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The paper deals with the determination of the terminal falling velocity of solid spherical 

particles moving slowly through an unbounded time-independent purely viscous 

Carreau liquid. The relationships based on the Carreau four-parametric viscosity model 

are given for calculation of a sphere terminal velocity falling in the creeping flow 

region. The comparison of terminal velocities calculated according to these 

relationships with those obtained experimentally is presented. In experiments, the 

terminal velocity of spheres in the aqueous solutions of polymers was measured. A good 

agreement between the calculated and experimental values of terminal falling velocities 

was found. 
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Introduction 

 
The knowledge of the terminal falling velocity of a sphere moving through a fluid 
under the influence of gravity is needed for solutions of numerous engineering 
problems (design calculations of fluidised beds equipment, thickeners, pipeline 
transport systems, falling particle viscometry, etc).  

For calculation of the terminal falling velocity of a sphere settled in a purely 
viscous non-Newtonian liquid, different rheological models of the liquid shear 
viscosity are used [1]. 
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Quite frequent and simple model is the two-parameter power-law 
(Ostwald–de Waele) model: 

 1nK  ɺ   (1) 

where η is the shear viscosity, ɺ  the shear rate, K the fluid consistency coefficient, 
and n the power-law index.The disadvantage of this model is that it describes the 
course of the dependence of the viscosity on the shear rate only in a limited 
interval of the shear rate. Therefore, when calculating the sphere terminal falling 
velocity, it is first necessary to estimate the appropriate viscosity function interval 
in order to determine the parameters K and n. For this purpose, a simple iterative 
method was used in our previous work [2]. 

Beside other, the power-law predicts unreal high values of the shear 
viscosity at sufficiently low shear rates. For this reason, the models containing the 
zero-shear rate viscosity as a parameter are preferred when calculating the 
terminal falling velocity. Such a widely used viscosity model is the four-parameter 
Carreau model 
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with the parameters η0 (zero-shear rate viscosity), η∞ (infinite-shear rate viscosity), 
and fitting parameters λ and m. 

In this paper, the results are presented as the values of terminal velocity of 
spheres falling in unbounded purely viscous polymer solutions and calculated 
using the Carreau viscosity model (2), making comparison with those obtained 
experimentally by Strnadel [3,4]. 
 
 
Fundamentals 

 
Analogously to Newtonian flow, the terminal falling velocity ut for the fall in 
an unbounded Carreau liquid in the creeping flow around a sphere can be 
expressed as 
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Here, g is the gravity acceleration, d the sphere diameter, s the sphere density, 
 the liquid density, and X is the drag coefficient as a corrective factor depending 
on the dimensionless time parameter  
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and the Carreau model parameter m. 
The functional dependence of X on, ηr, and m was numerically solved by 

Strnadel [3]. The resulting dependence can be approximated by the following 
relationship: 
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where  

  1 0.1284 1 0.4237rk m      (7) 

  2 0.3584 1 1.3791rk m     (7a) 

  3 0.3584 1 0.4237 0.5763rk m m      (7b) 

  4 0.5763 1 1.0120 1.1057r rk m        (7c) 

In a next step, the values of terminal velocities calculated according to the 
relationships (5)–(7c) are compared with those obtained experimentally by Strnadel 
for purely viscous polymer solutions of different degree of shear-thinning [3,4]. 
 
 
Materials and methods 

 
The relevant falling sphere experiments were carried out in six types of cylindrical 
Perspex columns filled with aqueous solutions of carboxymethyl cellulose, 
hydroxyethyl cellulose, methyl ethyl cellulose, and mixtures of aqueous solution 
of polyalkylene glycol Emkarox HV45 with a small addition of carboxymethyl 
cellulose. The composition along with the density of the test liquids is summarized 
in Tab. 1. The polymer solutions L1–L3 were prepared by dissolution of 
powdered polymers in demineralised water, the remaining ones were made as the 
solutions of Emkarox. The measurements of liquid flow curves, primary normal 
stress differences, oscillatory, creep & recovery, stress relaxation and stress 
growth tests were carried out on a rheometer (model Haake MARS II; Thermo 
Scientific, Karslruhe, Germany). The diameters of the columns were 16, 21, 26, 
34, 40, and 90 mm which lead to ratio d/D .011; 0.499. 
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Table 1 Characteristics of the test polymer solutions 

Liquid Polymer used 
Concentration 

[wt. %] 
Density 
[kg m−3] 

L1 Carboxymethyl cellulose (CMC) 1.2 1002 

L2 Hydroxyethyl cellulose (Natrosol 250 HHX) 1.0 1000 

L3 Methyl ethyl cellulose (Tylose) 3.0 1006 

L4 Emkarox/CMC 35/0.04 1054 

L5 Emkarox/CMC 35/0.08 1054 

 
 
Seventeen types of spherical particles made of glass, ceramics, steel, lead, 

and tungsten carbide were used for the drop tests. Typical characteristics of the 
test particles are given in Tab. 2. 

