0±2.2 3.6±0.5 0.944±0.005 

AdaBoost M1 12.31±0.28 92.69±0.61 0.734±0.025 89.2±13.3 1.3±1.6 0.734±0.025 

Random forest 5.94±0.51 96.26±0.53 0.904±0.013 39.8±2.5 1.1±0.6 0.960±0.005 

single RDNN 6.00±0.27 96.28±0.18 0.899±0.012 41.0±3.2 1.0±0.3 0.960±0.002 

RDNN with AB 6.66±0.74 95.36±0.96 0.898±0.011 37.7±3.8 2.2±1.2 0.953±0.007 

RDNN with Bagging 5.77±0.37 96.64±0.24 0.913±0.011 42.8±2.6 0.5±0.1 0.963±0.011 

RDNN with RanSub 6.46±0.29 96.38±0.17 0.908±0.011 50.0±2.7 0.2±0.2 0.959±0.002 

 

Now, the question is how to set the parameter λ value in the classifier training step. To demonstrate the effect of 

the λ value on different MC measures of the classifier, we opted for the RDNN trained with bagging as this model 

performed reasonably well in terms of all the used classification measures. Figure 3 shows the average MC ob-

tained across the two datasets. Naturally, the choice of the λ value would largely depend on the actual MC value 

in the social network. It can be seen from Figure 3 that if MC1 is the preferred criterion, λ=1 would be the best 

choice, while for MC3 and MC7, the classifier trained with λ=3 performed best. This finding suggests that in real-

world scenarios (with FPR associated with significantly higher MC than FNR), λ=3 would be a reasonable choice 

irrespective of the actual values of MC.  
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Figure 3: Effect of MC ratio λ on the misclassification cost of RDNN with Bagging 

To show the effectiveness of the proposed MOEFS, we further performed a comparative analysis with several 

feature selection methods considered in previous social network spam filtering studies due to their capacity to 

decrease complexity and data dimensionality. Thus, the discriminatory power of the feature space can be increased 

and the prediction performance of classifiers can be improved. 

Specifically, four methods were chosen for comparative purposes: (1) correlation-based filter (CBF) with particle 

swarm optimization (PSO) as a search method [35], (2) gain ratio (GR) [67], (3) information gain (IG) [16,21], 

and (4) Relief [22]. Those represent computationally efficient filter methods used in earlier social network spam 

detection studies. The CBF method used PSO with 20 particles in the swarm to find features with high predictive 

ability and low redundancy. The ranker search method was employed for the remaining filters. To avoid feature 

selection bias, we used the feature selection methods separately for all the 10 training datasets. RDNN with Ada-

boost, bagging and random subspace were used as the classification methods for all the compared feature selection 

methods. The best performance achieved is reported in Table 6. Notably, the MOEFS method performed best in 

terms of MC. Table 6 also shows that for the Hyves dataset CFS+PSO was significantly outperformed by the 

proposed MOEFS method, whereas the IG method performed statistically similar. For the Twitter dataset, the 

compared methods were outperformed in terms of all the measures except accuracy for CFS+PSO with λ=3. In 
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summary, our method performed best in misclassification cost in particular, irrespective of the value of MC ratio. 

In addition, the method was effective regarding the number of selected features. 

