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Introduction 
Presumably complex systems can be better understood when they are broken down into their 
constituent elements and structured hierarchically. Then, judgments about these elements can be 
synthesized on the basis of their relative importance at each level of the hierarchy into a set of overall 
priorities. By breaking down a reality into homogenous clusters and subdividing them into smaller 
ones, it is possible to integrate large amounts of information into the structure of a problem and form a 
more comprehensive picture of the whole system. 
 There is a decision support methodology (DSM) which conforms to the above prescription. It is 
called the Analytic Hierarchy Process (AHP) and was devised at the Wharton School of Business by 
Thomas Saaty (1980). Its contemporary applications can be found, for example in Lidinska & 
Jablonsky (2018), Abdelmaguid & Elrashidy (2016), Kramulová & Jablonský (2016), and Ponis et al. 
(2015). This DSM is based on the pairwise judgments technique which comes from an influential 
paper of Marquis de Condorcet (1785), who used this technique in the election process (Young, 
1988), and which was popularized by Thurstone (1927) thanks to his first contemporary application at 
the beginning of the 20th century.  
 When group decision-making (GDM) is taken into consideration, the AHP seems a particularly 
attractive methodology, and although it has been examined numerous times from the perspective of its 
effectiveness and applicability in GDM processes (see e.g. Scala et al. (2016), Saaty & Peniwati 
(2008), Saaty & Vargas (2012), Aguarón et al. (2014), Hosseinian et al. (2012), Moreno-Jiménez et al. 
(2005, 2008), Altuzarra et al. (2010), Sun & Greenberg (2006)), still a research gap could have been 
identified. Thus, this paper examines judgments consistency influence on the credibility of priority 
ratios (PRs) within a particular priority vector (PV) derived from inconsistent pairwise judgments made 
by a decision maker (DM). Examination results generalize to the synthesized pairwise comparison 
matrix that is obtained on the basis of individual pairwise comparison matrices for all group members. 
Having in mind that a consistency index for the PCM denoting group preferences cannot be greater 
than the consistency index of the most inconsistent individual PCM it became possible to designate 
the credibility of the priority vector for the group on the basis of the most inconsistent individual PCM. 
 The article is organized around three main sections: the introductory section which elaborates on 
pairwise judgments, AHP, and GDM with application of AHP; the methodological section devoted to 
the research methodology, comprising an illustrative example of the problem and selected pitfalls 
during priority ratios estimation process which builds on preselected measures of estimation errors; 
the investigational section encompassing the research outcome, its contribution to the research field 
and the examination breakthrough from the viewpoint of other research papers. The final part of the 
article constitutes the section ‘Conclusions‘ which summarizes examination findings. 

1. Background 
The AHP can be considered to be both a descriptive and prescriptive model of decision making. It 
promotes pairwise judgments (i.e. valuation on the basis of pairwise comparisons) of criteria and 
alternatives with respect to a criterion. Genuinely (as proposed by the creator of AHP), the comparison 
process proceeds with the application of a fundamental scale of absolute numbers that has been 
proven in practice i.e. Saaty’s numerical scale which comprises of the integers from one (equivalent to 
the verbal judgment - ’equally preferred‘) to nine (equivalent to the verbal judgment - ’extremely 
preferred‘), and their reciprocals. Other numerical scales have been considered also see e.g. Dong et 
al. (2008). The methodology of AHP is based on the well-defined mathematical structure of consistent 
matrices and their associated principal right eigenvector’s (REV) ability to generate true or 
approximate weights, see e.g. Merkin (1979), Saaty & Vargas (1984).  
 Generally, the problem of deriving PRs from a pairwise comparison matrix (PCM) denoted as 

nxnijaA ][  with elements jiij aaa  , is to estimate w=[w1, w2, w3,…, wn]
T on the basis of matrix A 

which comprises a decision maker’s pairwise judgments (denoting DM preferences) concerning the 
importance of a given binary set of alternatives. Commonly PRs wi , where i=1,…, n, are selected to 

be positive and normalized to unity  
n

i iw 1, and the elements aij of matrix A are then the DM's 



judgments about the PRs jiij www  , where i,j=1,…,n, and n is the number of all alternatives being 

considered. In a perfect judgment case then, the problem can be designated as  
wwA         (1) 

and w can be computed by solving the eigenvector equation (1). In a perfect case (matrix A is 
consistent)   is the only nonzero eigenvalue of A i.e. the nonzero solution of the characteristic 
equation 

