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The steady slow motion of solid spheres through a Carreau model fluid contained
in a cylindrical tube has been solved numerically using a finite element method by
means of the COMSOL Multiphysics software package for steady non-Newtonian
flows. From the resulting stress fields, the drag force on the sphere, drag
coefficient, drag coefficient corrective factor, and wall correction factor have
been evaluated in dependence on the Carreau model parameters and the sphere-
to-tube diameter ratio. The results of the wall correction factor calculations are
presented herein and compared with our new experimental data.
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Introduction

It is known that the confining walls or bounding surfaces cause an extra
retardation effect on a falling particle due to an upward flux of the fluid displaced
by the particle. The particle retardation is customarily quantified using the wall
correction factor F),, which can be defined as the ratio of the terminal falling
velocity of a particle in a bounded fluid to that in an unbounded one

F, =L 1)

Great deal of information on wall effects available in literature, especially
for non-Newtonian fluids, concerns spherical particles and is based mainly on
experiments. Only little theoretical and numerical work has been carried out on the
effect of containing walls on sphere motion in purely viscous fluids without a yield
stress [1]. Missirlis ef al. [1, 2] presented a numerical study of the wall effects on
the terminal velocity of a sphere falling freely through a power-law fluid at the
axis of a cylindrical tube in the creeping flow regime. In order to test the
possibility to exploit the COMSOL Multiphysics software package for steady non-
Newtonian flows to the solution of the flow of purely viscous fluids around a solid
obstacle, we have recalculated the effect of containing walls on sphere motion in
a power-law fluid using this software package [3]. The results obtained were in
very good agreement with the data published by Missirlis ef al. [1,2], which
documents the suitability of the COMSOL Multiphysics software for numerical
calculations of the flow of purely viscous fluids about solid obstacles.

However, the fluid viscosity models containing zero shear viscosity as a
parameter are preferred for describing the flow of non-Newtonian fluids around
asphere [1]. Such a widely used viscosity model, especially for polymeric liquids,
is the Carreau model. In this paper, the results are reported of our numerical
calculation of the wall correction factor in the creeping flow of a Carreau model
fluid over a solid sphere in a cylindrical tube. The numerical results are compared
with the results of our experimental investigation of the wall effects on the fall of
spherical particles moving through inelastic aqueous solutions of polyalkylene
glycol Emkarox with small amounts of carboxymethylcellulose, which are
differing by the measure of their pseudo-plasticity.

Mathematical Model

We consider the flow of a Carreau model fluid around a sphere falling in an
unbounded fluid and along the axis of a cylindrical vessel. The schematic
representation of the domain used for the solution of the flow is shown in Fig. 1.
For convenience, it is assumed that the sphere is held fixed and the cylinder walls
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Fig. 1 Schematic representation of solution domain

are moving with the fluid velocity U.
The field equations governing the fluid motion are:

continuity equation Vi =0 (2)
equation of motion P iVii = —VP + 7% (3)
constitutive equation 1 = n(¥)¥ (4)

where the viscosity function is given by the four-parameter Carreau model

m-1

n-n. zl
=1 +(Ay)?]| 2 5
"y [L+ (g ] )

Here i is the velocity vector, p the fluid density, P the pressure, T the extra stress

tensor, ¥ = Vi+VaT the shear rate tensor, ¥ = 1 717 the shear rate, T, is
Y Y Y Y T

zero shear rate v150031ty, M. is the infinite shear rate v130051ty A is the time
parameter, and m is the index.

