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The problem of the glass-transition temperature (T} is discussed using the idea
of the topological and chemical threshold in chalcogenide glasses. Within a
simple covalent bond approach it is shown that the short range bonding
arrangement mainly determines the T, values in chalcogenide glasses. Good
correlation between T, and the overall mean bond energy J((E)), of a covalent
network of a glass was found for 186 binary and ternary chalcogenide glasses.
This correlation satisfies the Arrhenius relation for viscosity, where the
apparent activation energy of viscosity is empirically related to the overall mean
bond energy.

1. Introduction

In 1979 Phillips introduced the constraint theory of glass formation'. The theory
predicts the existence of a topological threshold in a continuous covalent
network system at a critical chemical composition corresponding to the mean
coordination number ((CN)) of a pseudoatom: {CN) = 2.4. In 1988 Tanaka’
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showed that composition dependences of various properties for chalcogenide
glassy alloys exhibit characteristic extremes at (CN} = 2.67. On the basis of
topological consideration he supposed that these features can be connected to
formation of stable layered structures which are maximally stabilized at a critical
chemica! composition corresponding to (CN) = 2.67. Hence there are two
topological thresholds. The first one at {CN) = 2.4 (Phillips-Thorpe threshold"**
- PTT) and the second one at {CN) = 2.67 (Tanaka’s threshold® - TT). The
implicit assumption of these thresholds is that & covalent network (or rather 2
continuous covalent network in the case of PTT and a network composed by
layer-like entities in the case of TT) is approximated by a network formed by
pseudoatoms connected by some average bonds. These thresholds are seen as
extremal points in the dependences of e.g. following physical properties versus
{CN): (i) the glass-forming ability in Ge Se,, system', (ii) the mean atomic
volume, see e.g. Ref?, (iii) the elastic constant, see e.g. Ref.5, (iv) the thermal
expansion, see e.g. Ref’, (v} the glass-transition temperature®, (vi) the
magnitude of photoinduced gap changes in amorphous chalcogenides, see e.g.
Refs®!®, At the same time there exists some evidence indicating possible
coexistence of the effects which have topological origin and the effects which
have their origin in chemical ordering, see e.g. Refs*!!, Chemical ordering
means formation of a chemical compound in e.g. A B,_, glassy system, i.e. the
chemical ordering is reached at such a composition of a given alloy (or of a
given family of a system) where the maximum value of some average bond
energy is reached or the system, from chemical point of view, reaches the most
stable state. The corresponding chemical composition is called the chemical
threshold (CHT). There is no doubt that in As-S, Se systems an interference
between PTT and CHT exists and in Ge-S, Se glasses the interference between
TT and CHT exists as well since in As-S, Se systems the chemical compounds
As,(S, Se), are formed exactly at {CN) = 2.4, and in Ge-S, Se systems the
chemical compounds Ge(S,Se), are formed exactly at {CN) = 2.67, see Fig.
1. Among the properties discussed in connection with PTT and TT, the
glass-transition temperature was also examined. As the glass-transition
temperature (7T,) is one of the most important parameters of any glass and since
the problem of interference of PTT, TT and CHT is a serious problem, the
examination of the compositional trends of the glass-transition temperature and
its relation to topology of the network on the one side and to the bonding
arrangement on the other side is of considerable importance.

It is aim of this paper to summarize some recent results concerming the
problem of compositional trend in T of chalcogenide glasses in connection to
possible existence of PTT, TT and CHT. The paper is organized as follows. In
Part 2 we briefly recapitulate basic information concerning PTT and TT. In
Part 3 a simple way based on elemental bond statistic is shown which cleartly
identifies CHT. Finally in Part 4, following results of Part 3, the simple covalent
bond approach is introduced for an estimation of T, in chalcogenide glasses.
A short summary is given in Part 5, while references are summarized in Part 6.
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Fig. 1 T‘,(R) dependéences for As-

&= 1 is marked by vertical dashed line. For data, see Refs. in Table 1

2. Phillips-Thorpe Threshold (PTT) and Tanaka's Threshold (TT)

2. 1 Phillips-Thorpe Threshold
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The number of constraints per atom as a function of coordination number is