Table 6: Comparison of MOEFS with other feature selection methods 

 Hyves dataset  

 λ=1 λ=3 λ=7  

Method MC1 [%] Acc [%] MC3 [%] Acc [%] MC7 [%] Acc [%] Features 

CFS+PSO 9.10±2.75 90.26±3.08 11.30±2.81 90.01±2.48 12.46±0.11 56.88±0.78 58 

GR 7.78±2.30 92.33±2.78 9.17±3.18 90.38±3.47 9.28±3.12 81.00±4.70 1,221 

IG 7.70±2.74 92.08±2.80 9.42±3.14 90.25±3.09 8.78±2.95 82.70±4.22 1,221 

Relief 7.50±2.66 92.21±2.79 9.45±3.44 89.89±2.99 8.99±3.22 81.48±5.80 1,959 

MOEFS 7.39±2.26 92.33±2.38 8.83±2.98 90.02±3.25 8.30±2.61 84.53±6.71 767 

 Twitter dataset  

 λ=1 λ=3 λ=7  

Method MC1 [%] Acc [%] MC3 [%] Acc [%] MC7 [%] Acc [%] Features 

CFS+PSO 20.60±1.08 85.89±3.69 10.95±0.48 95.87±0.47 6.13±0.29 96.37±0.25 91 

GR 17.09±0.89 85.54±1.20 10.94±0.77 94.54±0.79 6.04±0.31 96.31±0.28 1,278 

IG 16.36±0.76 85.70±0.96 11.08±0.74 94.13±0.72 6.15±0.27 96.11±0.35 1,278 

Relief 16.37±1.23 89.04±0.97 10.73±0.43 94.04±0.75 6.18±0.42 96.03±0.47 1,727 

MOEFS 15.42±1.02 90.02±0.50 10.10±0.43 95.60±0.41 5.77±0.37 96.64±0.24 738 

 

In the further run of experiments, the results of the proposed model were compared to those obtained by other 

state-of-the-art social network spam detection models. Specifically, we selected both the models without a feature 

selection component, such as Naïve Bayes [27], SVM [20], Decorate [42], ADTree [50], C4.5 [24] and random 

forest [54], as wells as models with feature selection, namely IWNN+RDNN [35], IG+RF [16], Relief+LogitBoost 

[22], χ2+SVM [37], χ2+RF [55] and PSO+C4.5 [36].  

In agreement with [20], SVM was trained with RBF kernel through the libSVM implementation that uses grid 

search policy to find the best settings of complexity parameter C and gamma of the RBF kernel. Decision stump 

was used as base learner in the Decorate spam filter. The C4.5 spam filter was trained using the J48 implementation 

with the confidence factor of 0.25.  To train random forest, 100 random trees were used. Following the setting of 

the RDNN spam filter in [35], a mini-batch gradient descent algorithm was employed with the mini-batch size of 

100 and 1000 iterations. The optimum structure of the RDNN was found using the grid search procedure testing 

different numbers of hidden layers (1, 2 and 3) and neurons in the hidden layers (10, 20, … , 200). Dropout rates 

were set to 0.2 and 0.5 for the input and hidden layers, respectively. To train the LogitBoost spam filter, the C4.5 

algorithms were employed as base learners with the desired number of fifteen classifiers in the Decorate ensemble.  
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Table 7: Comparison of MOEFS+RDNN with state-of-the-art social network spam filtering methods 

