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Abstract 

Complex kinetic data arbitrarily created by measuring (calorimetrically) crystallization 

of mixed selenium powders with different defined particle sizes were evaluated by the three 

standard approaches to complex kinetic analysis. Performance of the three tested approaches 

was tested by comparison with the kinetic results obtained for the separate powder fractions. 

The additivity of the kinetic signals was verified. Single-process methods of kinetic analysis 

provided qualitative and quantitative information about the temperature dependence of 

activation energy E and estimation of the ratio between intensities of the involved sub-

processes I1/I2. Mathematic deconvolution approach well reflected the correct model-free and 

model-based kinetics for the partial overlaps. However, it required iterative processing and 

additional supplemental information about the nature of the sub-processes in case of the 

evaluation of fully overlapping data. Kinetic deconvolution based on single-curve non-linear 

optimization utilizing the fixed E values obtained independently provided very good results 

for both, partial and full overlaps.  
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1. Introduction 

Deconvolution of complex kinetic processes (i.e. processes with several overlapping 

reaction mechanisms) is a hot topic in the field of kinetic analysis (KA) of solid-state 

processes. Numerous papers were published in this field, reporting mainly on the theory and 

implementation of various methodologies of KA [1 - 10], intricacies of the baseline 

subtraction [11, 12] or practical KA utilization in case of exemplary complex solid-state 

processes [13 - 20]. One of the main (but often forgotten) factors causing the process 

complexity is the wide distribution of particle sizes in the powdered material. Such influence 

of particle size on the process kinetics was recently studied in detail for the crystallization of 

several compositional families of chalcogenide glasses [21 - 30] but, in general, the influence 

of material powdering and the consequences of the rapid increase of crystallization rate due to 

the presence of mechanically induced defects [31] are often ignored in literature. This may 

have to do with the specificities of the crystallization complexity, namely with the often 

observed temperature-dependent kinetics [32] (kinetic parameters/models changing with 

applied heating rate q
+
 and/or temperature range), that are difficult to describe by the 

traditional approaches to KA calculations and need to be solved via single-curve optimization 

[32]. 

In the present paper the arbitrarily created kinetic complexity based on purposefully 

mixed defined amounts of different fraction-sized powders will be studied by differential 

scanning calorimetry (DSC) with regard to the performance of the particular methods of KA 

in complex process scenarios. Pure selenium glass with well-known crystallization behavior 

[33 - 36] exhibiting single-peak kinetics for all powder size fractions will be used as a model 

material. It was already reported earlier [32] that crystallization from glassy matrices belongs 

among the processes with most intricate kinetic behavior, often exhibiting strong changes of 

kinetics with increasing temperature or heating rate. Selenium glass indeed shows such 

http://cbs.wondershare.com/go.php?pid=5261&m=db
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behavior. [33 - 36] In addition, for the purpose of the present paper the kinetic complexity 

will be arbitrarily created to form both partial and full overlaps of the kinetic sub-peaks. This 

will push the testing of the nowadays complex-process KA methodologies to the highest 

level. Performance of the following methods of KA will be tested: isoconversional methods, 

mathematical deconvolution followed by single-peak kinetic analysis, kinetic deconvolution 

based on non-linear optimization. Moreover, the testing will be also focused on the potential 

additivity of the crystallization signals corresponding to the separate powder fractions when 

mixture of differently sized powders is measured.  

 

2. Theory of complex process kinetic analysis 

 Theory of kinetic analysis revolves around the enumeration of the standard kinetic 

equation [37]: 

(1) 

where α is the degree of conversion, t is time, T is temperature, I is the integrated area under 

the kinetic peak (crystallization enthalpy in case of the present data), A is the pre-exponential 

factor, E is the apparent activation energy of the process, R is the universal gas constant and 

f(α) is the appropriate kinetic model function.  

Evaluation tools of KA used for treating the complex process signals can be divided 

into three approaches. The first approach utilizes methods primarily developed for single-

process reaction mechanisms (following Eq. 1) and interprets their results in the complex-

process scenarios. The most famous group of methods falling in this category are the 

isoconversional methods determining the activation energy E in dependence on degree of 

conversion α. The isoconversional methods can be further split into two sub-groups – 

differential and integral methods, where each sub-group provides (due to the inherent 

procedural approach) different E-α dependence. It was recently shown in [38] that in case of 

  feAIdtd RTE  
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complex processes the various methods categorized within each respective sub-group of 

isoconversional methods provide extremely similar results, the interpretation of which is not 

influenced by the choice of the particular method. Therefore, in the present paper only one 

method from each sub-group will be used for evaluation of E-α dependences: the differential 

Friedman method [39] (Eq. 2) and the integral Starink method [40] (Eq. 3). 

(2) 

 

(3) 

where q
+
 is heating rate, (dα/dt)α and Tα are the conversion rate and temperature 

corresponding to arbitrarily chosen values of conversion α. Furthermore, the first approach to 

the description of complex process data also includes the advanced interpretation of 

masterplot functions [41] (see Eqs. 4 and 5), which was recently found to provide valuable 

data in case of fully overlapping complex processes [34, 35, 41]. 

(4) 

(5) 

 The second approach to description of complex kinetic data is based on mathematical 

deconvolution of the complex signal followed by single-process KA. In this approach certain 

appropriate mathematic function is used to separate the overlapping kinetic signals 

corresponding to the particular sub-processes. In this regard, the Fraser-Suzuki function 

(Eq. 6) was reported [9, 42] to reliably describe majority of solid-state kinetic processes, and 

it is nowadays used [43 - 45] as a standard choice for mathematic deconvolution. Note 

however, that the recent thorough testing [46] of the Fraser-Suzuki function has found certain 

limitations to its universality.  

(6) 
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where a0, a1, a2 and a3 are the parameters corresponding to the amplitude, position, half-width 

and asymmetry of the peak, respectively.  

The third approach to treating the complex kinetics is the kinetic deconvolution 

(sometimes denoted as formal KA), which utilizes non-linear optimization to simultaneously 

solve the full set of kinetic equations (similar to Eq. 1) corresponding to each involved sub-

process. The present paper will utilize the multivariate kinetic analysis MKA [47] (Eqs. 7 and 

8) as a main representative of this approach.  

(7) 

(8) 

 

where RSS is the sum of squared residue, n is number of measurements, j is index of the given 

measurement, Firstj is the index of the first point of the given curve, Lastj is the index of the 

last point of the given curve, Yexpj,k is the experimental value of the point k of curve j, Ycalj,k 

is the calculated value of the point k of curve j and wj is weighting factor for curve j. 

Calculation of the theoretical data (Ycal) is based on preselected kinetic mechanism reflecting 

the supposed interdependence of the involved kinetic sub-processes. In case of the present 

paper no interdependence between the crystallization sub-processes (corresponding to the 

crystal growth within each particular powder size fraction) was assumed. Note that, in 

general, the crystallization processes in glassy matrices are almost always independent. More 

so in the present case, when physical mixtures of the two solid phases with different kinetic 

characteristics were arbitrarily created. In such case the reaction model for Ycal in MKA 

follows Eqs. 9 – 11. 