  0det  IA       (2) 

where I denotes the identity matrix of order n. In this case, also n . On the other hand, when the 
case is not perfect (matrix A is not consistent) an estimate of the true w is the normalized principal 
right eigenvector (REV) associated with the maximal eigenvalue. Thus, in order to obtain the estimate 
it is needed to solve the general eigenvector equation 

wwA  max       (3) 

where max  denotes the principal eigenvalue which is not smaller than n, is simple and its existence is 

guaranteed by the Perron-Frobenius Theorem, see e.g. Saaty & Vargas (1984).  
The matrix of ratios A=(wi./.wj) is consistent, if and only if n is its principal eigenvalue and wnwA  . 
Further, w>0 is unique to within a multiplicative constant. 
 If the elements of a matrix A satisfy the condition wij=1/wji for all i,j=1,…, n then the matrix A is said 
to be reciprocal. If its elements satisfy the condition wikwkj=wij for all i,j,k=1,…, n and the matrix is 
reciprocal, then it is called cardinally transitive or consistent. Matrix A can also be only transitive if the 
following conditions hold: (i) if for any i =1,…, n, an element wij is not less than an element wik then 

ikij ww   for i =1,…, n, and (ii) if for any i =1,…, n, an element wji is not less than an element wki then 

kiji ww   for i =1,…, n. In the case of reciprocal PCMs – which are the only accepted PCMs for the 

AHP although counterarguments exist in literature (see e.g. Linares et al. (2016))  the two conditions 
(i) and (ii) are equivalent.  
 Fundamentally, all theories are based on axioms, so is the AHP. Its creator Saaty (2006) defines 
five conditions for good approximations: reciprocity, homogeneity (the elements being compared must 
be of the same order of magnitude), independency (judgments about, or the priorities of, the elements 
in a hierarchy cannot depend on lower level elements), near consistency and uniform continuity 
(elements wi, i=1,…, n should be relatively insensitive to small changes in the elements aij, only then 
good approximations to aij remain ji ww  ratios). 

 The central point of AHP and the key issue for a theory of choice that is based upon AHP is the 
methodology of capturing (in)consistency of PCMs within the AHP. In order to derive credible priority 
vectors (PV) within AHP, it is necessary to impose some boundaries on (in)consistency of PCMs 
involved in the process. Indeed, significant violation of the PCM (in)consistency may mislead the true 
values of priority ratios within the PV making the entire methodology itself useless. On the other hand, 
it does not mean that a high consistency of PCM guarantees credible values of PV because even 
perfectly consistent PCMs may not be error free, see e.g. Grzybowski (2016) and Temesi (2011). That 
is why establishing some relations between (in)consistency of PCM and the credibility of priority ratios 
estimates seems so important. 
 The AHP genuine measure of PCM (in)consistency belongs to Saaty (1980) and is strictly related 
to the REV, which makes it especially attractive. It does not mean that the other PCM inconsistency 
measures (called consistency or inconsistency indices) do not exist. To the contrary, a number of 
other indices can be found in literature, see e.g. Mizuno (2019), Peláez, Martínez & Vargas (2018), 
Dixit (2018), Fedrizzi & Ferrari (2017), proposed quite recently. 
 A detailed analysis of all consistency indices available in literature is beyond the scope of this 
research. However, a reader interested in various approaches to consistency measurement during 
pairwise comparisons may want to review those references. It behooves to mention that pairwise 
judgments consistency measurement was also a topic of more cross-sectional surveys e.g. Brunelli 
(2018), Kou et al. (2016). Having the perspective on a scale of research devoted to various ways of 
pairwise comparisons consistency identification, it remains to mention that Saaty’s concept for 
pairwise comparisons consistency measurement proposed for AHP is currently systematically 
criticized, see e.g. Xu et al. (2008), Koczkodaj & Szwarc (2014), Koczkodaj & Urban (2018). 
 However, taking into account that the AHP creator’s concept is still applied in the way it was 
proposed a few decades ago, interested readers in a detailed perspective of Saaty’s concept, as well 
a more fundamental analysis of the whole AHP approach, may want to study a more detailed 
examination of this methodology for instance in Wu & Kou (2016), Kou et al. (2016), and Saaty 



(2008b). Further discussion within this area, for reasons of brevity, is deliberately omitted. Instead, 
some key issues of group decision making with the application of AHP will be briefly depicted. 
 It is a fact that most of real-life decisions are not made by individuals, but by groups of individuals 
e.g. committees, councils, etc. From that perspective the relation between the quality of pairwise 
judgments made by individuals and the quality of the representative judgment for a group of 
individuals is of great importance.  
 Thus, the prescription exists for an individual judgments aggregation in a way which enables 
obtaining a representative group judgment. The reciprocal property of the AHP plays an important role 
from that perspective. Generally, judgments have to be combined in such a way that reciprocals of the 
synthesized judgments are equal to the syntheses of these judgment reciprocals.  
 It has been deduced that the only unique way to do that is to apply the geometric mean procedure. 
It can be done in two ways (Saaty 2008b): 
 if experts are appointed as decision makers, then rather than combining their individual judgments, 

their final outcome from a hierarchy is synthesized with application of a geometric mean; 
 on the other hand, if the individuals themselves have different degrees of importance i.e. voting 

