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The paper deals with the control of a nonlinear plant with the quadratic steady
- state characteristic. The plant is described by Hammersiein model and
controlled by a deadbeat controller. The controller is designed by the classical
complex area method. The choice of a sampling period T in the dependence of
the plant character (with minimum or nonminimum phase) and of the model
plant parameters is presented. The choice of T is based on an admitted actuator
range and on the keeping the deadbeat - strong version criterion condition.
Simulation examples are presented.

Introduction

The plant described by Hammerstein model is often included in the nonlinear
systems group’. Many different proposals for the nonlinear systems control were
presented in the past. The survey of the various methods can be found in Ref.?
As the Hammerstein model in fact represents a linear dynamic system with
quadratic input signal, a method well-known in the field of the linear discrete
system can be used for the controller design. The modified procedure described
in monograph® for the stochastic system control and applied for the deterministic
control system* is used. :
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The digital control process quality depends first of all on the choice of
suitable sampling period. In connection with solving this task the Shannon
theorem is quoted most often®. The problematic appointment of the highest
spectrum frequency gave rise to a lot of methods based e.g. on transient
response evaluation™, maximum admitted manipulated variable’ etc. The
automatic tuning of the sampling period based on the periodic oscillation
obtained by a feedback connection of a linear system with a relay having
hysteresis can be found in Refs®'°, From plenty of the further works let us
introduce the recent papers on the choice of sampling period for linear stochastic
control'' and on the estimation of the control period for self-tuners'2.

It results from the above brief survey that in most publications the choice
of T is tightly connected with controlled plant character, with type of the
controller used, with the control criterion etc. The relations for the sampling
interval choice in dependence on the Hammerstein model plant parameters are
presented. The plant is controlled by deadbeat controller. The starting point for
the sampling interval choice is the maximum admitted actuator range and the
deadbeat (strong version) criterion fulfilled only for the manipulated variable
Uu=0.

The Control Plant Description and the Control Aim

Let us suppose the dynamic plant (an electrical oven, a boiler or a distillation
column with clectrical heating etc.) described by Hammerstein model - Fig. 1.
The nonlinear part with parabolic shape of the steady-state characteristic is
described by equation

X&) = s+ 5,U(k) +s,UXK) (1
U(k) X(k) Y(k)
— | x=f{u) - F(z) _

Fig. 1 Hammerstein model of the nonlinear system

Further, let suppose the linear part in form of the linear difference second order
equation

2 2
YO +Y aXk-i) = ¥ bX(k-1) (2)
=1 i=1

The continuous equivalent of Eq. (2) corresponds to the continuous transfer
function :
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1+p1y

F k=
) (1+pT)(L+ply)

(3

Let us assume the plant to be stable and consequently the roots z,, of the
characteristic equation

22+aiz+ a, =0 (4)

to lie within the unit circle of the plane z.
Further, the plant is with the minimum or nonminimum phase, i.e. the root
of the equation

bz+ b =0 (5)
lies within (b,/b, < 1) or outside (b,/b, > 1) the unit circle of the plane z.
Introducing Eq. (1) into (2), we obtain the complet model in the form

i 2

) 2
YA+ Y aXk-0) = Y b+ 5,y bUk-1)+ 5) ) b,U° (k-1) ®
1 fe1 i1 i=1

This equation represents a model in the form of the linear difference equation
with the right side which is nonlincar quadratic function of U(k).

The aim is to control the plant so that the transition from one operating
point to another one is as quick as possible. Of course, it offers a possibility to
control in accordance with deadbeat criterion - strong version. The controlled
variable reaches the required value in the second step and any further sampling
interval.