(9) 

(10) 

(11) 
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3. Experimental 

 The glassy selenium was prepared by melting the pure element (5N, Sigma-Aldrich) 

in an evacuated (to 10
-5

 Pa) fused silica ampoule at 450 °C for 20 h and letting the ampoule 

cool in air. The glassy ingot was then removed from the ampoule, ground in agate mortar and 

sieved through sieves with defined mesh to obtain the 20 – 50, 125 – 180 and 300 – 500 µm 

particle size fractions. Glassy nature of the prepared selenium material was checked by the 

Bruker AXS X-ray diffractometer D8 Advance equipped with a horizontal goniometer and 

scintillation counter utilizing CuKα radiation. The check was performed on the finely ground 

powder fraction to confirm that the grinding itself did not cause degradation of the amorphous 

character – fully amorphous pattern with no diffraction lines was obtained. 

The DSC measurements were performed by using the Q2000 (TA Instruments) heat-

flow differential scanning calorimeter (DSC) with equipped T-zero technology and RCS90 

cooling accessory. Six samples of each powder fraction with masses 10.0 ± 0.5 mg were 

hermetically sealed in aluminum pans and measured in the range of 10 – 250 °C at heating 

rates q
+
 = 0.5, 1, 2, 5, 10 and 20 °C·min

-1
. In addition, similar sets of measurements were also 

performed for the combinations of the powder mixtures (20 – 50 + 300 – 500 µm; 125 – 180 

+ 300 – 500 µm; and 20 - 50 + 125 - 180 µm), where mass of each of the two respective 

powders put in the DSC pan was ~ 4 mg (track of the exact masses was kept for the 

consequent calculations; the mass-to-mass ratio was never diverged by more than 49/51 %). 

The DSC cell was purged with dry nitrogen at 30 cm
3
·min

-1
. Good reproducibility of the DSC 

data was checked by repeating two randomly selected measurements out of each dataset.  

 

4. Results 

In order to lay ground for the kinetic analysis of particle-size-based complex process 

scenarios, the single process kinetic analysis for the separate powder size fractions was 

http://cbs.wondershare.com/go.php?pid=5261&m=db
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performed at first. Typical example of raw DSC curve measured for the 20 – 50 µm powder at 

10 °C·min
-1

 is shown in Fig. 1A – characteristic features including the glass transition, 

crystallization and melting effects are apparent. The net crystallization signals were obtained 

by subtracting the thermokinetic background (DSC baseline). The calculation in terms of the 

physically meaningful tangential area-proportionate interpolation [48] (Eq. 12) was used to 

ensure maximum precision.    

(12) 

where B(T) is the temperature dependence of the baseline curve, α is degree of conversion, z0,r 

and z1,r are the coefficients characterizing the tangent going through the starting point (in the 

reactants area), z0,p and z1,p are the coefficients characterizing the tangent going through the 

end point (in the products area) and Tf is the end point temperature. The net crystallization 

signals are for the separate powder fractions shown in Figs. 1B – 1D. 

 Single-process KA is methodologies-wise pretty straightforward [49] but a priori does 

not take into account the possible evolution of kinetic parameters (quantities from Eq. 1) with 

temperature – such as occurs [33 - 36] in case of Se glass crystallization. This issue has to be 

solved by and exploratory approach to both kinetic description and kinetic predictions. In 

Fig. 2 the main methodical solutions for evaluation of E are summarized. The simplest way, 

for the single-process data, is the application of the Kissinger equation [50] (Eq. 13): 

(13) 

 

where Tp is the temperature corresponding to the maximum of the DSC crystallization peak. 

As is apparent from Fig. 2A, the Kissinger plots are for all three separate powder fractions 

curved, which indicates continuous change of E with either T of q
+
. Note that the essence of 

this behavior lies in the progressive transition between the two dominant crystal growth 

modes – each with significantly different activation energies [51 - 53]. Derivation of the 
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Kissinger dependences from Fig. 2A then gives the temperature dependence of E (for the 

maximum reaction rate) and shows good agreement of the E-T data between all three powder 

size fractions (see Fig. 2B), confirming the universal nature of this behavior with respect to 

the surface/volume ratio of the crystallizing particles. The apparently massive change of E 

with T is in correspondence with the previous studies on glassy Se. [33 - 36] Another standard 

approach used to determine E in case of simple processes are the isoconversional methods. 

The differential and integral E-α dependences are for the three separate powder fractions 

shown in Figs. 2C and 2D, respectively (note the recent review [8] on practical equality of all 

differential and integral isoconversional methods; Eqs. 2 and 3 were used in the present 

paper). In compliance with the general performance of these methods, the differential E-α 

dependence shows significantly higher scatter resulting from the punctual E values being 

determined based on both Tα and Φα. In comparison, the integral isoconversional methods 

show very clear trends in E with α and particle size. It should be, however, borne in mind that 

the isoconversional methods (expressed in this standard way) provide a potentially misleading 

view of the evaluated kinetics - the apparent evolution of E with α does not correspond to the 

variability of activation energy over the intrinsic course of the physical process but, instead, to 

the process kinetics changing with experimental conditions (evaluation of each point 

displayed in Figs. 2C and 2D is done by linearization of a dependence curved similarly to 

those shown in Fig. 2A). Also, due to the averaging of the activation energy over a wide 

temperature interval, the isoconversional methods do not correctly display the range of true E 

values driving the crystallization process during the non-isothermal heating.  

Another very often used single-process KA methodology is the utilization and 

advanced interpretation of masterplot functions z(α) and y(α) [41] – see Eqs. 4 and 5. The 

masterplot functions are for the present data (the separated powder fractions) shown in Fig. 3. 

The highly consistent shapes of the masterplot functions indicate that the base reaction 

http://cbs.wondershare.com/go.php?pid=5261&m=db
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mechanism f(α) does not change with T. Only in case of the coarse powders measured at high 

q
+
 the masterplot shapes show moderate deviation from the prevailing course of the 

dependences due to the surface crystal growth increasing its manifestation at higher q
+
. 

[33, 34] The z(α) maxima borderline correspond to the nucleation-growth kinetics 

(αmax,z = 0.63 [54]) but the flexible autocatalytic AC model [37] (Eq. 14) will be used for f(α) 

quantification instead. This will later help to comparatively account also for the complex 

kinetic behavior – the M and N terms are empirical dimensionless kinetic parameters. 

(14) 

The AC model parameters M and N are for the separated Se powders shown in Fig. 4. 

Two evaluation methods were used – the double-logarithm method described e.g. in [37, 41] 

and the non-linear MKA optimization described by Eqs. 7 and 8. Whereas the MKA 

optimization evaluates (and averages) the overall shape of the kinetic peak, the double-

logarithm method is primarily based on the value of the y(α) function maximum. The 

acceptable agreement between the results provided by the two methods corresponds to the 

manifestation of kinetic simplicity and almost ideally profiled kinetic peak. The 

unambiguously identifiable evolution of M and N with increasing temperature then reflects 

the progressing interchange between the volume and surface crystal growth mechanisms [33 –

 36, 53]. 