For calculation, the two dimensional axial symmetric geometry with
cylindrical coordinates (7, z) has been used. We have postulated the following
boundary conditions for the flow solution in an unbounded fluid:

boundary I, symmetry condition

""‘1

.11

[ (-PT +%)7, = § (6a)
=0 (Gb)
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boundary I', — no slip condition

=0 (6c)

u =0, w=U (6d)

boundaries I, I'; — normal stress condition
(-PT +%)4, =D (6¢)

For the flow solution in a bounded fluid, the boundary conditions on
boundaries I',, I'; and I remain the same. On the boundary I',, the normal stress
condition (Eq. (6¢)) and on the boundary T, the velocity condition (Eq. (6d)) are
valid. The results of the numerical solution of the given mathematical model are
the velocity, pressure, and stress fields. The quantities of interest are the drag force
on the sphere

RR
F, = 27cff(P+1:n+‘czz)drdz (7
0-R
and the drag coefficient
7 .
cp = —Bl_ ®)
TERZ_Z-p U2

The drag coefficient for the creeping flow of a Carreau model fluid around a
sphere is commonly expressed as

24

¢p = =—X(n, A, m) (9)
Rt—:e0
where
Re, = U2R)p (10)
Mo

is the generalised Reynolds number and X is a drag coefficient corrective factor
depending on the Carreau model parameters. From the comparison of Eq. (8) with
Eq. (9), it follows that
||
X, Am) = —2 11
M,, A, m) 67 RU (11)
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Solutien Procedure

The governing Eqgs. (2)-(5) together with the boundary conditions (Egs. (6)) have
been solved by a finite-element method based on the Galerkin formulation of the
conservation equations. The following values of entering quantities were used: d
=0.001 m, p = 1000 kg.m™, n, = 30 Pa s. The infinite shear viscosity ranged in
the interval 0 <1, < 15, which led to the relative viscosity ), € {0.5; 1.0}. The
values of parameter m ranged in the interval 0.3 < m < 0.9 and the time parameter
A in the interval 0.0025 < A < 50, which led to the dimensionless time parameter
A €10.1, 2000). The calculations were performed for the ratio &/D varying in the
interval 0.5 < d/D < 1.

Fig. 2 Example of grid used for ratio d/D = 0.4; number of elements 90 624

For calculation of the drag forces F),, in an unbounded fluid, the value U,
= 0.02 m s™' was chosen, which led to Reynolds number Re, = 6.67x10™, Using
the same value U= 0.02 m s™' for calculation in a bounded fluid, the magnitude of
the drag force F, raised in comparison with the value F,,.. For calculation of the
factor Fy according to Eq. (1), an iterative solution procedure had to be used for
searching such velocity U < U, at which the drag force F}, = F,.. This procedure
was based on the Newton’s tangent method.

Computations were performed with the computer programme COMSOL
Multiphysics using software package for steady non-Newtonian flows. Different
triangular grids were used for computation at different ratios &/D. On the boundary
I';, the grid was substantially refined. The example of the grid used for calculation
at &/D= 0.4 is shown in Fig. 2.
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Fig. 3 Dependence of wall factor on d/D, m and A; a) n.=1bn,=075

Results of Wall Correction Factor Calculations
Examples of dependences F = fd/D, m, A) calculated for 1, = 1 and 0.75 are

shown in Fig. 3. In accordance with expectation, the wall factor F ,» 18 dominantly
dependent on the ratio &/D. The measure of dependence of F,, on m and A varies
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according to the value of the viscosity parameter 1,. For 1, ~ 1, the theoretical
estimates of ), significantly depend on m and A. At the same time, the wall effects
are less severe with decreasing values m and increasing values A. With decreasing
values 1,, the dependence of F,, on m and A is gradually decreasing and the
dependence of F,, on A displays a local maximum.

Comparison of Calcnlated and Experimental Data

The numerically calculated dependences F,, = fld/D, m, A} were compared with
our experimental data obtained for the fall of rigid spherical particles in aqueous
solutions (liquids L1 — L4, Table I) of polyalkylene glycol Emkarox HV435 with
small amounts (0.02-0.16 % wt.) of carboxymethylcellulose [4]. The measure-
ments of liquid flow curves, primary normal stress differences, oscillatory, and
creep & recovery tests, were carried out on rheometer Haake MARS (Thermo
Scientific). The courses of the test liquid viscosity functions are shown in Fig. 4.
These courses were approximated using the Carreau model. The corresponding
parameters of the Carreau model are given in Table I. The measurements of the
elastic behaviour confirmed that the test fluids can be considered as inelastic
liquids. For illustration, the results of creep & recovery tests are displayed in Fig.
5. The obtained dependences of compliance J with time ¢ are typical of inelastic
fluids.
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Fig, 4 Viscosity functions of test liquids