The Incremental Deadbeat Algorithm

The incremental deadbeat algorithm is based on the nonlinear incremental model
plant and derived in the following manner: let us rewrite Eq. (6) for k-1 and
subtract this cquation from Eq. (6). We obtain then

Ay(k) + a Dy (k-1} v aAy(k-2) =
= ¢ Au(k-1) + g Au(k-2) +c,Au(k-1) + ¢ Au*(k-2) N

where

AME) = YR - Y1) Auh) = UK - U(k-1)
(8a,b,c)
Aut(k) = UK - DR (k1)

and
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c;=s8b, =12 ¢ =s8b, i=34 (9a,b)

I I

Further let us express Y(k} from Eq. (7) and put
, :
Yk = Y W(k-1) (10)
i=1

where W(k) is the command variable. f), f, are calculated as the solution of the
following algebraic equations

_— = e = - Qr —:—=—'b""2' and fi+f£:1 (11a,b,C)

It is apparent that the knowledge of the coefficients ¢;, i = 1,2 or 3, 4 is
sufficient to calculate £, f,. We need not know the separated coefficients of the
static and dynamic model part. In fact Eq. (10) is a quadratic equation in U(k)

UNky+pUky+q=0 (12a)

where

p= g = £[spa; by, Uk-1), Wk-i+1), Y(k-))]

{12b,c)

RRRS

i= 1,2 j=0,1,2

As in most cases we demand the manipulated variable not to drop in the region
of negative values, the manipulated signal must be given by the positive root of
Eq. (12a). Solving this equation with regard to this requircment, we obtain the
controller equation in form

2
£ hY 1 :
Uk) = -—+ 4o 1= 2] Y(K) + [a - 2] V(k-1) +
25 |4sf Szbl( 1 P
+  Y(k-2) v 5,{1b, - b Ulh-1) - b Uk-2)} + (13)

* {8y - BIVHE-1) - BUNK-2)) - £, W(K) - £, W(k-1)) :

If the plant is controlled with the controller {13) the regulated variable reaches,
for step command variable, the required value in the second control step and
will stay on this level even within the third and any further sampling interval,
if T has a certain value,
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The Analysis of Conditions for Sampling Interval Choice

The control loop values U and Y must fulfil certain demands. The manipulated
variable must not be larger in the first control step than a certain admitted
positive value U(0)_ . and must fulfii the additional condition
Ukyz=0, £=1,2,... . The time course of the controlled variable must
correspond to the deadbeat criterion requirement. These demands will be
fulfilled if the sampling interval value T does not decrease under certain
minimum value 7. . The derivation of T, will be shown below. The control
loop behaviour will be analysed for a step command signal and, in the first case,
the plant will have the minimum phase.

The Derivation of T

min

from Admitted U {)

nmax

The manipulated variable rcaches the maximum value U(Q),,, in the first
contro! step. For k =0, given parameters s, s,, 5,, W(0) and for the initial
conditions

U-1) = U2) =0 WD) =5 HO) = Y(-1) = ¥(-2) = 5

it is from Eq. (13)

ooy, = - /I
max 2%

where

B = b+b (14b)

s, HO-5 (14a)
252 SZB

It is obvious that parameter B can be cxpressed too with using the equations for b,
and b,. Since the parameters b, and b, can be expressed as the functions of
the rates T/T, and T/T, it is possible to construct graph the T/T = f(B} for
T/ T, = const - see Fig. 2. T, is then determined in such a way that, for
U(0),,,, the parameter B is calculated from Eq. (14a), and the corresponding
value M = T /T from Fig. 2 for the given rate of the time constants T/T,. The

minimum sampling period is
7,

y o (15)
Win A{
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Fig. 2 Graph for determining T, from U{0), . requirement

max

The Derivation of T

min

from the Requirement U(1) = 0

The largest danger of transition of the manipulated variable in the negative value
threatens in the second control step, when the manipulated variable passes from
U0,  to & 1) Therefore, it is necessary to ensure that it is

max

Ul = (16)

For k =1, given parameters, and for the initial conditions
U-1)=0 W)= WOo) YO = ¥(-1) = 5

the manipulated variable is in the second control step from Eq. (13)