As is apparent from the single-process KA applied to the crystallization data of the 

separated Se powder fractions, the kinetics is quite complicated, exhibiting temperature-

dependent development of E (due to the switching growth modes [51 - 53]) and f(α) (due to 

the gradually changing ratio between the intensities of volume and surface crystallization 

manifestations. As was already mentioned in [32], such behavior can be considered ultimate 

kinetic complexity on its own. The issue can however become even more complicated when 

apparent (as-defined) kinetic complexity is introduced; i.e. overlap of several distinct kinetic 

   NMf   1
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processes occurs. This case is in the present paper imitated by the overlaps of the 

crystallization signals corresponding to the particular Se powder size fractions – see the data 

in Fig. 5 (pure kinetic signals are being depicted, with the thermokinetic background already 

subtracted in correspondence with Eq. 12). The following section will discuss the 

performance of the particular complex-kinetics approaches to dealing with such type of 

complex data. 

 

5. Discussion 

The discussion over the performance of the particular KA approaches to complex 

kinetics will be conducted in three sections – one for each main type of approach as described 

in the theoretical part. 

 

5.1. Approach No. 1: Single-process methods 

 Starting with the methods aimed at determination of E, the results of the Kissinger 

evaluation (Eq. 13) applied to complex kinetic crystallization data of mixed Se powder 

fractions (as depicted in Fig. 5) are shown in Fig. 6A. From the comparison with the data for 

the separate powders (red-based points in Fig. 6A) it is clear that the apparent overall 

maximum transformation rate is shifted to slightly higher temperature with the addition of 

coarser powder fraction but the dominant signal always comes from the finest fraction of the 

mixture. This behavior can be explained by a combination of two consequences of the self-

heating effect [55]. Firstly, the finer (more reactive) powder fraction is “diluted” by the 

presence of coarser grains, which slows down the average reaction rate and hence shifts the 

signal to slightly higher temperature. The physical basis for this effect lies in the lower local 

overheating effect (due to the self-heating mechanism characteristic for the exothermic 

processes, such as the crystallization). The second effect is that of the surface overheating 

http://cbs.wondershare.com/go.php?pid=5261&m=db
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(with respect to the average temperature in the DSC cell) of the coarse powder grains, which 

evidently initiates and also markedly accelerates the crystal growth throughout the glassy 

matrix. This is evidenced by the data in Fig. 6A corresponding to the mixture of the 125 – 180 

+ 300 – 500 µm powder fractions. Note that powdered glassy selenium preferentially 

crystallizes from surface [33 – 36] and even the bulk Se samples with very low amount of 

mechanically induced defects [31] exhibit non-negligible amount of surface crystallinity [53].  

Nevertheless, despite the significant temperature shifts of the kinetic peaks 

corresponding to the mixtures of powders, the resulting activation energies derived from the 

Kissinger plot (and expressed as a temperature dependence) are practically not influenced – 

see Fig. 6B where the lines correspond to the data obtained for the separated powder fractions 

from Fig. 2B. It has to be however noted that these data reflect only the dominant (or the 

effectively dominant) kinetic process. This robustness in relation to the kinetic complexity is 

the main advantage of the Kissinger (or any other Tp-based) evaluation method as was already 

reported in [56]. Similar comparison is in Figs. 6C and 6D shown for the isoconversional 

methods. The differential Friedman method in Fig. 6C (with the lines corresponding to the 

data from Fig. 2C) and the integral Starink method in Fig. 6D (with the lines corresponding to 

the data from Fig. 2D). In general, the full overlaps of sub-processes with close activation 

energies are difficult to recognize and interpret via the isoconversional methods [38, 56]. This 

is indeed also the case of the present data, where the kinetic complexity would be uneasy to 

recognize without the knowledge/comparison with the data for the separated Se powders. 

However, the data corresponding to the mixtures of closely sized Se powder fractions (20 – 

50 + 125 – 180 µm, and 125 – 180 + 300 – 500 µm) can be associated with the very question 

of the definition of kinetic complexity itself, which will be discussed in the concluding 

section of this paper. Regarding the mixture of well-separated powder fraction sizes (20 – 50 

+ 300 – 500 µm), it is interesting that even in such case of evidently complex transformation 

http://cbs.wondershare.com/go.php?pid=5261&m=db
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mechanism with significantly different E values associated with each sub-process the integral 

isoconversional method (Fig. 6D) shows a gradually changing E-α dependence, qualitatively 

similar to those of separated Se powders. The differential isoconversional method, on the 

contrary, unambiguously shows a step-like decrease of E, corresponding to the switch 

between the dominating contributions from the particular sub-processes. 

Apart from the isoconversional methods, also the masterplot (Eqs. 4 and 5) 

interpretation [41] can be sometimes used to reveal additional information about the complex 

processes – especially in case of the fully overlapping processes. The masterplot analysis, i.e. 

the z(α) and y(α) functions, is for the mixtures of Se powders shown in Fig. 7. Mixtures of the 

closely sized Se powder fractions (Figs. 7A – 7D) exhibit uniform round shape of the 

masterplots (without any shoulders) and also the position of the maxima does not change with 

q
+
. These characteristics indicate that the kinetics of both sub-processes are very similar, 

which is indeed evidenced by the lines corresponding to the masterplot functions obtained for 

the two respective separated powder fractions at 5 °C·min
-1

 (note that when forced the 

physically meaningful nucleation-growth [57 - 60] description, all separated Se powder 

fractions exhibited results corresponding to the dominant surface crystallization). Moreover, 

note the shift of the masterplot maxima of powders mixtures to lower α values for the future 

reference in the concluding section. The mixture of the well-separated powders (Figs. 7E and 

7F) then shows the typical double-peak shape; the evolution in magnitude of the high-α 

shoulder corresponds to the documented [33 – 36] change of the crystal growth mechanics in 

case of very coarse powders (at higher q
+
 the occurrence of volume-located crystallites 

recedes at the expense of the surface crystalline layer thickness). 

 

5.2. Approach No. 2: Mathematic deconvolution 

http://cbs.wondershare.com/go.php?pid=5261&m=db
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As adverted in the theoretical section, the mathematic deconvolution was performed 

by using the Fraser-Suzuki function (Eq. 6). Considering the meaning of the Fraser-Suzuki 

parameters, it is only the asymmetry parameter a3 that can be used to characterize certain 

kinetic behavior. In order to utilize this possibility, the kinetic data obtained for the separated 

powder fractions (see Fig. 1) were fitted by the Fraser-Suzuki function. The obtained 

asymmetry parameters a3 are listed in Table 1. Consequently, two variations of the Fraser-

Suzuki deconvolution were applied to the complex kinetic data corresponding to the powder 

mixtures (see Fig. 5): in the first batch the data were deconvoluted without any restrictions 

(i.e. with all parameters allowed for optimization), and in the second batch the a3 parameters 

were set fixed for each respective combination of q
+
 and powder size in the mixture in 

accordance with the data from Table 1. Each batch of deconvoluted data was then evaluated 

by means of single-process KA in terms of the AC model, i.e. using the averaged Kissinger 

fit, double logarithm determination of M and N kinetic exponents, determination of the 

masterplot maxima, and determination of A via the non-linear optimization (utilizing the 

previously obtained E, M and N).   

