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Artificial neural networks (ANN) enable modelling of complex nonlinear systems 

that cannot be easily described using formal equations and have been 

implemented in many fields of science and technology for pattern recognition, 

clustering or data fitting. The goal of our study was to create a system that 

transforms XYZ and L*a*b* values into arbitrary camera RGB values in stable 

— but without strict knowledge of — photographing conditions, by means of the 

ANN data fitting ability. We adopted a two layer feed-forward neural network with 

sigmoid hidden and linear output neurons, that can fit multi-dimensional mapping 

problems quite well, when using enough neurons in the hidden layer and being fed 

by congruent learning set of data. The network was trained with Levenberg–

Marquardt backpropagation algorithm. Learning data sets consisted of input 

XYZ or L*a*b* values and output RGB values. Input data were calculated from 

the reflectance values of Gretag Macbeth Digital ColorChecker SG test chart 

obtained by spectrophotometric measurements, by taking into account three 
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different standard illuminants (A, D50 and D65) and two standard colorimetric 

observers (2 ° and 10 °). Output data were RGB values of test chart ColorChecker 

SG acquired by Nikon D50 digital camera. Our goal was to find answers to 

several questions, such as what is an optimal number of hidden layer neurons, 

what degree of accuracy can we obtain by training ANN with a limited number of 

color samples, how does number of neurons affect ANN learning time and also 

which type of input data is more suitable for the prediction of RGB values. Since 

each ANN learning epoch starts with a random weight distribution and random 

training, validation and testing data selection, every learning cycle stopped in its 

local minimum. To assess the representative values of difference between the 

actual and the predicted values, learning cycle for each number of hidden layer 

neurons and for each learning data set was repeated many times and average 

ANN training time and average, median and minimal error rates for training, 

validation and testing data were recorded. 
 

 

Introduction 
 

Unambiguous and accurate color description of printed documents requires that 
their spectral information is known. Majority of common scanners, cameras and 
also human color vision are trichromatic. In a quest for describing color 
documents by their spectral data satisfactorily, one cannot overlook the possibility 
of using ubiquitous inexpensive RGB cameras as input devices for primary data 
acquisition. Different methods have been proposed for trichromatic to spectral 
conversion [1,2]. Some of more recent ones are based upon artificial neural 
networks (ANN) [3,4], and such feed-forward neural networks can be used as 
universal approximators for continuous functions under appropriate conditions [5- 
7]. In a process of development of ANN-based system for higher dimensional 
spectrum/reflectance data approximation from lower dimensional RGB camera 
input data, many steps have to be overcome and questions answered. Some of 
them are “how to get congruent and big enough learning data set?”, “what is the 
optimal number of hidden layer neurons?” and “What degree of accuracy can be 
achieved by a limited learning data set?”. 

The main task, when developing ANN-based reflectance recovery system 
from consumer camera readouts, is to efficiently learn the system. Such ANN can 
later satisfactorily reconstruct pixel wise image reflectances from RGB values. 
Most of capturing conditions can be unambiguously measured, verified and 
controlled, but some, like RGB camera optical characteristics and spectral 
sensitivity, are hidden or inaccessible. ANN learning set consists of input-output 
pairs, namely RGB camera responses and adequate reflectances captured from the 
set of standard patch samples. Reflectances are measured via spectrophotometer, 
while RGB values are obtained from camera responses in illumination-controlled
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environment. For this purpose it is important to obtain large enough learning set 
containing pairs of camera RGB and spectrophotometrically measured reflectance 
values for each color patch. 

In our study we focused on an inverse problem which enabled us to map 
reflectances, XYZ, and L*a*b values into RGB camera responses via ANN as 
discussed in details below. 

 
 
Theoretical Background 

 
RGB camera imaging controlled environment system, usually dark room with 
standard illumination setup, as illustrated in Fig. 1, is described by spectral 
radiance of the illuminant I(λ), spectral reflectance of the surface r(λ), spectral 
transmittance of the optical system o(λ) and spectral sensitivity of the camera a(λ). 
Camera output dRGB described for each of the three camera channels is formulated 
as 

       
max

min

di id I r o a





       i ∈ 〈R, G, B〉                                    4             (1) 

and [λmin, λmax] represents the interval of visual spectrum wavelengths or, in the 
case of known spectral sensitivity of the camera, the interval inside which any of 
the three channels spectral sensitivities is greater than zero. Spectral transmittance 
of the optical system and spectral sensitivity functions of the consumer camera 
color channels are usually, as in our case, undefined. 

Colorimetric values, on the other hand, are well defined, as in the case of 
CIE XYZ, through color matching functions (CMFs) 
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[λmin, λmax] represents the interval of wavelengths outside of which all the CMFs 
are zero. 

CIE L*a*b values are easily calculated from XYZ, considering chosen 
illuminant white point. 

Typical artificial neural network system for spectral reflectance recovery 
from arbitrary camera output (Fig. 2) is trained from a set of standard colour patch 
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camera output and spectral reflectance vector pairs. When trained, spectral 
reflectance can be obtained pixel wise from every camera RGB colour pixel 
readout, and colorimetric values could be calculated from spectral reflectance 
vectors. 

 

 
 

Fig. 1  Outline of the consumer camera RGB image acquisition system 
 
 
 

 
 

Fig. 2  ANN for spectrum (r) recovery from arbitrary camera output (d) 
 
In our study we focused on a reversed dataflow. First, from a set of reflectances 
under particular standard illuminant and observer we calculated colorimetric 
tristimulus – CIE XYZ – and CIE L*a*b* values. Second, we used pairs of these 
XYZ (or Lab) and camera RGB values to train neural network ANN33 to generate 
camera specific RGB output estimates (Fig. 3). 