powers, their individual judgments are raised to their voting power and the group outcome is 
established on the basis of their individual judgments i.e. the weighted geometric mean is formed 
(Formulae 7 and 8). 
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 where wk denotes a priority of importance for the individual. 
In the latter case, the final outcome for a hierarchy is computed with the application of the standard 
AHP aggregation i.e. with application of the weighted arithmetic mean (the priority of the particular 
alternative under its criterion is weighted by the priority of its criterion(s), then the total priority of the 
given alternative is determined by the sum of their weighted priorities). 
 It has been proven that application of the geometric mean procedure for individual preferences 
aggregation is the only one which satisfies a number of important properties (Aczel & Saaty 1983). It 
has been also proven, (see e.g. Liu, Zhang and Wang (2012), Grošelj and Stirn (2012); Escobar, 
Aguarón and Moreno-Jimenez (2004), Xu (2000)), that the CI(A) of the group preferences cannot be 
greater than the CI(A*) of the most inconsistent individual PCM= A*, i.e. 

)}(),...,(),(max{)( 21 nACIACIACIACI  . 

 However, despite the relevance of the findings stated above, it needs to be stressed that relatively 
consistent individual pairwise judgments do not guarantee 100% preferences credibility derived 
thereof, see e.g. Temesi (2011). Thus, rather then focusing on inconsistency of the group preferences, 
primarily the consistency of individual pairwise judgments must be meticulously controlled from the 
perspective of its relationship with priority ratios estimation errors which can distort credibility of a 
particular priority vector. The necessity of research in this area seems to be paramount. 

2. Research Methodology 
It is emphasized, that few research papers have dealt in depth with the above presented problem i.e. 
the relation between a level of the pairwise judgments (in)consistency and the range of possible 
estimation errors for established priority ratios, see e.g. Grzybowski (2016) and Kazibudzki (2019a).  
 However, despite of the relevance of findings published therein, those research studies 
concentrate on average estimation errors within particular priority vectors. The consequence of such a 
perspective is a tacit assumption that estimation errors for particular priority ratios are more or less the 
same as the mean error for the particular priority vector. It turns out, that it is not necessarily true, 
especially when relative measures for estimation errors are considered. The examination of these 
issues is in order and will be made briefly in the below subsection entitled ‘Problem illustration’, and 
then thoroughly in the paper’s subsection entitled ‘Examination breakthrough’. The problem 
exemplification is first to be considered. 

2.1 Problem illustration 
The following hypothetical normalized priority vector (the vector of priority ratios) is considered: 
PV(w)=[0.0625, 0.1042, 0.1458, 0.1875, 0.2292, 0.2708]. It is assumed that the vector reflects ‘true‘ 
(not estimated) the DM‘s relative preference toward six objects whose relative characteristics are 



known e.g. the strength of preferences toward the objects is associated with the size of these objects 
(their mass, volume, circumference etc.), so their relative importance can be calculated by dividing the 
particular object‘s size by the total size of all objects. On the basis of this ‘true’ PV(w), the PCM(w) is 
formed denoted as A(w) with elements jiij www   
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 Then, A(w) is perturbed by perturbation factor e which single value in this example is given e=0.5. 
This technique allows to emulate inconsistency during DMs judgments concerning objects and is 
widely accepted for this purpose since its first application i.e. Zahedi (1986). In this way the perturbed 
matrix A(x) is obtained, where ewx ijij   for  6,, 1,  and   Njiji . 
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 Further, the upper triangle elements of A(x) are rounded to the closest value of Saaty’s scale and 
reciprocity is imposed (only the upper triangle elements i.e. elements above A(x) diagonal are 
considered for rounding while the lower triangle elements are computed as reciprocals of the upper 
triangle elements). In this way the scaled and reciprocal A(v) is obtained which reflects DMs 
judgments concerning objects expressed with application of the particular preference scale, in this 
example Saaty’s scale. Other scales can be applied also, for references see e.g. Dong et al. (2008). 
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 It should be emphasized that A(v), on the basis of Saaty’s consistency philosophy, should be 
considered as acceptably consistent because its CI(A(v))=0.0670, RI(6)=1.24 thus CR(A(v))=0.0541 
which informs of an acceptable level of consistency (Saaty suggested that CR<0.1).  
 On the basis of A(v), PV(v) is calculated, in this example, with the application of the REV method 
as the genuine AHP prioritization technique (PT). It behooves to mention that other PTs, which were 
suggested in literature for this purpose, can be also applied. For brevity, they will not be discussed in 
this research. However, the interested reader may want to find references where these PTs are 
scrutinized. The most recent are Orbán-Mihálykó et al. (2017), Kazibudzki (2016b), Kułakowski (2015). 
 Continuing the main stream of the research, on the basis of A(v) the following PV(v) is obtained 
with application of the REV method: PV(v)=[0.0277, 0.0566, 0.1027, 0.1714, 0.2679, 0.3736], which is 
different than PV(w)=[0.0625, 0.1042, 0.1458, 0.1875, 0.2292, 0.2708]. Having those two vectors of 
priority ratios, it is possible to compute deviations among their elements i.e. maximal absolute 
deviation (MaxAD), mean absolute deviation (MAD), minimal absolute deviation (MinAD), maximal 
relative deviation (MaxRD), mean relative deviation (MRD), and minimal relative deviation (MinRD), 
see formulae in Tab. 1. 
 From the perspective of this research, devoted to designating the priority ratios estimate credibility, 
four deviations presented in Tab. 1 i.e. MaxAD, MaxRD, MAD and MRD, become especially significant 
because they enable designation of confidence intervals for ‘true‘ priority ratios (as in the classic 
statistical estimation theory).  