The results of single-process KA following the two batches of Fraser-Suzuki 

deconvolution are for the 20 – 50 + 300 – 500 µm mixture compared with the description 

obtained for the separated powders in Tables 2 and 3. At first sight, it seems that a reasonable 

agreement was achieved for both types/batches of the deconvolution, with slightly better 

results provided for the parameter a3 being fixed to correct value. However, the I1/I2 ratio was 

found to be determined significantly incorrectly (note that the masses of each powder in each 

mixture and during each DSC measurement were accurately weighted) in both deconvolution 

batches. The results are compared to the correct values in Fig. 8. Better agreement between 

the correct (physically input) and determined (from the deconvolution) I1/I2 values was 

achieved only after iterative process of fixing the Fraser-Suzuki parameter a0 (corresponding 

http://cbs.wondershare.com/go.php?pid=5261&m=db
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to the peak height) at arbitrarily chosen values. Even greater difficulties were encountered 

when the mixtures of closely sized Se powder fractions (20 – 50 + 125 – 180 µm, and 125 – 

180 + 300 – 500 µm) were deconvoluted. In this case the optimization algorithm usually 

preferred combination of one negatively and one positively asymmetric peak, and only 

several rounds of iterative operations (utilizing fixation of certain Fraser-Suzuki parameters) 

led to a reasonable description of the involved crystallization sub-processes qualitatively 

comparable to that reported in [34].  

 

5.3. Approach No. 3: Kinetic deconvolution 

The third approach applied to determine detailed kinetics of the Se powders mixtures 

was based on the multivariate kinetic analysis (Eqs. 7 – 11). Unlike mathematic 

deconvolution, the MKA treatment can be utilize the results of model-free KA (i.e. 

independent determination of E and A) to improve the optimization procedure. Kinetic 

deconvolution has thus large variety of options for adjusting the kinetic results based on the 

information provided not only by complementary thermo-analytic techniques (observing the 

process via evolution of various physico-chemical properties/quantities) but also by the 

adjacent KA methods focusing on the determination of the kinetic parameters in different 

ways (sometimes revealing behavioral relations and connections that MKA cannot recognize).   

The different approaches will first be tested on the rather unambiguously resolved 20 – 

50 + 300 – 500 µm mixture dataset (see Fig. 5C); for simplicity the parameters corresponding 

to the first appearing process (crystallization of the 20 – 50 µm powder within the mixture) 

will be indexed “1” and the second process (crystallization of the 300 – 500 µm powder) will 

be indexed “2”. The base and simplest procedure to the kinetic deconvolution is to fit the 

whole set of Eqs. 7 – 11 simultaneously for all data-curves and without any restrictions. Such 

approach resulted in the following set of kinetic parameters: E1 = 102.0 kJ·mol
-1

, 

http://cbs.wondershare.com/go.php?pid=5261&m=db
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E2 = 93.4 kJ·mol
-1

, M1 = 0.67, N1 = 1.44, M2 = 0.77, N2 = 1.12, I1/I = 0.74, logA1 = 12.73, 

logA2 = 11.22. In comparison with the single-process KA applied to the two corresponding 

separated Se powders (see Tables 2 and 3; the average I1/I was 0.494), the simultaneous 

optimization of all kinetic curves gives exceptionally inaccurate results, which is the 

consequence of the simultaneous MKA trying to average both, the temperature dependent 

model-free and model-based components of the Se mixture crystallization kinetics. In order to 

improve the results, single-curve MKA [32] can be applied, which optimizes each data-curve 

separately with E being fixed (i.e. set constant at a selected value). In Fig. 9 three batches of 

optimizations performed for the data corresponding to the 20 – 50 + 300 – 500 µm mixture 

are compared with the single-curve MKA results obtained for the separated 20 – 50 µm and 

300 – 500 µm Se powders: the first batch of mixture kinetic optimization was performed for 

the activation energies fixed at values obtained from the overall simultaneous optimization 

(E1 = 102.0 kJ·mol
-1

 and E2 = 93.4 kJ·mol
-1

), the second batch of optimizations was done for 

the same E values and correct I1/I2 ratios (depicted in Fig. 8), and the third batch of 

optimizations was done for the E values obtained from the Kissinger evaluation 

(E1 = 117.7 kJ·mol
-1

 and E2 = 106.4 kJ·mol
-1

) and again with fixed correct I1/I2 ratios. As 

expected, the utilization of the single-curve MKA alone dramatically improved the accuracy 

of the determination of the AC kinetic exponents. The second most important factor was the 

implemented knowledge of the ratio between the two involved processes I1/I2. Lastly, 

regarding the different used E values, Fig. 9 shows that the usage of activation energies 

provided by the Kissinger equation resulted in moderately better estimation of M and N 

exponents. This is however a consequence of the same E values having been used also during 

the single-curve MKA evaluation of the separated powders kinetics. If the E values obtained 

from the overall simultaneous optimization (E1 = 102.0 kJ·mol
-1

 and E2 = 93.4 kJ·mol
-1

) are 

used for the fit of the separated powders data, then the red points in Fig. 9 shift significantly 
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(see the Supplemental online material) and the overall comparison ends up only very slightly 

in favor of the E values provided by the Kissinger equation. In conclusion, the method of E 

determination is largely irrelevant under the assumption that the same approach/data is used 

also in the akin (potentially comparable) evaluations and in the consequent predictions of the 

kinetic behavior.  

Similar analysis was performed also for the fully overlapping combinations of the sub-

processes, i.e. 20 – 50 + 125 – 180 µm, and 125 – 180 + 300 – 500 µm powder mixtures. 

Optimization without any restrictions resulted in very skewed results: for the 20 – 50 + 125 – 

180 µm mixture the kinetic parameters were E1 = 157.6 kJ·mol
-1

, E2 = 96.6 kJ·mol
-1

, M1 = 

0.53, N1 = 0.81, M2 = 0.71, N2 = 1.19, I1/I = 0.11, logA1 = 20.63, logA2 = 11.97, and for the 

125 – 180 + 300 – 500 µm mixture the kinetic parameters were E1 = 139.6 kJ·mol
-1

, 

E2 = 90.8 kJ·mol
-1

, M1 = 0.45, N1 = 0.83, M2 = 0.69, N2 = 1.24, I1/I = 0.21, logA1 = 17.70, 

logA2 = 10.92. Consequently, the single-curve MKA was performed in two variations/batches. 