Hence for N, = 3 we obtain {CN) = 2.45, which means that for chemical
composition with (CN) = 2.45 the system reaches mechanical stability. One can
refine this approach assuming that e.g. in binary system A B, itis valid

N(A,B,.) = xN(CN(A)) + (1 - )N (CN(B)) “

For a classical case of Ge,Se,_, system this means

N.(Ge,Se,_.) - x(CNz(Ge))z e -x)(gN(Sc))z - 6x+2 (5)

(CN(Ge) = 4; CN(Se) = 2)

Since N, = N,, we obtain: 3 = 6x+2, hence x = 0.16 and (CN) = 2.33.
({CNXGe Se,_,) = 2x+2).

In the paper by Dohler et al.” it was, however, shown that Eq. (3) is
correct for CN(A, B) < 2. For higher values of CN it has to be modified in the
following way

N,CN, N,) = % s %CN(CN -1 )

for CN < N,-1.For CN = N,- 1 Eq. (3) has to be modified in the following
way

CN 1

N,(CN, N = - E(N"_ 1})(2CN - N,) '¢))
Using condition N . = Ny (if N, = 3 is taken) we obtain
CN = 2N,)'? =245; for CN < N,-1=2 ®
NN+ 1)
CN=29"79 " -24: for CN2 N,~1=2
N1 or N, 9

Replacing CN by (CN) for Ge Se, , system we have (CN) = 2.4 x = 02 ie.
close to Phillips’ value of critical CN and critical x values in Ge,Se,_, system.
For readers’ convenience, in Fig. 2 the glass-forming difficulty is plotted to
illustrate  that  really close to x = 0.2 ({CN) = 2.4) the maximum in
glass-forming ability is observed. Alteratively, if we have

N,(Ge,Se,_; Ny=3) = xN,(Ge) = (1- HN,(Se) (10)

we obtain from Eq. (7): N, (Ge) = 7 and from Eq. (6); N (8e) = 2 and hence:
N, (Ge,Se,_,; N;=3) = 2+ 5x and using the condition: N,=N_ we have:
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Fig. 2 The difficulty of glass formation as function of x in Ge,Se, , system, see Ref!

5x = 1, hence x = 0.2 and (CN) = 2.4. Finally, we note, as Thorpe® showed,
that fraction of zero-frequency modes (f), i.e. modes which involve
displacements costing no energy, relates to the mean coordination number by
equation

12 - 5{CN)
_— 11y

Canceling the degrees of freedom by the constraints means f = 0 and hence
from Eq. (11} we obtain {CN) = 2.4. Hence the critical mean coordination
number divides relevant system into three parts. For (CN) < 2.4 the system is
floppy, underconstrained or it has mechanical behaviour like a polymeric glass.
The floppy regions can be viewed as a continuum (sea) where some rigid areas
(islands) are isolated. For (CN) = 2.4 the system is mechanically stable
(N, = N, the rigid regions (islands) start to be nearly connected (as their
volume increases), and {CN) = 2.4 is a percolation threshold. For (CN) > 2.4
the system is rigid, the floppy regions start to be isolated lakes and the rigid
structure percolates.

f=

2.2 Tanaka's Threshold

As summarised by Tanaka? the atomic volume (V,), the bulk modulus (B), and
the magnitude of the reversible photodarkening (AE) in Ge-As-S, Se glassy
system indicate a drastic change in the vicinity of {CN) = 2.67 when these
properties are plotted versus (CN), see Fig. 3. Tanaka supposed that the
constraint for a pseudoatom included in a planar cluster extending in e.g. x-y
plane can be expressed as
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ATOMIC VOLUME {cm3/mol)

Fig. 3 The atomic volumes for various chalcogenide glasses as a function of coordination
number (here denoted by Z), see Ref?