Seventeen types of spherical particles made of glass, ceramics, steel, lead,
and tungsten carbide were used for the drop tests occurring in cylindrical columns
of 90, 40, 34, 26, 21, and 16 mm in diameter, The diameter of spheres ranged
from 1.0 mm to 8.0 mm. The range of the ratio &/D reached was from 0.01 to 0.5.

The experimental values F, ., of the wall correction factor were calculated

w,exp
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TableI Rheological characteristics of test liquids

Composition Careau model parameters
Liquid
Emkarox/CMC, % wt. A, s m n,
L1 35/0.02 324 0.787 0.508
L2 35/0.04 2.04 0.752 0.676
L3 35/0.08 .79 0.729 0.816
L4 30/0.16 1.57 0.691 0.931
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Fig. 5 Creep & recovery tests of liquids used
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Fig. 6 Comparison of experimental data F, weyp With data Fyy, calculated for liquids L1
and L2: Liqid L1 —n, = 0.508 A = 14277, Liquid L2 - 1, = 0,676, A =2-42
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Fig. 7 Comparison of experimental data F,,, with data F,, , calculated for liquids .3
and L.4: Liqid L3 - 11, = 0.816 A = 3-86; Liquid L4 —n,=0,931, A =3-79

from Eq. (1) using experimental values Uand values U_ obtained by extrapolation
of experimental dependences U = fd/D) to the d/D - 0. Then, the experimental
data F,,,, were compared with their predictions F, ., calculated using above
described numerical procedure. In these calculations, the velocity U,
corresponding to the condition ¢/D = 0, was searched to be fulfilled the condition
Fpwcar™ Fp o corresponding to the velocity U in the bounded fluid. The results of
comparison are shown for liquids L1 and L2 in Fig. 6 and for liquids L3 and L4
in Fig. 7. Figures 6 and 7 show that the agreement between experimental and
calculated data of Fy, is satisfactory. The mean relative deviation 8, between
experimental and calculated data of F, is 3.5 % and maximum individual devia-
tion is 17 %. From Fig. 6, it is evident that for lower values of 0, the calculated
values of F, are a little undervalued.

Conclusion

The results of numerical calculations of the wall correction factor 7, have been
presented for the slow free fall of spherical particles in a Carreau model fluid
contained in a cylindrical tube. For viscosity parameter 7, = 1, the theoretical
estimates of F,, significantly depend on index m and dimensionless time A for a
given value d/D. At the same time, the wall effects are less severe with decreasing
values m and increasing values A. Ascertained dependence of the factor F,,on the
parameters A, m, 1, and d/D was confirmed by experiments with satisfactory
differences.
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Symbols

drag coefficient

sphere diameter, m

tube diameter, m

wall correction factor (Eq. (1))

drag force magnitude, N

unit vector

unit tensor

Careau model parameter, Pa

pressure, Pa

radial cylindrical coordinate, m
sphere radius, m

Reynolds number (Eq. (10))

velocity vector component, m s™
velocity vector, m s

particle terminal falling velocity, m s™
drag coefficient corrective factor (Eq. (9))
axial cylindical coordinate, m

M R L A S G

Greek Letters

i shear rate, s™'
shear rate tensor, s™!
N shear viscosity, Pas
Ny Careau model parameter (zero/shear rate viscosity), Pa s

n, [ = Do viscosity ratio
TNy

N.  Careau model parameter (infinity shear rate viscosity), Pa s

A Careau model time parameter, s

A [ 2T

= T) dimensionless time parameter

liquid density, kg m™
extra stress tensor component, Pa
€xtra stress tensor, Pa

Al o
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Subscripts

r related to radial cylindrical component
z related to axial cylindrical component
e related to unbounded fluid

cal calculated value

exp experimental value
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