First batch of MKA optimizations was done only with the E values fixed – the activation 

energies determined via the Kissinger equation were taken. Note that it was shown in the 

previous paragraph for the 20 – 50 + 300 – 500 µm mixture that the choice of the model-free 

methodology has only minor impact on the single-curve MKA kinetic deconvolution. In the 

second batch of optimization both, the E and I1/I values were fixed at correct values. As is 

shown in Fig. 10, surprisingly good agreement between the AC kinetic exponents determined 

from the separated powders data and from the MKA-deconvoluted mixtures with fully 

overlapping crystallization peaks was obtained. Fixation of the I1/I term at correct value 

during the non-linear optimization brought however only very marginal improvement of the 

results. The kinetic deconvolution was hereby shown to be able to provide relevant and quite 

accurate information about the kinetic sub-processes even in case of their full overlap. 
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5.4. Additivity of the crystallization signals 

Performance of the three most important approaches to kinetic analysis of complex 

processes was examined for three cases of arbitrarily created mixtures of selenium powders 

with different grain size. So far, the additivity of the kinetic signals of the separated Se 

powders was assumed in the evaluations (and hence the kinetic parameters obtained for the 

separated powders were presented as the true values in all comparisons). In order to verify 

this assumption, the signals corresponding to the three experimentally measured powder 

mixtures were theoretically modeled based on the kinetic parameters of the separated powders 

(with all individual descriptions having r
2
 over 0.9999 during the single-curve MKA) and the 

true I1/I2 (masses weighted into the DSC pans). This comparison is demonstrated in Fig. 11 

for the data-curves obtained at q
+
 = 5 °C·min

-1
. Points indicate the experimental data for the 

respective mixtures and the dashed line shows the simulated “prediction” based on the data 

from separated powders - the agreement is evidently poor. However, only by adjusting of the 

position of the kinetic peaks on the temperature axis (i.e. by slightly changing the pre-

exponential factors A1 and A2, which was done by fitting each experimental data by the AC 

kinetics corresponding to the two respective separated powders with only logA1 and logA2 

being allowed to optimize) an exceptionally good agreement was obtained. Identical behavior 

and conclusions were obtained also for all other data-curves obtained at different q
+
. 

This finding verifies the foundation (base assumption) of the performance evaluations 

discussed in the present paper. The crystallization signals are perfectly additive (if accounting 

for a slight delay, which will be discussed momentarily) with respect to the activation 

energies, AC kinetic exponents and I1/I2 ratio. In other words, these kinetic quantities are not 

affected by additive mixing of the crystallizing powders. Hence, during the reverse procedure, 

i.e. the complex-process kinetic analysis, it is legitimate to require precise determination of E, 

M, N and I1/I values for each crystallization sub-process.  
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The same pattern of the temperature shift, such as depicted in Fig. 11, was identified 

for all data-curves (measured at different q
+
) of all three Se powder mixtures. This indicates 

that there is an underlying physical cause for the crystallization of mixed powders being 

shifted to slightly higher temperature. Closer examination reveals that it is always the crystal 

growth in the finer powder that gets hindered; crystallization of the coarser powder remains 

practically unchanged. This phenomenon corresponds to the effect of self-heating, where the 

heat released during the amorphous-to-crystalline transformation causes local increase of 

temperature and, consequently, autocatalytically accelerates further crystal growth. In case of 

the present data, the finer powder gets diluted by the coarser one (which at the initial stage 

acts practically as an inert compound because its crystallization starts later due to the lower 

amount of mechanically induced defects [31]), the amount of initially evolved heat is lower 

and the autocatalytic overheating effect cumulates more slowly. Hence the shift of the 

crystallization data to higher temperature. The resistance of the coarser powders to this 

autocatalytic overheating effect can then be explained based on the significantly lower 

amount of mechanical defects being present. It is very probably these nucleation/growth 

active centers that initiate the crystallization and rapidly react to the first increase of 

temperature (be it only during local overheating). Lack of these active centers then decreases 

the influence of local temperature fluctuations. This concept is supported by the data in 

Figs. 11A and 11B, where the difference between the simulated and experimental data is 

evidently larger for the set of finer powders (graph A). 

 

6. Conclusions 

 Performance of the methods of kinetic analysis appropriate for evaluation of the 

complex kinetic data was determined for the arbitrarily created complexity based on the 

simultaneous crystallization of selenium powders with different particle sizes (and different 
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reactivity). Scenarios with both, partial and full overlaps of the transformation mechanisms 

were created. Accuracy of the tested methods was considered based on the comparison with 

the single-process evaluations performed for each separate powder fraction; additivity of the 

data was verified by an independent fit with included discussion over the influence of the self-

heating effect in case of exothermic processes. 

 Interpretation of single-process KA methods focused on determination of E resulted in 

acceptable conclusions – the Tp-based methods (e.g. Kissinger equation) and differential 

isoconversional methods performed very well in case of the partial overlaps, where the true 

activation energies of the involved sub-processes were obtained. The integral isoconversional 

methods, on the other hand, averaged the E values not only for the fully overlapping kinetic 

peaks but also for the partial overlap, without real possibility to even recognize the kinetic 

complexity. Crucial information about the temperature evolution of the overall crystallization 

kinetics was provided by the E-T dependence derived from the Kissinger plot. Regarding the 

masterplot analysis, this methodology should be in practice considered only for revelation of 

the possible partial kinetic overlaps. Masterplot functions are very sensitive to the presence of 

shoulders and minor sub-peaks in the kinetic data, as indicated by the shift of the masterplot 

maxima even for the full overlaps (see Fig. 7).  

 Mathematic deconvolution followed by the single-process KA worked reasonably well 

in case of the partially overlapping processes. Acceptably precise values of E, A, M and N 

were obtained during the zeroth iteration of non-linear optimization even without any 

parameter of Fraser-Suzuki function being restricted. Restriction of the peak asymmetry then 

brought only marginal improvement. However, the ratio between the magnitudes of the 

involved sub-processes I1/I2 was determined very inaccurately and its improvement would 

require series of subjective iterative corrections. In case of the fully overlapping kinetic peaks 

the non-restricted mathematic deconvolution provided completely incorrect results and 
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additional information about the nature of the sub-processes (e.g. possible kinetic models to 

adjust asymmetry, intensities of manifestation to set I1/I2) would be mandatory to obtain 

meaningful results. 

 In case of the kinetic deconvolution the only real option was to use the single-curve 

MKA due to the significant trends in crystallization kinetics with increasing temperature [32]. 

This method worked well for both, partially and fully overlapping kinetic data. 

Implementation of the correct I1/I2 led to only slight improvement of the results; evaluation 

method for the fixed E values practically did not matter.  

 To conclude, in complex scenarios with significant or full kinetic overlaps the best 

option is to use the single-curve kinetic deconvolution with the activation energy values being 

provided either by the Tp-based methods or the differential isoconversional methods. 

Alternatively, mathematic deconvolution utilizing the Fraser-Suzuki function can be used; 

however it is paramount to combine this approach with additional sources of information 

about the physical nature and intensity of manifestation of the involved sub-processes (e.g. 

temperature-resolved XRD, thermogravimetry, temperature-resolved Raman spectroscopy, 

microscopy, etc.). 

As a finishing remark, it can be stated that the particle-size resolved studies are very 

important for understanding the trends in kinetic behavior of most solid-state materials. 