NCN) = @q(cm— 1) (12)

The second term, the angular term, is calculated as excess of (CN) variables in
6 (0 is bond angle) over a rotation freedom in the z axis. As a planar medium
configuration is assumed ( see Fig. 4) the number of angular constraints is
reduced to: (CN) - 1. Hence the constraint balancing condition N, = N_ gives
(CN) = 2.67, which means that a two-dimensional glass ( or a glass composed
of layer-like two dimensional entities) appears to be fixed stably in a three-
dimensional space at a chemical composition where (CN) = 2.67. At least two
serious possibilities” could connect TT and PTT. Thorpe® demonstrated that
while a simple rigidity-percolation analysis predicts the elastic transition at
{CN) = 2.4, the existence of ring structures consisting of atoms fewer then six
is effective to increase a threshold. Since layer structures represent some kind
of a network composed of small rings, a shift of PTT to higher values of (CN)
could be achieved. Giltoy and Philips” found that TT at (CN) = 2.67 follows
immediately from PTT if e.g. in Ge,Se,_  system the bond bending constraint
for Se atom is neglected. Hence the total number of constraints for a
pseudoatom is given by equation

N, =2x+(1-x5x (13)
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where the first two terms reptesent stretching constraint for Ge and Se atoms,
while the last term denotes only bending constraint for Ge atom. Hence the
constraint balancing condition gives (CN) = 2.67 in this case.

vo’ﬂjg,j“
o

Fig. 4 A structural model for glassy Ge-As-S(Se) and the projected lattice onto a segmental
plane?

3, The Chemical Threshold in Chalcogenide Glasses

In recent years a series of papers appeared'“'® devoted to the problem of
possible coexistence (or influence) of topological thresholds with chermical
ordering effects in multicomponent glasses. In Refs'*'® from an analysis of T,
versus (CN) and V versus (CN) (where ¥ is the mean atomic volume} it is
concluded that in Ge,Sb Se,, GeGaSe, and Geln Se, systems chemical
ordering effects (chemical thresholds) are seen as some extremal points for
various families of a given system at various (CN} (including (CN) = 2.4,2.7.
In Ref.”” mainly chalcogen-rich compositions were examined (hence Tanaka's
threshold could not be seriously examined) in Ge-Se, Ge-Sb-Se, Ge-Sb-Se-Te
and Ge-Sb-As-Se-Te systems. It was found'” that only ¥ ({CNJ) dependences
displayed a distinct extreme at (CN) = 2.4 (Phillips-Thorpe threshold).
However, no evidence for this threshold was seen in microhardness, Poison ratio
and T, versus (CN). The local extremes were seen at lines joining stochiometric
compounds. Consequently, it is concluded” that chemically ordered covalent
network dominates atomic arrangement at the tie lines. In Ref.'® the optical gap
(£,) and thermal diffusivity («) of some Ge-Sb-Se glasses were examined as
function of {CN). The extremes were found at (CN) = 2.6 for both Ey, ({(CN})
and o ({CN}} dependences. According to Ref.!* the occurence of the threshold
at {CN) = 2.6 for the Ge-Sb-Se glasses studied shows that the chemical ordering
effect is not a possible reason for the Ey, and « behaviour. Consequently, it is
supposed®® that Tanaka's threshold is observed at {CN) = 2.6. The slight shift
in the threshold value ({CN) = 2.67 for Tanaka's threshold) may be due to ionic
character in the bonds due to the presence of the heavier element antimony as
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a constituent in these glasses'. This conclusion contradicts recent results**'®. As
there are some uncertainties in the clear displaying of the influence of possible
chemical threshold or chemical ordering effects on some properties of
chalcogenide glasses, we introduce some data in such coordinates which
unambiguously manifest possible existence of a chemical threshold. Instead of
plotting the data in property versus {CN) coordinates we use a plot property
versus R, where quantity R expresses the ratio of the covalent bonding
possibilities of a chalcogen atom to covalent bonding possibilities of
non-chalcogen atoms. Hence at R = 1 only heteropolar bonds exist and,
consequently, this point unambiguously indicates stoichiometric composition or
the chemical threshold.

3.2 The Data Selection

For comparative reasons we will examine T, and V data recently used for study
of T,({CN)) and ¥ ({CN)) dependences. Table I summarizes glassy systems and
pmpemes examined together with corresponding references. The data are taken
from different sources hence some fluctuations especially in T, values could
exist since different techniques of glasses preparation, measurement and
determination of 7, can play some role. However, these differences cannot
significantly influence the overall trends in T, versus chemical composition or
(CN) dependences.