 

 

 
Fig. 3  ANNs for arbitrary camera RGB values recovery from colorimetric values 
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If such ANN33 modelling would turn out to give accurate outputs, we could 
later use it to generate a larger set of camera output-reflectance pairs, and 
afterwards train ANN3N more accurately. 

 
 
Experimental 

 

For our experiment we adopted a two layer feed-forward artificial neural network 
with sigmoid hidden and linear output neurons. This ANN configuration can fit 
multi-dimensional input-output mapping quite well, when using enough neurons 
in the hidden layer and being fed by congruent learning set of data. The network 
was trained with Levenberg–Marquardt backpropagation algorithm. 

Learning data sets consisted of input XYZ and L*a*b* values and output 
RGB values. Input data were calculated from the reflectance values of Gretag 
Macbeth Digital ColorChecker SG test chart by taking into account A, D50 and 
D65 standard illuminants and 2° and 10° standard observers. Colour patch 
reflectances were obtained with “Eye-One iO” spectrophotometer. Output data 
were averaged central quarter (35-by-35 pixel) patch area RGB values of test chart 
ColorChecker SG acquired by Nikon D50 digital camera. Test chart consists of 59 
greyscale and 81 color patches as shown in Fig. 4. 

 

 
 
 

Fig. 4 GretagMacbeth Digital ColorChecker SG with red marked 59 greyscale patches 
and diagonal grey hatching marked 21 randomly chosen testing set patches (see 
Fig. 9) (coloured image in electronic version) 
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Learning of ANNs with 1 to 20 hidden layer neurons were repeated 21 times 
for each number of neurons. Each repetition generated a different set of 
training/validation/testing patches. ANN training, validation and testing 
performances were evaluated via normalized Mean Squared Error (MSE). 

 
 
Results 

 

Every ANN learning set was divided into training, validation and testing set in 
70/15/15 percent ratio. ANN is first trained with the training set, and its 
performance is then verified by MSE gradient of validation set. If gradient is 
negative, learning algorithm assumes that ANN's performance improves. Just 
before validation set's MSE gradient starts to ascend, learning is stopped, despite 
descending training set's declining gradient in order to prevent overfitting. 

As we had a limited and quite small learning set, it was reasonable to 
assume that for each size and complexity of input-output learning ANN data there 
exists an optimum number of neurons. When we trained ANN with different 
numbers of hidden layer neurons changing from 1 to 20 with repeating learning 
for each number 21 times, there was always some quantity range of optimal 

 

 

 
Fig. 5 GretagMacbeth Digital ColorChecker SG with red marked 59 greyscale patches 

and diagonal grey hatching marked 21 randomly chosen testing set patches (see 
Fig. 9) 
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Fig. 6 Normalized MSE testing set performances median values of 21 ANN learning 
cycles for each number of neurons and each of selected colorimetric values (XYZ 
or Lab), standard illuminant and observer combination 

 

 
 

Fig. 7 Normalized MSE testing set performances minimum values of 21 ANN learning 
cycles for each number of neurons and each of selected colorimetric values (XYZ 
or Lab), standard illuminant and observer combination 
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Fig. 8 Average learning time, average number of epochs and average single epoch time 
of 21 ANN (10°, A illuminant, XYZ to RGB mapping) learning cycles for each 
number of neurons 

 

 
 

Fig. 9 Side-by-side comparison of RGB test targets and RGB outputs of ANN with 7 
neurons in the hidden layer 

 
number of neurons, typically between 4 and 8. Learning cycle’s results for 10° 
standard observer with A illuminant CIE XYZ input and camera RGB output data 
are shown in Fig. 5. 
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Similar change of MSE gradient can be found with all learning sets in Fig. 
6, where average of median of testing set performance values with lowest area 
between 4 and 8 is depicted with black dotted line. Average of minimum of testing 
set performance values (best ANN learning results) shows the same trend (Fig. 7), 
whereas performance is twice as good. 

For a comprehensive experimenting with many repeated learning cycles 
with different ANN configurations, learning time plays quite an important role. 
Because of this, we were monitoring learning cycle time parameters. Single epoch 
time represents one learning step in a complete learning cycle. After many learning 
epoch repetitions, ANN optimum is reached and learning is stopped. The complete 
learning cycle time for one learning set is the sum of all single epoch times. As it 
was expected, we observed that as number of hidden neurons rises, ANN’s 
complexity grows and a single epoch time rises. At the same time, ANN’s ability 
to effectively absorb knowledge rises, and number of learning epochs decreases. 
Consequently, ANN total training time remains constant at an average of just 
above 3 seconds. In Fig. 8 average values of these parameters are shown for 21 
repetitions of ANN learning cycles. We can also see that learning ANNs with 
small number of neurons (1, 2, 3) more often needs many epochs to stabilize and 
training times can be measured in tens of seconds if not stopped by constraint of 
maximum number of epochs. 

Comparison of final results — differences between captured and predicted 
(ANN outputs) RGB values — is given in Fig. 9, where some values are 
satisfactorily well matched (for example patches K07, L03) and some differences 
are still too big (patch N06). Overall results are for our small learning set (Fig. 4 
– 140 patches, of which only 81 colour patches) surprisingly good. These results 
should be improved by further experimenting with larger learning set and 
additional ANN configurations. 
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