However, increased attention should be paid to the fact that the segregation of the particle size 

powder fractions is done arbitrarily and as such should be performed with respect to the 

relevant practical applications considered for the given material. Division of the particular 

powder fractions should be sufficiently narrow to reflect the specific behavioral features of 

the given grain sizes, with the scale refinement borderline being the constancy/plateau 

reached in the values of determined kinetic parameters. Very important aspect of such studies 

is the verification of additivity of the kinetic data. 

http://cbs.wondershare.com/go.php?pid=5261&m=db


21 

 Acknowledgments 

 

This work has been supported by the Czech Science Foundation under project No. 17-

11753S. 

 

 

References 

 

[1] J. Cai, W. Wu, R. Liu. Isoconversional Kinetic Analysis of Complex Solid-State 

Processes: Parallel and Successive Reactions. Ind. Eng. Chem. Res. 51 (2012) 16157-

16161. 

[2] N. Sbirrazuoli, Y. Girault, L. Elegant. Simulations for evaluation of kinetic methods in 

differential scanning calorimetry. Part 3. Thermochim. Acta 293 (1997) 25-37. 

[3] N.I. Vaganova, V.I. Rozenband, V.V. Barzykin. Application of thermal analysis to the 

study of the kinetics of 2-stage reactions. J. Therm. Anal. 34 (1988) 71-83. 

[4] J.M. Criado, M. Gonzalez, A. Ortega, C. Real. Discrimination of the kinetic model of 

overlapping solid-state reactions from non-isothermal data. J. Therm. Anal. 34 (1988) 

1387. 

[5] N.I. Vaganova, V.I. Rozenband, V.V. Barzykin. Thermoanalytical studies of the 

kinetic of reversible reactions. J. Therm. Anal. 34 (1988) 949-962. 

[6] S.V. Vyazovkin, A.I. Lesnikovich. An approach to the solution of the inverse kinetic 

problem in the case of complex processes 1. Thermochim. Acta 165 (1990) 273-280. 

[7] J.M. Criado, P.E. Sanchez-Jimenez, L.A. Perez-Maqueda. Critical study of the 

isoconversional methods of kinetic analysis. J. Therm. Anal. Calorim. 92 (2008) 

199−203. 

[8] J.M. Cai, S.Y. Chen. A new iterative linear integral isoconversional method for the 

determination of the activation energy varying with the conversion degree. J. Comput. 

Chem. 30 (2009) 1986−1991. 

[9] A. Perejon, P.E. Sanchez-Jimenez, J.M. Criado, L.A. Perez-Maqueda. Kinetic analysis 

of complex solid-state reactions. A new deconvolution procedure. J. Phys. Chem. B 

115 (2011) 1780−1791. 

[10] S.V. Golikeri, D. Luss. Analysis of activation energy of grouped parallel reactions. 

AIChE J. 18 (1972) 277-282. 

[11] R. Svoboda. Tangential area-proportional baseline interpolation for complex-process 

DSC data – yes or no? Thermochim. Acta 658 (2017) 55-62. 

[12] R. Svoboda. Importance of proper baseline identification for the subsequent kinetic 

analysis of derivative kinetic data, part 3. J. Therm. Anal. Calorim. 136 (2019) 1307-

1314 

[13] L. Nowicki, D. Siuta, M. Godala. Determination of the chemical reaction kinetics 

using isothermal reaction calorimetry supported by measurements of the gas 

production rate: A case study on the decomposition of formic acid in the 

heterogeneous Fenton reaction. Thermochimica Acta 653 (2017) 62-70. 

[14] N.V. Muravyev, A.N. Pivkina. New concept of thermokinetic analysis with artificial 

neural networks. Thermochimica Acta 637 (2016) 69-73. 

[15] M. Catauro, A. Dell’Era, S.V. Ciprioti. Synthesis, structural, spectroscopic and 

thermoanalytical study of sol-gel derived SiO2-CaO-P2O5 gel and ceramic materials. 

Thermochimica Acta 625 (2016) 20-27. 

http://cbs.wondershare.com/go.php?pid=5261&m=db


22 

[16] S. Zeman, Q.L. Yan, M. Gozin, F.Q. Zhao, Z. Akstein. Thermal behavior of 1,3,5-

trinitroso-1,3,5-triazinane and its melt-castable mixtures with cyclic nitramines. 

Therochimica Acta 615 (2015) 51-60. 

[17] M. Khachani, A. El Hamidi, M. Kacimi, M. Halim, S. Arsalane. Kinetic approach of 

multi-step thermal decomposition processes of iron(III) phosphate dihydrate FePO4 

center dot 2H(2)O. Thermochimica Acta 610 (2015) 29-36. 

[18] E.J. Grajales, E.A. Alacron, A.L. Villa. Kinetics of depolymerization of 

paraformaldehyde obtained by thermogravimetric analysis. Thermochim. Acta 609 

(2015) 49-60. 

[19] N.N. Begovic, N.N. Stojanovic, S.B. Ostojic, A.M. Radulovic, V.A. Blagojevic, B. 

Simonovic, D.M. Minic. Thermally induced polymerization of binuclear [Ni-

2(en)(2)(H2O)(6)(pyr)]center dot 4H(2)O complex. Thermochim. Acta 607 (2015) 82-

91. 

[20] R. Font. Potential kinetic model for thermal decomposition of complex organic 

compounds: Significance of parameters and engineering application. Thermochimica 

Acta 591 (2014) 81-95. 

[21] R. Svoboda, J. Málek. Extended study of crystallization kinetics for Se-Te glasses. 

J. Therm. Anal. Cal. 111 (2013) 161-171 

[22] R. Svoboda, J. Málek. Thermal behavior in Se-Te chalcogenide system: Interplay of 

thermodynamics and kinetics. J. Chem. Phys. 141 (2014) 224507 

[23] R. Svoboda, J. Málek. Thermal behavior of Se-rich Ge2Sb2Se(5-y)Tey chalcogenide 

system. J. Alloys Compd. 627 (2015) 287-298 

[24] R. Svoboda, J. Málek. Particle size dependent isothermal crystallization kinetics in a 

Se-Te glassy system. Thermochimica Acta 610 (2015) 47-56 

[25] R. Svoboda. Oxidation-influenced crystallization in (GeSe)x(Sb2Se3)1-x chalcogenide 

glasses. J. Non-Cryst. Sol. 510 (2019) 6-14 

[26] R. Svoboda, J. Málek. Thermal behavior of Se-rich GeSb2Se(4-y)Tey (glassy) system. J. 

Alloys Compd. 670 (2016) 222-228 

[27] R. Svoboda, D. Brandová, J. Málek. Thermal behavior of Ge20SeyTe80-y infrared 

glasses (for y up to 8 at.%). J. Alloys Compd. 680 (2016) 427-435 

[28] R. Svoboda. Oxidation-accelerated crystallization of (GeS2)y(Sb2S3)1-y chalcogenide 

glasses. J. Non-Cryst. Sol. 456 (2017) 88-94 

[29] R. Svoboda, D. Brandová. Crystallization behavior of (GeTe4)x(GaTe3)100-x glasses for 

far-infrared optics applications. J. Alloys. Compd. 770 (2019) 564-571 

[30] D. Brandová, R. Svoboda. Themo-structural characterization of (As2Se3)100-x-

(As2Te3)x glasses for far-infrared optics. J. Am. Ceram. Soc. 102 (2019) 382-396 

[31] R. Svoboda, D. Brandová. Crystal growth from mechanically induced defects: A 

phenomenon observed for glassy materials. J. Therm. Anal. Calorim. 127 (2017) 799 - 

808 

[32] D. Brandová, R. Svoboda, Z. Olmrová Zmrhalová, J. Chovanec, R. Bulánek. 