  Hyves dataset 

Method Reference MC1 [%] MC3 [%] MC7 [%] Acc [%] AUC 

Naïve Bayes [27] 14.27±3.92 10.56±3.58 8.71±4.33 86.73±3.54 0.943±0.030 

SVM [20] 9.35±3.42 10.36±3.39 10.86±3.65 90.37±3.34 0.906±0.034 

Decorate [42] 9.70±2.51 11.17±3.43 11.91±3.97 89.89±2.73 0.944±0.014 

ADTree [50] 11.18±3.19 13.52±3.68 14.70±4.14 88.19±3.25 0.924±0.026 

C4.5 [24] 11.59±3.73 13.29±4.91 14.15±5.61 87.95±4.00 0.891±0.038 

Random forest (RF) [54] 7.75±3.44 9.23±4.12 9.97±4.52 91.84±3.61 0.955±0.029 

IWNN+RDNN [35] 9.04±3.01 9.34±3.49 9.49±3.86 90.86±3.10 0.954±0.023 

IG+RF [16] 8.04±3.54 9.37±4.18 10.04±4.55 91.60±3.71 0.959±0.026 

Relief+LogitBoost [22] 10.11±2.98 12.34±3.47 13.46±3.96 89.28±3.03 0.919±0.026 

χ2+SVM [37] 12.23±2.88 12.13±2.90 12.07±3.40 87.82±2.73 0.878±0.029 

χ2+RF [55] 7.94±3.44 9.21±4.20 9.85±4.63 91.72±3.65 0.956±0.029 

PSO+C4.5 [36] 10.20±2.95 13.89±3.96 15.73±4.50 88.79±3.22 0.900±0.030 

MOEFS+RDNN 

with AB, λ=3 

this study 10.39±3.42 8.83±2.98 8.05±3.10 90.02±3.25 0.941±0.026 

  Twitter dataset 

Method Reference MC1 [%] MC3 [%] MC7 [%] Acc [%] AUC 

Naïve Bayes [27] 23.91±1.12 23.52±0:54 23.33±0.39 76.76±0.41 0.818±0.010 

SVM [20] 16.54±0.90 14.34±0.59 13.23±0.61 87.27±0.66 0.835±0.009 

Decorate [42] 31.31±1.15 25.56±0.70 22.69±0.56 78.62±0.54 0.706±0.012 

ADTree [50] 20.88±1.25 19.52±2.82 18.83±4.10 81.48±4.70 0.842±0.015 

C4.5 [24] 18.64±1.02 14.14±1.10 11.89±1.39 89.14±1.55 0.854±0.015 

Random forest (RF) [54] 17.66±1.33 14.14±0.85 12.36±0.82 88.43±0.87 0.899±0.008 

IWNN+RDNN [35] 19.56±1.04 12.16±0.61 8.47±0.43 93.22±0.37 0.835±0.007 

IG+RF [16] 17.30±1.26 14.78±1.04 13.53±1.10 87.04±1.16 0.902±0.008 

Relief+LogitBoost [22] 20.31±1.01 19.28±1.40 18.77±1.81 81.47±2.01 0.844±0.012 

χ2+SVM [37] 18.75±1.31 17.96±1.41 17.57±2.14 82.61±2.51 0.813±0.013 

χ2+RF [55] 16.86±1.07 14.04±1.08 12.64±1.28 88.00±1.40 0.903±0.010 

PSO+C4.5 [36] 22.29±1.19 21.25±0.77 20.74±0.69 79.50±0.71 0.797±0.016 

MOEFS+RDNN 

with Bagging, λ=3 

this study 17.94±0.76 10.10±0.43 6.18±0.38 95.60±0.41 0.914±0.011 

 

Table 7 shows that our method performed best in terms of two MC measures, MC3 and MC7. It was also compet-

itive for the remaining evaluation measures. This can be attributed to its excellent performance on the legitimate 

class (FPR) and reasonably good performance on the spam class (FNR), see Figure 4. As before, Student’s paired 

t-test at p=0.05 was used to test the differences in prediction performance. Interestingly, feature selection was not 

effective for SVM (χ2-statistic resulted in 561 and 1,277 features for the Hyves and Twitter dataset, respectively). 

Moreover, SVM, together with IWNN+RDNN (using 52 features) and random forest, performed statistically sim-

ilar as the proposed model for the Hyves dataset. SVM and random forest methods also performed well for the 

Twitter dataset which can be attributed to their effectiveness in handling sparse and high-dimensional data [35]. 

Social network spam datasets are characterized as highly sparse due to the short length of the text in the messages. 
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Note that for the data used in this study, the average legitimate message had 33.15 and 34.78 tokens while the 

average spam message had 34.70 and 44.59 tokens for the Hyves and Twitter dataset, respectively. In contrast, the 

models using the C4.5 algorithm performed relatively poorly, which can be explained by the poor capacity of the 

algorithm to deal with high-dimensional datasets [35]. For the methods from [36] and [50], another possible reason 

which may explain their relatively poor performance is that they were designed to detect spam profiles, rather than 

messages. 

 

Figure 4: FNR and FPR for the compared methods 

Finally, the time performance of the compared method was examined. In agreement with [55], we did not include 

the time needed for training the model as this can be done out of band. As a result, we present only the detection 

time on testing data in Table 8, which informs about the real-time capability of the proposed model. The results 

show that although the proposed model was the least time efficient of the compared models, it is still acceptable 

for real-time spam detection requirement (testing time in a few seconds [55]). The difference in testing times in 

Table 8 is given by the different sizes of samples in the datasets, with the average testing time (throughput) of 

approximately 1,000 messages per second (667 messages/sec and 1229 messages/sec on the Hyves and Twitter 

dataset, respectively). This is considered sufficient for an online system [68]. Note that the testing was performed 

on an Intel Core CPU with six cores (i5-8400 2.80 GHz) and 16 GB RAM and, therefore, substantial reduction in 

testing time can further be achieved when implementing the system on a server machine or GPU. 
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Table 8: Testing time for compared social network spam filtering methods 