Table I The systems and properties examined. The corresponding references are summarized
in the last column

System Property Reference

As-8 Tg 19

As - Se T, 19, 20

Ge-8§ T, 21

Ge - Se Tg 19

Ge - As - Se T*V 19 (Tab. 86); Tab. 85)
g r

Ge - Sb - Se Tg, V; Ey, 14, 18

Ge - Ga - Se T,V 16

Ge-In- Se T,V 15

" The temperature comesponding to the viscosity ~ 10" poise is taken as T,
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3.3 Results and Discussion

It is well known that in binary V-VI (As-S, Se) and IV-VI (Ge-S, Se) glassy
systems the chemical threshold is seen at stoichiometric As,(S, Se); and
Ge(S, Se), compositions, i.e. at compositions where only heteropolar bonds
exist. For reader's convenience in Fig. 1 for As-S, As-Se, Ge-S, and Ge-Se
systems the T is plotted versus quantity R defined by Eq. (12)

- CN(VD) :

R = x(V]) - x(VD) CN(V; IV) (12)
where x (VI) is atomic fraction of chalcogen, CN(VI, V, IV} is the coordination
number of the chalcogen (CN(S, Se) = 2), arsenic (CN(As) = 3) or germanium
(CN(Ge) = 4) atom. The threshold at R = 1 (the point of the existence of only
heteropolar bonds) is evident. For R > 1 the system is chalcogen rich, for
R < 1 the system is chalcogen poor. We suppose that similarly in
multicomponent glasses the chemical threshold should be seen at R = 1. The
quantity R for Ge (As, Sb)ySez system is given by Eq. (13)

2z

R = 13
4x+3y (13)

where CN(Sb) = 3 is assumed. For Ge,(Ga, In)),Sez systems it can be assumed
that CN(Ga, In) = 4 (Refs'>'2"). Since the electronic configuration of Ga, In
atoms is s?p!, it is reasonable to assume that the fourfold coordination of Ga
and In atoms is due to the dative bond with p lone pair of Se atom. It means
that a part of Se atoms can be threefold coordinated. Hence for Ge,(Ga, In) Se,
systems the quantity R is given by Eq. (14)

- 2zvy (14)
4(x+y)
The mean coordination nummber in this case is
{CN) = 4x+4y+3y+2(z- y) = d4x+5y+2z (15)

which agrees with (CN) = 8 ~4x +3y -6z, (x+y+z = 1) calculated on the
basis of the formal valence shell model®™. In Figs 5 - 7 the T, (R) dependences
are shown for Ge-Sb-Se, Ge-Ga-Se, Ge-In-Se and Ge-As-§e systems. For all
families except for Ge-As-Se the chemical threshold at R = 1 is evident. To
compare the changes of the mean atomic volume as a function of R, we plotted
the quantity C (compactness) versus R in Figs 8 - 10. The compactness was
recently used (see e.g. Refs™*) in connection with discussion of photostructural
changes in noncrystalline chalcogenides. It is defined by Eq. (16)
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where x;, A;, P;» and p stand for atomic fraction (E x; = 1), atomic weight,

i

atomic density of i -th element, and the density of a given glass, respectively.
Hence C reflects normalized change of the mean atomic volume due to
chemical interaction of the elements forming the network of a given solid. For
families of Ge-Sb-Se system and for Ge (Ga, In)ySc:I glasses the threshold is
seen at R = 1 (Figs 8, 9). We note that only by ‘overlooking those Ge-Sb-5¢e
glasses with R = 1 the V({CNJ) dependence shows a threshold at (CN} ~ 2.7
(Ref.'). In upper part of Fig. 9 the C ((CN) dependence indicates the absence
of Tanaka's threshold at (CN) ~ 2.7. However, it is correct to say that for
CN(Ga, In) = 3 the threshold shifts in C({CN)) coordinates to the vicinity of
{CN) ~ 2.7.In this case, however, the chemical threshold in 7, (R) and C(R)
plot remains for R = 1 since
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274 51 =225 (17)
4x+y) 4x+3y