1
O I I —— (55~ W) * 18- 2, ][5, UO) + 5,U%0N)[* (D)
25 |as? b

Let us suppose the frequent case when s, > 0, 5, > 0. The condition (16) will
be fulfilled if in Eq. (17) it is

s~ W)+ 1 - 4,5)15,00) + 50°0)) = 0 (18a)
1

and
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(1 T ‘71) m

> 0 18b
5 (185)

Asitis 0<b +b,<1 and for W(0) - s, >0 we obtain after a short calculation
a, = -1 (1)

The functions a, = f(T/T) for T /T, = const arc shown in Fig. 3. The function T,/T
= {TJT,) can be formed from the interscetions of these courses with line
-a,=1 - scc solid line in Fig. 4.

For the tequirement (16) to be fulfilled it is necessary (when T, and T,
are given) to choose T in such a way as to keep the rate value T\/T under the
solid boundary line in Fig. 4, This line then determines the minimum value of
the sampling interval T, . As this value docs mnot suit the requirement
of U(0),,,. it is nccessary to accept the complicated solution as the result of the
procedures described in chapters above.

i.2

\

-a%

20

0.6

g.4-}-

.24

a 2 4 & 8 10 12
THYT

Fig. 3 The functions a, = f(TJT), T/T, = const

The Derivation T

min

for Nonminimum Phasc Plant

Till now we have devoted attention to the control of the minimum phase plant
(b,/b, < 1). The plant with this behaviour is described by the transfer function
(3), where T, 20 (Ref”). For 7, <0 and at improper T the ratio b,/b can be
great than unity, system is getting nonminimum phase and the control loop is
unstable. Like in the case of the graph construction in Fig. 3. we can find the
functions T7 =f(T[T,) for T5/T =const and byfb, =1 - sce the set of dotted
curves in Fig. 4. The individual courses for different rates 7T, are the
boundary lines giving T,

min

Series A - Faculty of Chemical Technology 1 {1995) 245



/
5
£ T
i A TIT0.08.
/
/ ol
" Pras 0.1
= Tt S
/ i B T —
7’/ I 0.z
” - e )
= g f J Sy
- T 0.5
I I & C
1 i W
o
0 1 z 4 5 8 7 8 1D
TiM2

Fig. 4 Graph for determining 7, from U(l) = 0 requirement for minimum phase plant

(solid curve) and for nonminimum phase plant (set of curves T,/T, = const)

Example

For illustration results of a control smm]anon are shown. Let us con51dcr four
plants which have the same parameters

7 =5 =1 5 = 10 5, =0 5 = 0.05 W= 50

They differ in the parameters T, and T according to Table L It is
demanded that the admitted manipulated variable be U (0.« = 80.

From the simulation results it is apparent that if the conditions are
fulfilled for the choice of 7, the quality of the control processes is on the

demand level.

Table I
Number The poimt Simulation results
_ in graph
ofl'the T in Fig. 4 Contr, proc. Criterion U(0),
plant in Fig. 5
1 1.25 A 10 not fulfilled 71
2 0 2 B 11 fulfilled 53
3 -1 B 12 not fulfilled”) 33
4 -1 4 C 13  fulfilled 38.5

") The control process is unstable from the 14" control slep
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Fig. 5 Time courses of the manipulated and controlled variables

Conclusion

We have shown utilization of a formaly analogous method for synthesis of a
control loop with the lincar and nonlinear system controlled in accordance with
the deadbeat criterion - strong version. The nfluence of the sampling interval
size on the starting valie of the manipulated signal and especially on the
fulfilling of critcrion was quantitatively investigated. The analysis was carried
out not only for minimum phasc plant but for a nonmimimum one too. We have
constructed graphs which facilitate the choice of sampling interval for the
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control of the plant described by the Hammerstein model.

It can be easily shown that the derived relations can be used in the case

of the time delay plant control as well. The unknown controlled variables must
only be replaced by their predictions with the horizontal ¢ - control steps
{g=T,T, T,is time delay in time units). The regulated variable reachgs the
required value in (g +2} control steps.
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