Crystallization kinetics of glassy materials: the ultimate complexity? J. Therm. Anal. 

Calorim. 134 (2018) 825-834. 

[33] R. Svoboda, J. Málek. Crystallization kinetics of a-Se, part 1:  Interpretation of kinetic 

functions. J. Therm. Anal. Cal. 114 (2013) 473-482 

[34] R. Svoboda, J. Málek. Crystallization kinetics of a-Se, part 2:  Deconvolution of a 

complex process – the final answer. J. Therm. Anal. Cal. 115 (2014) 81-91 

[35] R. Svoboda, J. Málek. Crystallization kinetics of a-Se, part 3: Isothermal data. J. 

Therm. Anal. Calorim. 119 (2015) 1363-1372 

[36] R. Svoboda, J. Gutwirth, J. Málek. Crystallization kinetics of a-Se, part 4: Thin films. 

Phil. Mag. 94 (2014) 3036-3051. 

http://cbs.wondershare.com/go.php?pid=5261&m=db


23 

[37] J. Šesták. Thermophysical Properties of Solids, Their Measurements and Theoretical 

Analysis. Elsevier: Amsterdam, 1984. 

[38] G. Luciano, R. Svoboda. Activation energy determination in case of independent 

complex kinetic processes. Processes 7 (2019) 738 

[39] H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from 

thermogravimetry. Application to a phenolic plastic, J. Polym. Sci., Part C 6 (1964) 

183–195 

[40] M.J. Starink. The determination of activation energy from linear heating rate 

experiments: a comparison of the accuracy of isoconversion methods, Thermochim. 

Acta 404 (2003) 163–176 

[41] R. Svoboda, J. Málek. Interpretation of crystallization kinetics results provided by 

DSC. Thermochimica Acta 526 (2011) 237-251 

[42] R. Svoboda, J. Málek. Applicability of Fraser-Suzuki function in kinetic analysis of 

complex processes. J. Therm. Anal. Cal. 111 (2013) 1045-1056. 

[43] N. Manic, B. Jankovic, V. Dodevski, D. Stojiljkovic, V. Jovanovic. The Pyrolysis of 

Waste Biomass Investigated by Simultaneous TGA-DTA-MS Measurements and 

Kinetic Modeling with Deconvolution Functions. Lecture Notes in Networks and 

Systems 90 (2020) 39-60. 

[44] X. Yao, L. Ni, J. Jiang, J. Huang, J. Yang, G. Yang. Thermal hazard and kinetic study 

of 5-(2-pyrimidyl) tetrazole based on deconvolution procedure. J. Loss Prevent. Proc. 

61 (2019) 58-65. 

[45] P. Stolarek, S. Ledakowitz, R. Slezak. Influence of Liming on Kinetics of Sewage 

Sludge Pyrolysis. Ecol. Chem. Eng. S 26 (2019) 175-188. 

[46] R. Svoboda. Fraser-Suzuki function in kinetic analysis of complex solid-state 

reactions. Phys. Chem. Chem. Phys. – submitted. 

[47] J. Opfermann. Kinetic analysis using multivariate non-linear regression. I. basic 

concepts. J. Therm. Anal. Calorim. 60 (2000) 641-658. 

[48] J. Šesták. Science of Heat and Thermophysical Studies: A Generalized Approach to 

Thermal Analysis, Elsevier, Amsterdam, 2005. 

[49] S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. 

Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic 

computations on thermal analysis data, Thermochim Acta. 520 (2011) 1–19. 

[50] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal.Chem. 29 

(1957) 1702-1706 

[51] G. Ryschenkow, G. Faivre. Bulk crystallization of liquid selenium. J. Cryst. Growth 

87 (1988) 221-35. 

[52] J. Bisault, G. Ryschenkow, G. Faivre. Spherulitic branching in the crystallization of 

liquid selenium. J. Cryst. Growth 110 (1991) 889-909. 

[53] J. Málek, R. Svoboda. Kinetic processes in amorphous materials revealed by thermal 

analysis: Application to glassy selenium. Molecules 24 (2019) 2725 

[54] J. Malek, The kinetic-analysis of nonisothermal data, Thermochim. Acta 200 (1992) 

257–269. 

[55] B. Lvov, V.L. Ugolkov. The self-heating effect in the process of KMnO4 

decomposition in vacuum. J. Therm. Anal. Calorim. 94 (2008) 453-460. 

[56] R. Svoboda, J. Málek. Is the original Kissinger equation obsolete today? J. Therm. 

Anal. Calorim. 115 (2014) 1961-1967 

[57] W.A. Johnson, K.F. Mehl. Reaction kinetics in processes of nucleation and growth. 

Trans. Am. Inst. Min. (Metall) Eng. 135 (1939) 416–42. 

[58] M. Avrami. Kinetics of phase change I–general theory. J. Chem. Phys. 7 (1939) 1103–

12. 

http://cbs.wondershare.com/go.php?pid=5261&m=db


24 

[59] M. Avrami. Kinetics of phase change. II–transformation-time relations for random 

distribution of nuclei. J. Chem. Phys. 7 (1940) 212–24. 

[60] M. Avrami. Granulation, phase change, and microstructure – kinetics of phase change 

III. J. Chem. Phys. 7 (1941) 177–84. 

 

 

 

 

Table 1 

Fraser-Suzuki asymmetry parameter for separate 20 – 50 µm and 300 – 500 µm kinetic data-

peaks.   

 

q
+
 / °C·min

-1
 0.5 1 2 5 10 20 

a3 for 20 – 50 µm -0.1691 -0.1655 -0.1366 -0.2054 -0.2222 -0.1735 

a3 for 300 – 500 µm -0.2307 -0.2248 -0.1951 -0.2498 -0.1779 -0.1221 

 

 

 

Table 2 

Results of single process KA applied to separate 20 – 50 µm Se powder (denoted “20-50”), 

data corresponding to the 20 – 50 + 300 – 500 µm mixture deconvoluted using the Fraser-

Suzuki function without any restrictions (denoted 20-50*), and the data of the 20 – 50 + 300 – 

500 µm mixture treated by the Fraser-Suzuki deconvolution with parameter a3 set fixed 

according Table 1(denoted 20-50**).   