  Hyves dataset Twitter dataset 

Method Reference Testing time [s] Testing time [s] 

Naïve Bayes [27] 0.015±0.007 1.898±0.086 

SVM [20] 0.002±0.004 0.006±0.008 

Decorate [42] 0.003±0.006 0.008±0.008 

AD Tree [50] 0.002±0.005 0.005±0.007 

C4.5 [24] 0.000±0.000 0.013±0.006 

Random forest (RF) [54] 0.016±0.007 1.483±0.050 

IWNN+RDNN [35] 0.035±0.014 0.059±0.009 

IG+RF [16] 0.013±0.006 1.155±0.037 

Relief+LogitBoost [22] 0.002±0.005 0.008±0.008 

χ2+SVM [37] 0.006±0.008 0.006±0.008 

χ2+RF [55] 0.016±0.000 1.184±0.063 

PSO+DT [36] 0.002±0.005 0.002±0.005 

MOEFS+RDNN with 

AB/Bagging, λ=3 

this study 0.123±0.022 5.019±0.021 

 

6 Conclusion 

In this study, we demonstrated that the combination of MOEFS with cost-based RDNN ensemble learning algo-

rithms is more accurate than the state-of-the-art social network spam filtering methods in terms of MC. The results 

show that the selection of the ensemble algorithm largely depends on the value of MC ratio. Notably, our model 

performed best for real-world scenarios, where FP rate is associated with significantly higher MC cost than FN 

rate. In addition, our model performed well on both classes, spam and legitimate, which can be attributed to the 

capacity of the ensemble learning algorithms in reducing the risk of overfitting. However, RDNN trained with 

random subspace cannot be recommended for higher MC ratios due to their relatively poor performance on spam 

class, suggesting that reducing the number of features with random subspace does not seem to be beneficial in case 

of RDNNs. For the Hyves dataset, Bagging and Adaboost performed similarly for various values of MC ratios. 

This is interesting because bagging usually performs best with complex base learners, whereas weak base learners 

are preferred in training AB. This suggests that it is important to adjust the complexity of RDNN to the chosen 

ensemble learning algorithm. Bagging also performed best for the Twitter dataset, supporting the necessity of 

using complex base learners. We also showed that MOEFS can be effective to further improve the prediction 

performance of the spam detection model, which can be attributed to the proposed MOEFS modification that aims 

to reduce the MC of the employed classifier. 
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To summarize the results, the integration of the modified MOEFS and cost-sensitive RDNN ensemble learning 

seems to be an effective method for social network spam filtering. Although the improvement in MC might not 

seem substantial for lower MC ratios (about one percent over random forest), it was considerable for higher cost 

related to FP classification. This is encouraging because higher MC ratios are the most realistic ones. 

Finally, several limitations of this study need to be mentioned. Here we used the content of the messages, together 

with the tweet- and profile-based information. However, the content of the neighbouring messages could be uti-

lized in future studies. This would require a larger dataset to be collected. Another limitation might be the focus 

on spam messages, rather than spammers. However, note that this model could also be used to predict spammers 

in addition to spam messages. This could be another promising direction for future work because recent studies 

showed that such a combination might significantly improve the accuracy of spam and spammer filters [69]. It 

would also be interesting to investigate the effect of different content-based (e.g., sentiment, context [70]) or user 

behaviour features (e.g., geographic-distance [71]) and therefore further investigation and experimentation is 

highly recommended. We also did not investigate the potential impact of metadata (e.g., font type, upper/lower 

case, timestamps) on prediction accuracy. Finally, the study did not evaluate the use of the system in a real envi-

ronment. However, we believe that the detection accuracy of the system would not deteriorate up to nine months 

after its implementation, as indicated in earlier studies [68]. 

The results obtained here suggest that RDNNs with ensemble learning might have great potential also in other text 

categorization tasks, such as web-page classification, e-mail spam filtering, sentiment classification and so forth. 

Moreover, it would be beneficial to investigate whether the proposed model show similar performance for spam 

datasets from different countries in different languages and from different social networking platforms and whether 

the localization of the model is required. 
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