2z+y 1 o 2z <1

4(x+ ») 4x+3y

Of interest is the fact that in Ge-As-Se system where no tendency of the
appearance of chemical threshold is seen in T, (R) coordinates (Fig. 7) the
Tanaka's threshold at {CN) = 2.7 seems to be evident in C({CN)} coordinates
much better than it is seen in ¥ ({CN)) coordinates (see Fig. 3a Ref.'*). We note
that in C(R) coordinates (not shown here) the considerable scatter of C values
in the vicinity of R = 1 makes it imposible to identify any threshold. Finally,
in Fig. 11 optical gaps (Ey) taken from Ref.!* for two Ge-Sb-Se families are
plotted versus R. Here a clear chemical threshold for the Ge, Sb,;Seg,_, family
can be seen. For the Ge, Sb,Se,, . family with the chemical threshold (R = 1)
at x = 29.16 observed extreme lies at (CN) in the region: 2.6 < (CN} < 2.65
(Ref.") it is, however, region 0.96 < R < 1.08. Hence we suppose that the
extremal points in E,((CN?) and «({CN)) dependences found in Ref."® in
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Ge-Sb-Se glasses around (CN) ~ 2.6 could also be due to the chemical
threshold.
We briefly summarize:

(i) From our T, (R) and C(R) diagrams of examined glasses it is evident
that it is a chemical threshold (i.e. the chemical composition where only
heteropolar bonds exist) where the extremal values of 7, and C are
observed in a given system or family of the systems.

(ii) The exception from this finding seems to be T, and C values for
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Ge-As-Se system where no clear indication of the chemical threshold is
observed. Consequently, in this system Tanaka’s threshold at (CN) ~ 2.7
in C{CN)) coordinates is well documented. The reason for such
behaviour is not clear at present.

4. Covalent Bond Approach to the Glass-transition Temperature of
Chalcogenide Glasses

4.1 Introduction

The glass-transition temperature (T,) or the softening temperature (T,) is one
of the most important parameters for characterization of glassy state.
Considerable attention has been devoted to the explanation of the origin of
T ,and to the correlation of T, with the other physical or chemical properties of
glasses. In chalcogenide glasses these correlations are mostly based on the
explicit or implicit assumption that to reach T, (or T, or the onset of fluidity)
one must overcome the cohesive forces responsible for solid behaviour of a
glass. One should at least partly destroy a network of a given glassy matrix in
such a way that entities of the network are macroscopically movableat T ~ T.
Consequently, T, is related to the rigidity of the network which is usualfy
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associated with the mean coordination number ((CN)) andjor it is related to
some typical bond energy or cohesive energy between atoms or entities of a
glass. It was shown e.g. by Dembovskii® that for certain chalcogenide glasses
T, ~ 433(CN), where (CN) = 3~ x,CN;, x; is atomic fraction of the i-th
component of a glass and CN, i§ coordination number of i -th atom. Another
relation has been reported by De Neufville and Rockstad™ for correlation
between the optical gap (Eg), Ts and (CN). This correlation is based on the
Vogel-Fulcher relation for viscosity

b= il exp ( ) 8)

-1,
It is assumed that T. can be taken as a measure of the onset of diffusion motion
and thus it corresponds to a fixed value of viscosity (7} ~ 10'3 poise). In
such case T. can be related to (CN) which reflects a number of bonds/atom
(i.e. it reflects the connectedness of a network) and to Eg, a measure of average
bond energy. Hence Eq. (18) takes the form

. 5(ICN)-2)E,

19
£ T 32K, (12

where 322 = In (u(T )/u(T,))- The quantities T, and & are the system
parameters for given class of glasses®. Sarrach et al?” showed that for
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Ge-Se-Te glasses the compositional dependence of T, can be understood
according to models which deal with the local covalent bond configurations. In
fact it was found? that the compositional dependence of T, can be related to
degree of polymerization and to the optical gap. Both of these, together, provide
a measure of the dissociation energy of the nearest covalent bond in the
system®. Inselenide glasses, actually in Se rich glasses, Se, chains determine T,
and the modifications with addition of impurities are responsible for a change
in T, according to Berkes®™. Hence it is assumed that the average bond
coordination in the system is directly related to T, so that