 In this exclusively illustrative example, the confidence for those intervals is purely hypothetic 
because it cannot be designated only on the basis of one case. However, iterations of similar cases 
are possible using Monte Carlo simulations which results can provide meaningful data in this matter. 
This issue is scrutinized further in the article’s subsection ‘Examination methodology’. 
 Returning to the problem’s illustration issue, the values of four deviations especially significant for 
the considered problem study are presented in Table 2. On the basis of these values (Tab. 2), the 
hypothetic confidence intervals for priority ratios estimates (PRE) can be established and illustrated 
(Fig. 1–2). As can been noticed (Fig. 1–2), the hypothetic confidence intervals for priority ratios have 
different features i.e. range and symmetry in relation to the estimated priority ratios values. Those 
features depend upon applied deviation.  
 Noticeably, a higher spread of hypothetic confidence intervals and their higher asymmetry is 
observed when relative and/or maximum deviations are applied. For relative deviations, the spread of 
hypothetic confidence intervals also depends on the value of the particular priority ratio i.e. higher 
values of priority ratios entail a larger spread for their hypothetic confidence intervals: the problem is 
clearly visible for MaxRD (Fig. 2). It is very important to notice that although the spread and 
asymmetry of the hypothetic confidence intervals for relative deviations are significant, the hypothetic 
confidence intervals for the first and second priority ratio i.e. 

]041.0,0209.0[1v , ]0837.0,0427.0[2 v , 

established with the application of MRD do not encompass the ‘true’ values of the first and second 
priority ratio which equal respectively x1=0.0625, x2=0.1042. 
 It bears mentioning that the MRD has also another very unattractive feature i.e. it can mask 
significant dispersion among particular priority ratios deviation. 

 Tab. 1: Formulae for deviations among ‘true’ and estimated vectors of priority ratios 
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 Tab. 2: Deviations among ‘true’ and estimated vectors of priority ratios 
MAD MaxAD MRD MaxRD 

0.0472 0.1028 0.3239 0.5568 
 Source: own 

 Fig. 1: Hypothetic confidence intervals for PRE set with application of MAD and MaxAD 
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 Fig. 2: Hypothetic confidence intervals for PRE set with application of MRD and MaxRD 
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 For example, let two normalized hypothetic vectors of priority ratios be given as PV(z)=[0.2262, 
0.2729, 0.1390, 0.3619], and its estimate PV(s)=[0.2143, 0.3571, 0.1429, 0.2857]. In this case PV(z) is 
the ‘true‘ priority vector in relation to which a mean relative deviation for priority ratios is calculated. In 
such a situation, one receives MRD=0.15 which seems a rather small relative deviation. However, as 
can be noticed, singular relative deviations (SRD) among priority ratios within PV(z) and PV(s) equal, 
respectively SRD=[0.0527, 0.3087, 0.0280, 0.2106], and are highly divergent. In consequence, a 
reversal of priority ratios ranking is noted i.e. PV(z)={3, 2, 4, 1} and PV(s)={3, 1, 4, 2}. This is the 
exemplary situation which needs prevention, thus it is argued to withdraw relative deviations from 
further application to similar problems. 
 Nevertheless, because the above proposition is based only on a hypothetic illustrative example, it 
is thoroughly examined further in this paper in the subsection entitled ‘Examination breakthrough’ for 
more credible conclusions. 

2.2 Examination methodology 
Continuing the main stream of the research, in real AHP applications, the ‘true’ vector of priority ratios 
(in the illustrative example denoted as PV(w)) is unknown. The entire AHP concept assumes it can be 
estimated with the application of the selected prioritization technique (PT), which in classic AHP is the 
REV method described earlier in this paper. 
 As can be noticed from the earlier provided example, an estimate of the unknown PV can be more 
or less credible. In general, this credibility generally depends on the applied preference scale, PT, and 
the consistency of PCM on the basis of which the estimate of unknown PV is derived. An examination 
concerning differences between various preference scales and PTs in relation to credibility of PVs 
obtained with their application is beyond the scope of this research. However, the relation between the 
consistency of PCM and the PV estimate credibility seems particularly attractive. The examination 
proceeds with the application of Monte Carlo simulations coded and performed in Wolfram 
Mathematica Software. Taking into account the fact that Saaty’s concept of PCM consistency 
measurement was seriously questioned (see e.g. Xu et al. (2008), Grzybowski (2012), Koczkodaj & 
Szwarc (2014), Grzybowski (2016), Koczkodaj & Urban (2018)), and the credibility of REV as the PT is 
slightly undermined (see e.g. Kazibudzki (2019b), Bana e Costa & Vansnick (2008), Schoner & 
Wedley (1989), Budescu et al. (1986), Belton & Gear (1983), Johnson et al. (1979)), for the Monte 
Carlo simulations in this research, the Logarithmic Least Squares Method (LLSM) developed by 
Crawford & Williams (1980, 1985) is applied, as the oldest alternative for the REV (Formulae 9 and 
10), as well LLSM based consistency index CI(LLSM) proposed by the same authors (Formula 11), and 
examined by Aguarón & Moreno-Jimenez (2003). 
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 To properly examine the problem from the given perspective, the following simulation scenario is 
considered. It behooves to mention that its assumptions come from Grzybowski (2016) who first 
devised its framework for a similar analysis. Thus, the following steps in the scenario are considered: 