 
Table 2 Specifications of the spherical particles used 

Particle Material 
d 

[mm] 
s 

[kg m−3] 
Particle Material 

d 

[mm] 
s 

[kg m−3] 

S1 glass 1.93 2525 S10 ceramics 7.99 3908 

S2 glass 3.13 2486 S11 carbide 0.99 15119 

S3 glass 4.12 2597 S12 carbide  1.49 15119 

S4 glass 4.93 2508 S13 carbide 1.99 15119 

S5 glass 6.12 2495 S14 carbide 2.99 15119 

S6 ceramics 1.99 3908 S15 steel 0.99 7526 

S7 ceramics 2.99 3908 S16 steel 3.17 7789 

S8 ceramics 3.99 3908 S17 lead 2.00 11118 

S9 ceramics 5.99 3908 − − − − 

 
 

The values of the terminal falling velocities ut,exp in unbounded fluid were 
determined by a linear extrapolation of the experimental dependences of the 
terminal falling velocities measured in the individual test columns on the ratio d/D 

to the value d/D  0. The ranges of the measured data of the terminal falling 
velocity ut,exp and the corresponding values of the effective shear rate ut,exp/d are 
for the test liquids given in the Tab. 3. At the same time, the achieved values of 
the Reynolds number ReC ranged from ∙10−4 to 0.36. All the experiments are 
described in more detail in reports listed as [3,4]. 
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Results and discussion 

 
Rheological measurements 
 
The viscosity functions of the test polymer solutions, of which the examples are 
displayed in Fig. 1, were evaluated from the experimentally obtained flow curves. 
The course of these functions was approximated by the four-parameter Carreau 
model (2), when the respective parameters are summarized in Tab. 3. It followed 
from the creep  recovery tests and normal stress measurements [3,4] that the test 
polymer solutions have exhibited a negligible elastic behaviour and can be 
considered as purely viscous liquids. Typical examples of the creep  recovery 
tests are shown in Fig. 2. 
 

 

Fig. 1 Viscosity functions of the polymer solutions L2, L3, and L5 
 
Table 3 Carreau model parameters of the polymer solutions used 

Liquid  
η0 

[Pa s] 
η∞ 

[Pa s] 
 

[s] 
m 

[–] 
ηR 

[–] 

L1 6.103 0.001 2.160 0.509 1.000 

L2 4.301 0.001 0.999 0.470 1.000 

L3 6.965 0.001 0.290 0.610 1.000 

L4 1.070 0.289 3.091 0.805 0.730 

L5 1.447 0.296 1.177 0.691 0.795 
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Fig. 2 Creep  recovery tests of polymer solutions L2, L3, and L5 

 
Terminal falling velocity 
 
The theoretical values of terminal falling velocities ut for the fall of spheres S1–S17 
in liquids L1–L5 were calculated by solving the non-linear equation (3) using the 
Solver in Excel programme.  

The suitability of the proposed corrective factor (6) with coefficients given 
by Eqs. (7)–(7c) for prediction of terminal falling velocity of a sphere according 
to Eq. (3) was evaluated by comparing the experimental values ut,exp with those 
calculated making use of equations tested.  

The agreement between the individual experimental data, ut,exp, and the 
calculated ones, ut, was evaluated according to the relative deviations 

 , ,exp,
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and for the set of measurements in an individual test polymer solution according 
to the mean relative deviation 
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The obtained values m are summarized in Tab. 4 along with the maximum 
deviations max of the individual measurements. The agreement between the 
predicted and experimental terminal velocity data is also evident from Fig. 3, 
where the experimental values ut,exp are compared with the calculated data ut for 
the liquids tested. It is seen that the agreement between experimental and 
calculated data is entirely satisfactory. 
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Table 4 Summary of the results obtained 

Liquid  
ut,exp 

[mm s−1] 
��  

[s−1] 
m 

[%] 
max 
[%] 

L1 0.572–12.8 0.297–12.7 9.06 22.8 

L2 0.770–49.7 0.400–16.6 3.60 10.6 

L3 0.429–14.6 0.223–3.80 4.94 11.4 

L4 3.68–53.2 1.90–22.6 2.87 6.18 

L5 2.26–36.9 1.17–15.7 2.24 5.82 

 

 

 

Fig. 3 Comparison of the calculated terminal falling velocities ut with experimental 
velocities ut,exp for the test polymer solutions 
Open symbol = liquids L1 and L3: see secondary axes 

 
 
Conclusions 
 
In this article, the relationships have been presented dealing with the prediction 
of terminal falling velocity of a sphere moving through a Carreau model fluid in 
the creeping flow region.  

The suitability of the given relationships has been verified by comparing 
the calculated values of terminal velocity with those measured by Strnadel [3]. 
Good agreement of the calculated and experimentally obtained data confirms that 
these relationships can be successfully used for the predictive calculation of a 
sphere terminal falling velocity moving slowly through a purely viscous fluid.  
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Nomenclature 

 
d sphere diameter, m 
g gravity accelaration, m s−2 

K power law parameter, Pa sn 
k1–k4 coefficients in Eq. (6)  
m Carreau model parameter  
n power law parameter 

ReC Carreau model Reynolds number  

1

2

2

0

1
1
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m

tdu 
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 
        

 



ut terminal falling velocity, m s−1 
X drag coefficient correction function (Eq. (3)) 
 
 
Greek letters 
 

 individual relative deviation defined by Eq. (8) 
m mean relative deviation defined by Eq. (9) 
ɺ  shear rate, s−1  
η non-Newtonian viscosity, Pa s 
η0 zero shear rate viscosity, Pa s 
ηr dimensionless viscosity parameter defined by Eq. (5)  

η infinity shear rate viscosity, Pa s 
 Carreau model time parameter, s 
s particle density, kg m−3 
 liquid density, kg m−3 
 dimensionless time parameter defined by Eq. (4) 
 

 

Subscripts 
 

exp experimental 
max maximum 
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