7659 (eny 20)

7, =

For As-Se and Ge-Se systems the transform which gives the fraction
As,Seqn(x") or GcScm(x’) in terms of As(x) or Ge(x) (x' = x/(1-3x/2)
for As Se, , system and x" = x/(1 - 2x) for Ge Se,_, system should be used
for calculation of (CN) (Ref®). Linke® assumed that the mean atomization
enthalpy ((Ha>) reflects the cohesive forces which must be overcome to reach Tg
and consequently T, should relate to {H,). For certain classes of glasses Linke
found T, ~ (H,) (Ref.”). Tanaka®, assuming Arrhenius relation for viscosity

£ ]; WT,) ~ 10" poise, p, ~ 10°-10° poise (21)

TS p[ X7

derived the relation
ln(Tg) = 1.6{CN)+2.3 (22)

In this derivation it is assumed that the activation energy of viscosity (E) is
given by the equation

E = EDH{CN)—I (23)

where E ~ 0.18 eV is a typical cohesive energy of van der Waals bonding
and the term n -1 (p ~ 5) gives the number of atoms belonging to an atomic
unit. Further it was assumed that fluidity is wamanted e.g. by slipping
movements®' of distorted layers, It means that the van der Waals cohesive force
should be overcome to reach the softening of a glass. However, for chalcogenide
glasses with homopolar bonds of the type As-As; Ge-Ge Tanaka supposed® that
nearly compositionally invariant T, reflects a fact that for homopolar bond
energy E, could be valid: E, < En‘“-! and consequently the softening of
the glass could be due to the breaking of these bonds, We note that T, values
in As-Se-Te glasses satisfy this assumption (7, ~ E,) (Ref*?). In a recent
paper by Sreeram, Swiler and Varshneya® the modified Gibbs-DiMarzio
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equation in the form
T,

T ™ 123V~

has been successfully used for calculation of T, values of some Ge-Sb-Se,
Ge-Sb-Se-Te and Ge-As-Sb-Se-Te glasses. The term ({CN)~-2) in Eq. (24)
stresses the role of crosslinking, T, is T, of the noncrosslinked parent chain and
B is a system parameter. If the glass-transition temperature is related to network
rigidity (here the influence of a defect states created by broken bonds, VAPS
and IVAPS as well as kinetic phenomena are neglected) than T, should be
related not only to the connectedness of the network (which is reflected in (CNY)
but it should also be related to the quality of connections, i.e. to some bond
energy between atoms of the network (in the case of covalent network) or to
some interaction energy between entities (in the case of a molecular solid).
Actually, only DeNeufville and Rockstad®, Sarrach et al.” and Tanaka® took
into consideration both the connectedness (related to (CN)) and some energy
(related to Eg, see Eq. (19) or related to E_, see Eq. (23)).

In this part we examine the correlation between the glass-transition
temperature of 186 chalcogenide glasses and overall bond energy of the covalent
glassy network. Following the results of Sreeram et al.* and our recent results,
see Part 3 of this paper, we assume that since chemical ordering effects seem
to be pronounced in T, versus chemical composition dependences, the covalent
bond approach can be taken as an acceptable first approximation for network
of chalcogenide glasses.

(24)

4.2 Data and Data Selection

In Table II are summarized systems whose T . data (see Part 3) are taken into
consideration, the number of T, values used, references, bonds and bond
energies used for the calculation of the overall mean bond energy. In the data
selection two restriction have been made. First we take into consideration T

values of glasses with chalcogen content equal to or less than 90 at. %. The
reason is that in glasses with higher chalcogen content the matrix is composed
of entities of parent glass (Se_, S,) and those arising from crosslinking. In this
case the molecular character of the glassy matrix and its influence on the T

values cannot pethaps be neglected and covalent bond approach should not be
correct, It is in this region where Tanaka's®® approach probably should be taken
into consideration. Second there are indications that for glasses in Ge-As-Se
system with the content of Se < 55 at. % the radial distribution function*
gives an estimate of (CN) ~ 3.6-3.7. This indicates that the standard
assumption CN(Ge) = 4, CN(As) = 3 and CN(Se} = 2 is not valid. According
to Krebs® this could be due to the low selenium content. In such case in liquid
state the network has to break apart because there are not sufficient Se atoms