Step 1: For the assumed n, randomly generate a ‘true’ [n × 1] priority vector w=[w1,…, wn]
T and the 

corresponding ‘genuine’ PCM(w) = G(w). 
Step 2: Randomly select an element wxy for x < y of G(w), and replace it with wxyeB, where eB is a relatively 
significant error, randomly drawn (with application of uniform distribution) from the interval eB[2;4]. Errors of 
that magnitude are basically considered as relatively “significant”, see e.g. Dijkstra (2013), Grzybowski (2016). 
Step 3: For every element wij, i < j  n, other than wxy, randomly select a value eij for the relatively small error 
in accordance with the given probability distribution  (applied in equal proportions as gamma, log-normal, 
truncated normal, and uniform distribution) and replace the element wij with the element wijeij where eij is 
randomly drawn from the interval eij[0,5;1,5] with application of uniform distribution. 
Step 4: For all i, j such that i < j, round all values of wijeij of G(w) to the closest value from the selected scale. 
Step 5: Replace all elements wij for i > j of G(w) with 1/wij. The perturbed PCM(w) in Steps 2–5 denote as P(v). 
Step 6: On the basis of P(v) compute the value of the examined consistency index CI as well as the estimate 
of the vector w denoted as v derived from P(v) with application of assigned prioritization technique. Then 
calculate MaxAD1 and MaxAD2 i.e. the maximum and the second maximum absolute deviation between 
priority ratios of w and v in accordance with formula presented in Tab. 1. Save the values computed in this 
step as one record. 
Step 7: Repeat Steps 2–6 NP times. 
Step 8: Repeat the scenario NT times. 
Step 9: Save all the records as one database file. 

 The above presented simulation framework enables examination of relations between performance 
of a given consistency index and greatest deviations between a ‘true’ and estimated vector of priority 
ratios. This way it is possible to associate various values of a given consistency index with highest 
potential estimation errors for obtained priority ratios.  
 For formality, the simulation framework presented above exactly emulates steps scrutinized in the 
example provided earlier in this paper in subsection ‘Problem illustration’. All parameters of the applied 
probability distributions in the simulation framework i.e. gamma, log-normal, truncated normal, and 
uniform, are set in such a way that the expected value EV(eij)=1. In this way the simulation 
examination and its results reflect the reasonable assumption concerning human nature i.e. decision 
makers judgments are more or less deviated from optimal outcome but ‘close’ to it. 

3. Results and discussion 
For brevity it was decided to scrutinize the examination results for n=4. It behooves to mention that for 
n=3, direct interrelation between consistency indices is observed, see e.g. Bozóki & Rapcsák (2008) 
and/or Dijkstra (2013). 

3.1 Research outcome 
The simulation results are presented in Tables 3 and 4. They are based on NP=100, and NT=1000.  

Tab. 3: Distribution of MaxAD1 i.e. the maximal absolute deviations for estimated priority ratios 
in relation to performance of the consistency index CILLSM  

p–quantiles of MaxAD1 between w and v  
for i th interval of CILLSM  i i th interval  

for CILLSM  

Average 
CILLSM 

within i th 
interval 

p=0.8 p=0.9 p=0.95 p=0.98 p=0.99 

Average 
MaxAD1 
between  
w and v 

1 [0.0, 0.0202) 0.009789 0.055462 0.081919 0.123431 0.194786 0.241852 0.042064 
2 [0.0202, 0.081) 0.050333 0.083198 0.127897 0.173985 0.230384 0.266555 0.058667 
3 [0.081, 0.141) 0.109736 0.128978 0.167430 0.208885 0.257923 0.292974 0.086182 
4 [0.141, 0.201) 0.170316 0.135142 0.175823 0.215673 0.260070 0.291170 0.097059 
5 [0.201, 0.261) 0.230957 0.139692 0.181055 0.217441 0.260860 0.294106 0.100639 
6 [0.261, 0.322) 0.290961 0.148930 0.185320 0.216985 0.258141 0.293103 0.104673 
7 [0.322, 0.382) 0.351898 0.152956 0.183949 0.214520 0.257819 0.291483 0.108191 
8 [0.382, 0.442) 0.411428 0.154353 0.184168 0.216551 0.261614 0.295555 0.111088 
9 [0.442, 0.503) 0.472071 0.151550 0.181402 0.215974 0.259817 0.291782 0.111199 