 

size / µm 20–50 20–50* 20–50** 

E / kJ·mol
-1 

117.7 ± 4.9 118.3 ± 5.2 118.3 ± 5.2 

log(A/s
-1

) 15.04 ± 0.03 14.98 ± 0.19 14.96 ± 0.27 

αmax,z 0.587 ± 0.022 0.562 ± 0.031 0.559 ± 0.018 

αmax,y 0.419 ± 0.017 0.386 ± 0.047 0.395 ± 0.040 

M 0.70 ± 0.10 0.57 ± 0.12 0.60 ± 0.13 

N 0.96 ± 0.09 0.90 ± 0.05 0.90 ± 0.06 

 

 

Table 3 

Results of single process KA applied to separate 300 – 500 µm Se powder (denoted “300-

500”), data corresponding to the 20 – 50 + 300 – 500 µm mixture deconvoluted using the 

Fraser-Suzuki function without any restrictions (denoted 300-500*), and the data of the 20 – 

50 + 300 – 500 µm mixture treated by the Fraser-Suzuki deconvolution with parameter a3 set 

fixed according Table 1(denoted 300-500**).   

 

size / µm 300–500 300–500* 300–500** 

E / kJ·mol
-1 

106.4 ± 5.0 106.4 ± 5.0 106.4 ± 5.0 

log(A/s
-1

) 12.84 ± 0.10 12.82 ± 0.06 12.83 ± 0.08 

αmax,z 0.596 ± 0.019 0.502 ± 0.049 0.573 ± 0.019 

αmax,y 0.373 ± 0.056 0.362 ± 0.036 0.366 ± 0.047 

M 0.55 ± 0.11 0.51 ± 0.07 0.52 ± 0.08 

N 0.91 ± 0.06 0.89 ± 0.09 0.89 ± 0.05 
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Figure captions 

 

Fig. 1: A) Example DSC curve measured for the 20 – 50 µm powder at 10 °C·min
-1

. 

 B) Set of DSC crystallization curves obtained at different heating rates for the 20 –

 50 µm Se powder. 

 C) Set of DSC crystallization curves obtained at different heating rates for the 125 –

 180 µm Se powder. 

 D) Set of DSC crystallization curves obtained at different heating rates for the 300 –

 500 µm Se powder. 

 

Fig. 2: A) Kissinger plot for the three discrete Se powders. 

 B) Temperature dependence of activation energy obtained from the derivative 

Kissinger plot for the three discrete Se powders. 

 C) Activation energy obtained by Friedman method for the three discrete Se powders. 

 D) Activation energy obtained by Starink method for the three discrete Se powders. 

 

Fig. 3: Masterplot functions z(α) and y(α) for the three discrete Se powders. 

 

Fig. 4: Kinetic exponents M and N of the AC model determined by single-curve MKA (red-

based points in the graphs) and by the double-logarithm method (black-based points in 

the graphs) for the three discrete Se powders. Graphs A, B and C depict data for the 20 

– 50, 125 – 180 and 300 – 500 µm particle size fractions, respectively.  

 

Fig. 5: A) Set of DSC crystallization curves obtained at different heating rates for the mixture 

of 20 – 50 µm + 125 – 180 µm Se powders. 

 B) Set of DSC crystallization curves obtained at different heating rates for the mixture 

of 125 – 180 µm + 300 – 500 µm Se powders. 

 C) Set of DSC crystallization curves obtained at different heating rates for the mixture 

of 20 – 50 µm + 300 – 500 µm Se powders. 

 

Fig. 6: A) Kissinger plot comparing the data for mixtures of Se powders (black-based data) 

and the three discrete Se powders (red-based data). 

 B) Temperature dependence of activation energy obtained from the derivative 

Kissinger plot for the three mixtures of Se powders. Lines correspond to the data for 

discrete Se powders from Fig. 2B. 

 C) Activation energy obtained by Friedman method for the three mixtures of Se 

powders. Lines correspond to the data for discrete Se powders from Fig. 2C. 

 D) Activation energy obtained by Starink method for the three mixtures of Se 

powders. Lines correspond to the data for discrete Se powders from Fig. 2D. 

 

Fig. 7: Masterplot functions z(α) and y(α) for the three mixtures of Se powders. Lines depict 

the corresponding masterplot functions obtained for the 5 °C·min
-1

 data of the two 

discrete Se powders involved in the given mixture. 

 

Fig. 8: Comparison of the I1/I terms obtained during the unrestricted and restricted (fixed a3 

parameter) Fraser-Suzuki deconvolution of the 20 – 50 µm + 300 – 500 µm powders 

mixture with the true values calculated based on the masses of powders introduced 

into the DSC pans. 
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Fig. 9: Kinetic exponents M and N of the AC model determined by single-curve MKA 

applied to the mixture of 20 – 50 µm + 300 – 500 µm powders (black-based points) 

compared with the similarly obtained M and N values for the respective discrete 

powers (red based points). Three series of MKA optimization were performed – free 

optimization (white points), optimization with fixed I1/I2 (grey points), and 

optimization with fixed I1/I2 and E equal to that determined via Kissinger equation 

(black points). 

 

Fig. 10: Kinetic exponents M and N of the AC model determined by single-curve MKA 

applied to the mixture of 20 – 50 µm + 125 – 180 µm powders (graphs A - D) and 

mixture of 125 – 180 µm + 300 – 500 µm powders (graphs E - F). Each graph shows 

comparison of the data obtained for the respective discrete powers (red based points) 

and two values obtained for the given mixture - free optimization (white points), 

optimization with fixed I1/I2 (grey points). Particle size legends in each graph 

correspond to the given mixture, where the bold letters standing outside of the 

parentheses denote the particular deconvoluted peak for which the evaluation is 

depicted. 

 

Fig. 11: Comparison of the experimental crystallization data obtained at 5 °C·min
-1

 for the 

three mixtures (points) and the corresponding simulated signal obtained by summing 

the two signals of the two corresponding discrete powders (also obtained at 5 °C·min
-

1
) in the correct I1/I2 ratio used for the given mixture measurement (dashed lines). Red 

solid lines indicate fit of the experimental mixtures data by the two (previously only 

summed) signals corresponding to the two involved discrete powders with only their 

position (pre-exponential factor A) allowed for optimization. 

 

 

http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 1
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612709&guid=7c5cbda9-f740-4c29-a156-7b204d58f766&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 2
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612697&guid=7f7df6e1-603e-46b2-be51-9ba4f071bcf9&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 3
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612710&guid=7d4915f4-1516-4392-bb0f-4f0b74398348&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 4
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612698&guid=55257e56-ff5b-40e5-b99e-0333ffa2ff70&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 5
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612711&guid=0209c01b-5d4e-426d-9f6e-fcff75768009&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 6
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612699&guid=fa62c073-326a-41ad-b3c3-1fde077f0a3d&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 7
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612712&guid=4dd222d5-cdd8-4eb0-8dc8-5fe780bed1c1&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 8
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612700&guid=59cdcd15-cb46-4fc4-b84d-fd81a3065976&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 9
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612701&guid=0617a4e2-479d-43ee-a01a-6d554ac87de4&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 10
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612702&guid=0b612e3e-fd33-4bc6-95a7-ecabda59facd&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db


Figure 11
Click here to download high resolution image

http://ees.elsevier.com/noc/download.aspx?id=612703&guid=8564708b-8f65-498e-941e-e4f74dad254e&scheme=1
http://cbs.wondershare.com/go.php?pid=5261&m=db