Tichy L., Tichd H./Sci. Pap. Univ. Pardubice Ser. A 2 (1996) 267-290 283



Table Il The systems whose T, data were used, number of Tg values used, references,
chemical bonds and bond energies”

No. of Bond Bond Bond
System T, Ref. Bond Energy Bond energy Bond energy
values eV eV eV
As-Se 13 19 As-Te 141 In-In 13 Ge-5b 1.48
As-8 13(10y 19,20 As-Se 18 $b-Sb 131 Ge-As 154
Ge-Se 10 19 Sb-Se 1.86  As-As 1.38  Ge-Ga 1.6
Ge-8 10 31 As-§ 2.0 Ga-Ga 148
Ge-As-Se 42 19 In-Se 209  Ge-Ge 1.63
Ge-Sb-Se 32 14,18 Ge-Se 212 Se-Se 1.9
Ge-Ga-Se 32 16 GaSe 232 S-8 22
Ge-In-Se 37 15 Ge-8 24 Ge-In 1.47

* Heteropolar bond energies were calculated using Pauling’s relation

to form enough Ge-Se-As bridges, the mobility of atoms increases and hence the
atoms are forced to higher coordination numbers. For this reason we take into
consideration only T, values of Ge-As-Se glasses with Se > 55 at.%, where we
believe: CN(Ge) = li, CN(As) = 3, CN(Se) = 2.

4.3 Discussion

We assume that to reach T, one should overcome some energetical barrier.
There are probably two contributions to this barrier. The first contribution is
accompanied by the breaking of the network in such way that mobile entities are
created. The second contribution, most probably a smaller one, is accompanied
by some energy necessary to reorient entities to move. We suppose that the first
contribution is most important and it is relevant to covalent bond approach.
Moreover, we suppose that this contribution is proportional to some overall
mean bond energy (E) which is a function of the mean coordination number
({CN)), kind of bonds, degree of crosslinking and bond energy forming a
network. Examined systems (Table I) can be divided into two groups. In the first
group (I} the condition CN(Se} = 2 is fulfiled for all the glasses discussed. This
is the case of binary systems: A C,_ (As (S, Se),_,; Ge, (S, Se),_,) and ternary
systems ABC, where B=As or Sb. Since CN(Ge) =4,
CN{(As) = CN(§b) = 3, CN(Se) = CN(S) = 2, the mean coordination numbers
are
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{CN) = xCN(A) + (1 - HCN(C)

(25)
{CN) = xCN(A) + yCN(B) + zCN(C)

In the second group (II): A B,C, = Ge (Ga, In),Se, the coordination number
of B atom is assumed to be four'®?: CN{Ga) = CN(In) = 4, see Part 3.2, part
of Se atoms should be threefold coordinated. Hence, the mean coordination
number for these glasses is

{CN) = xCN(A) + yCN(B) =3y+ (z- CN(C) (26)

where 3y means that there is y threefold coordinated Se atoms and hence there
is (z - v) twofold coordinated Se atoms (CN(C) = 2). We showed (see Part 3)
that except for Ge,As S, in every other system considered (or in the families
of chSbySez) the quantity R defined by Eq. (27)

i CN(C)

R =2 CNGA) + yCNB)

RAD - __ZONO) -y
*CN(A) + yCNB)

divides a system (or a family of the system) into three parts. For R = i the
system reaches stoichiometric composition since only heteropolar bonds are
present. It is a point of the chemical threshold where usually maximal values
of T are observed. For R > 1 the system is chalcogen rich (r). There are
heteropolar bonds + chalcogen - chalcogen bonds present. For R < 1 the system
is chalcogen poor (p). There are only heteropolar bonds + * metal-metal” bonds
present. We define the degree of crosslinking/atom (P,) for R > 1 and P, for R < 1

PAT = xCN(A) + yCN(B)

f X+ ¥+ z

A = £ (28)
P = zCN(QO) + ¥

£ X+ y+z

The symbols I, II stand for groups I and II of the glasses discussed. The mean
bond energy of an average crosslinking/atom value (E) is given by

E =PE .. R>1
¢ Famd Y] (29)

E’c =PpEb‘b; R<1
where the average heteropolar bond energy is given by Eq.
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g . XCNAWE, c+ yCNB)E, ¢ 30)
42 xCN(A) + yCN(B)

where E, ., Ep . are heteropolar bond energies of A-C and B-C heteropolar
bonds, see Table II. We define the average bond energy/atom of the “remaining
matrix” (E,_,, )

{CN) Eoc .