10 [0.503, 0.563) 0.532404 0.150774 0.184129 0.220709 0.265578 0.302564 0.111745 
11 [0.563, 0.623) 0.591957 0.151667 0.187019 0.224346 0.271002 0.304387 0.112368 
12 [0.623, 0.684) 0.652322 0.152885 0.189522 0.229630 0.275033 0.309352 0.112625 
13 [0.684, 0.744) 0.713164 0.156414 0.196321 0.236259 0.286920 0.318705 0.114256 
14 [0.744, 0.804) 0.773112 0.159058 0.201239 0.240192 0.290268 0.326163 0.115300 
15 [0.804, 0.865) 0.833323 0.161285 0.202429 0.240903 0.290718 0.326226 0.116094 
16 [0.865, 0.925) 0.893977 0.160628 0.203376 0.242114 0.294927 0.334319 0.116101 



17 [0.925, 0.985) 0.954481 0.167689 0.210992 0.248777 0.297410 0.334572 0.119510 
18 [0.985, 1.046) 1.014420 0.171211 0.215302 0.257097 0.307838 0.342969 0.120865 
19 [1.046, 1.106) 1.075330 0.17597 0.219679 0.259016 0.312604 0.352029 0.122409 
20 [1.106, 1.166) 1.135290 0.177132 0.222577 0.262351 0.312678 0.345093 0.123456 
21 [1.166, 1.226) 1.194820 0.183751 0.229224 0.270164 0.324909 0.374050 0.128275 
22 [1.226, 1.287) 1.256030 0.179100 0.228531 0.269188 0.317348 0.356733 0.125110 
23 [1.287, 1.347) 1.316700 0.184083 0.229390 0.271408 0.324651 0.369775 0.128810 
24 [1.347, 1.407) 1.376290 0.192343 0.237683 0.275558 0.337192 0.369280 0.131952 
25 [1.407, 1.468) 1.437290 0.193035 0.244625 0.285832 0.336465 0.377465 0.133709 
26 [1.468, 1.528) 1.497320 0.199676 0.241012 0.285629 0.345064 0.388863 0.136678 
27 [1.528, 1.588) 1.557600 0.197001 0.245495 0.291895 0.348678 0.381236 0.134634 
28 [1.588, 1.649) 1.618450 0.202120 0.252202 0.299193 0.359296 0.400384 0.138595 
29 [1.649, 1.709) 1.678350 0.198996 0.242366 0.282109 0.342629 0.387303 0.140573 
30 [1.709, oo) 2.494600 0.241975 0.296090 0.340766 0.392593 0.431660 0.164883 

The results were generated for n=4 on the basis of the presented simulation framework. The outcome is based on 100,000 
perturbed reciprocal PCMs. The simulation scenario assumed LLSM as the PT and Saaty’s preference scale. 

 Source: own 

Tab. 4: Distribution of MaxAD2 i.e. the second maximal absolute deviations for estimated 
priority ratios in relation to performance of the consistency index CILLSM 

p–quantiles of MaxAD2 between w and v  
for i th interval of CILLSM  i i th interval  

for CILLSM  

Average 
CILLSM 

within i th 
interval 

p=0.8 p=0.9 p=0.95 p=0.98 p=0.99 

Average 
MaxAD2 
between  
w and v 

1 [0.0, 0.0202) 0.009789 0.038698 0.055876 0.083513 0.133809 0.169246 0.029146 
2 [0.0202, 0.081) 0.050333 0.057643 0.088766 0.122063 0.164735 0.193358 0.041093 
3 [0.081, 0.141) 0.109736 0.089991 0.119558 0.150579 0.190940 0.218659 0.060380 
4 [0.141, 0.201) 0.170316 0.095839 0.124312 0.156293 0.196901 0.224054 0.067589 
5 [0.201, 0.261) 0.230957 0.097189 0.128856 0.160173 0.198844 0.223367 0.070123 
6 [0.261, 0.322) 0.290961 0.102280 0.134651 0.163703 0.197659 0.221966 0.073105 
7 [0.322, 0.382) 0.351898 0.107486 0.136816 0.163401 0.195838 0.224857 0.075819 
8 [0.382, 0.442) 0.411428 0.109694 0.137829 0.163587 0.199636 0.226573 0.077957 
9 [0.442, 0.503) 0.472071 0.107667 0.134538 0.158997 0.196299 0.224823 0.077769 

10 [0.503, 0.563) 0.532404 0.107582 0.135338 0.163117 0.205157 0.234390 0.078694 
11 [0.563, 0.623) 0.591957 0.107866 0.135928 0.166899 0.206786 0.235808 0.079149 
12 [0.623, 0.684) 0.652322 0.108464 0.138907 0.172721 0.214684 0.245777 0.079735 
13 [0.684, 0.744) 0.713164 0.111545 0.143986 0.176468 0.223528 0.254954 0.081337 
14 [0.744, 0.804) 0.773112 0.114840 0.145797 0.179305 0.225435 0.256358 0.082506 
15 [0.804, 0.865) 0.833323 0.115525 0.149092 0.183596 0.226972 0.259410 0.083318 
16 [0.865, 0.925) 0.893977 0.116169 0.149262 0.185559 0.229245 0.259710 0.083580 
17 [0.925, 0.985) 0.954481 0.120943 0.154683 0.188189 0.229371 0.261401 0.085939 
18 [0.985, 1.046) 1.014420 0.123626 0.158677 0.196483 0.240583 0.274190 0.087317 
19 [1.046, 1.106) 1.075330 0.127007 0.161803 0.199002 0.242274 0.279624 0.088264 
20 [1.106, 1.166) 1.135290 0.128787 0.164871 0.201893 0.241767 0.271120 0.089477 
21 [1.166, 1.226) 1.194820 0.131613 0.169470 0.207377 0.248484 0.280735 0.092908 
22 [1.226, 1.287) 1.256030 0.130773 0.169210 0.203081 0.254839 0.290318 0.090748 
23 [1.287, 1.347) 1.316700 0.134761 0.174324 0.208774 0.259249 0.293702 0.094481 
24 [1.347, 1.407) 1.376290 0.140588 0.182656 0.218515 0.262003 0.296059 0.097091 
25 [1.407, 1.468) 1.437290 0.139425 0.180701 0.218145 0.266967 0.305932 0.096661 
26 [1.468, 1.528) 1.497320 0.143491 0.183022 0.220029 0.266648 0.313635 0.099192 
27 [1.528, 1.588) 1.557600 0.141067 0.183644 0.222224 0.274634 0.306337 0.098174 
28 [1.588, 1.649) 1.618450 0.146120 0.191419 0.232781 0.279342 0.307745 0.101508 
29 [1.649, 1.709) 1.678350 0.148991 0.187539 0.221236 0.266810 0.290851 0.102900 
30 [1.709, oo) 2.494600 0.180353 0.228782 0.271082 0.321884 0.359723 0.122037 

The results were generated for n=4 on the basis of the presented simulation framework. The outcome is based on 100,000 
perturbed reciprocal PCMs. The simulation scenario assumed LLSM as the PT and Saaty’s preference scale. 

 Source: own 

3.2 Examination contribution 
Having the empirical distribution of maximal absolute deviations between ‘true‘ and estimated priority 
vectors, the empirical confidence intervals for particular priority ratios can be established e.g. with the 
application of ‘average maximum absolute deviation’ established during simulations. On the basis of 



selected statistics, the credibility of the priority vector can also be designated with the selected rank of 
a quantile. Thus, one can expect a confidence interval with an average level of certainty for maximal 
absolute deviation when the average maximum absolute deviation is applied. In addition, one can 
expect a confidence interval noted by the rank of the quantile, when quantiles of maximum absolute 
deviations are applied. Noticeably, confidence intervals established on the basis of quantiles will be 
slightly exaggerated because the maximum absolute deviation among given priority ratios within two 
priority vectors cannot repeat itself (remaining deviations must be smaller). That is why another 
approach is proposed. 
 Noticeable, in multicriteria decision making processes, a decision maker (DM) is usually interested 
in the most attractive alternative. So, the probability of the highly ranked alternative reversal is of great 
importance. Thus, it is proposed to apply a maximum absolute deviation and the second maximum 
absolute deviation for examination, if the risk of rank reversal for the first two alternatives exists, and 
for examination purposes, how high the risk is.  
 To exemplify, the following hypothetic normalized vector of priority ratios is considered: 
PV(v)=[0.62, 0.24, 0.1, 0.04]. The PV(v) designates the following ranks for evaluated options: 

4321 AAAA  . It is assumed that the PV(v) was derived from the PCM for which CI(LLSM)= 

0.109736. In this case, a decision maker may wonder about the probability of the highly ranked option 
reversal. In light of the research outcome, the answer for this inquiry depends on the level of certainty 
assumed by a decision maker. 
 When this level equals 95%, then the 0.95-quantile of the maximum absolute deviation distribution 
for CI(LLSM)=0.109736 equals 0.208885 (Tab. 3), and 0.95-quantile of the second maximal absolute 
deviation distribution equals 0.150579. Thus, if a difference between the first two priority ratios of the 
hypothetic PV(v) is higher than 0.150579+0.208885 i.e. 0.359464 (and that difference is 0.62–
0.24=0.38) then with 95% certainty it can be assumed that the highly ranked option is the most 
preferred option despite the judgment inconsistency and errors it entails for the vectors of priority 
ratios estimates. 
 However, assuming the same level of PCM consistency but a higher level of certainty e.g. 98%, a 
decision maker cannot assume that the first alternative will remain the highly ranked option despite the 
judgments inconsistency. It is so because the 0.98-quantile of the maximum absolute deviation 
distribution for CI(LLSM)= 0.109736 equals 0.257923 (Tab. 3) and 0.98-quantile of the second maximal 
absolute deviation distribution equals 0.19094. In this case 0.19094+0.257923=0.448863 what is more 
than 0.38 and that means a decision maker cannot assume with 98% certainty that the two highly 
ranked alternatives cannot change their rankings. 
 Concluding, for the first time ever, it becomes possible to credibly and accurately relate a level of 
PCM consistency with priority vector credibility derived from inconsistent pairwise judgments, 
especially from the viewpoint of potential rank reversal of the first two highest ranked alternatives. For 
similar calculations but concerning a different number of alternatives, similar data can be elaborated 
and utilized. Exemplary data for three, five and six alternatives is presented in the appendix to this 
research paper. 