E,_maz[__—g) : R>1

2 (?) 31)
= _ (CN> _ <
E, = 2[-2— P”]_(CN) i R<1

In Eq. (31) E_ . is the homopolar bond energy of S-S or Se-Se bond, see
Table I, and E_, = (E, ,+Eg 5+ E, g)/3 is an average bond energy of a
“metal-metal” bond in chalcogen poor region. Finaly the overall mean bond
energy is given by

(E) = B+ B, (32)

For the 186 glasses summarized in Table II we calculated the values of overall
mean bond energy ((E)). The plot of T, versus (E) (actually versus (E}-0.9)
is shown in Fig. 12. Despite scatter of T values a good correlation between T,
and ({E}- 0.9) is evident. For most of ﬁlc data the accuracy is not worse than
+0.17,. This correlation satisfies the Arrhenius relation for viscosity in the
form

E
33
Kﬂ}] (33)

w7 = uoexp[
Taking p(T,) = 10" poise, u, = 107 poise and E = (E)-0.9 we obtain:
T, = 314(&:‘ )= 0.9). The linearization of T, versus (E) data using least square
fit gives: T, = 311(E) - 0.9), see full line in Fig. 12. For comparison in Fig.
13 the plot T, versus (CN) is shown indicating higher scatter in T, values. We
believe that our result can be taken as an acceptable demonstration that mainly
the bonding arrangement determines the values of T, in chalcogenide glasses.
This does not mean that intermolecular interaction has no influence on T,.
There are experimental indications (e.g. from pressure experiments, see e.g,
Refs**) that intermolecular interaction influence T,. Moreover, it is perhaps
this interaction which takes a role in relaxation processes in the glass-transition
region. We believe that this interaction enhances the changes of some properties
in the vicinity of Tanaka's threshold**®*. However, the overall compositional
trend in 7, seems to be influenced mainly by the chemical bond arrangement,
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Fig. 12 The variation of 7, with the “overall” mean bond energy ((E)-0.9). Full line -
least square fit. The slope of full line ~ 311 K/eV. Data sources, see Table I

We briefly summarize:

(i) For 186 glasses, with T, ranging from ~ 320 to 760 (K) a good
correlation between T, and (E) in the form: T, = 311({E)-0.9) was
observed.

(i) This cormelation satisfies the Arrhenius relation for viscosity.

5 Summary

In this paper we tried to summarize some recent results conceming the problem
of network structure of glasses considered from the point of view of network
mechanical stability. Both the Phillips-Thorpe threshold and Tanaka’s threshold
are relevant to this problem. In real heteronuclear systems, however, most
probably not only a network rigidity (i.e. connectedness ) but also an actual
chemistry (chemical bonding) play a role. It is most probably important when
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Fig. 13 The variation of 7, with the mean coordination number ({CN)). Data sources, see
Table I

examined properties are related to cohesive forces of a given solid. We defined
a chemical threshold, in glassy alloys, comesponding to such chemical
composition where only heteropolar bonds exist. We showed that it is this point
where extreme values of the glass-transition temperature and compactness
(except of Ge-As-S system) in various glass-forming chalcogenide systems are
reached. Following this finding and assuming that chalcogenide glasses could
be taken as a covalent solids we calculated “overall mean bond energy” ({E})
related through the Arrhenius relation to the viscosity and thus related to the
glass-transition temperature (T). For 186 chalcogenide glasses we found good
correlation between (E) and °T,. This correlation indicates that it is most
probably a chemical bond arrangement which determines mainly the
glass-transition temperature of chalcogenide glasses.
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