3.3 Examination breakthrough 
Having in mind that a consistency index for the PCM denoting group preferences cannot be greater 
than the consistency index of the most inconsistent individual PCM (see e.g. Liu, Zhang and Wang 
(2012); Grošelj and Stirn (2012); Escobar, Aguarón and Moreno-Jimenez (2004); Xu (2000)), it finally 
also becomes possible to designate priority vector credibility for the group on the basis of the most 
inconsistent individual PCM.  
 In this case it is simply suggested to take the most inconsistent individual PCM and designate on 
its basis (its consistency index) the possible priority ratios deviations. Then, the following steps are 
recommended: (a) calculate the PCM for the group on the basis of individual PCMs with application of 
the weighted geometric mean procedure presented earlier in this paper (individual judgments of 
decision makers are raised to their voting power and the group outcome is established on the basis of 
the weighted geometric mean for individual judgments); (b) compute a group priority vector, on the 
basis of the PCM established for the group, with application of e.g. LLSM; (c) apply earlier established 
priority ratios deviations of the most inconsistent individual PCM to the vector of priority ratios 
established for the group. In the case of the entire AHP framework, proceed similarly as during 
standard AHP weighing and adding procedure – weigh (by criteria and sub-criteria) and add either 
priority vectors and consistency indices of the most inconsistent individual PCMs and transfer 
designated deviations to the final priority vector in the way described above. 
 Now, why is the application of maximum absolute deviations among priority ratios suggested 
instead of average deviations? In the subsection entitled ‘Examination methodology’, it was 
emphasized that only a few papers dealt in depth with the problem concerning the relation between 



the level of pairwise judgments (in)consistency and the degree of possible estimation errors for 
established priority vector. As mentioned then, that research examined only average estimation errors 
within particular priority vectors which makes those results questionable, especially when relative 
measures for estimation errors are considered. These issues will be scrutinized briefly now. 
 The simulation framework presented in subsection ‘Examination methodology’ was applied to 
evaluate if average measures for estimation errors can be used. Instead of maximal absolute 
deviations calculated in Step 6, the average absolute deviations among absolute deviations and the 
mean absolute deviations – AD(MAD) (Formula 12), and the average absolute deviations among 
relative deviations and the mean relative deviations – AD(MRD) (Formula 13) were computed. 
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 An examination of the above deviations designated by Formulae 12 and 13 within the simulation 
framework presented in subsection ‘Examination methodology’ enables discovery whether single 
deviations between estimated and ‘true’ specific priority ratios are close to the average deviation 
between estimated and ‘true’ vector of priority ratios. If that was the case, both examined measures 
i.e. AD(MAD) and AD(MRD) should be close to zero and their performance should not depend on 
values of the examined consistency index. Figures 3 and 4, which present selected relations between 
AD(MAD) or AD(MRD) and CI(LLSM) clearly contradict the above assumption about single deviations 
between estimated and ‘true’ specific priority ratios i.e. single deviations are not close to the average 
deviation between estimated and ‘true’ priority vector but they fluctuate. 
 It means that one can expect strong variability among single priority ratios deviations within a given 
priority vector. Thus, a mean deviation between the ‘true’ and the estimated priority vector should not 
be considered as a good indicator of possible estimation errors, because the single deviations are not 
close to the mean deviation calculated for the entire priority vector.  
 To illustrate, the following hypothetic situation is presented as an example. Let PV(w)=[0.2262, 
0.2729, 0.1390, 0.3619] denotes the ‘true’ vector of the priority ratios and PV(v)=[0.2143, 0.3571, 
0.1429, 0.2857] denotes the estimated vector of priority ratios. Mean relative and absolute deviations 
for those vectors equal MRD=0.15 and MAD=0.0441, respectively. At the same time single relative 
and absolute deviations among specific priority ratios fluctuate from 0.028 to 0.3087 in the case of 
MRD, and from 0.0039 to 0.0842 in the case of MAD. Thus, taking the MRD as the example, one 
could expect the average relative deviation at the level of 15% while its single value can fluctuate from 
around 3% to around 31%. This is why mean deviations (especially relative ones) are not good 
indicators of possible estimation errors for priority vectors and should not be taken into consideration 
during further research. 

Conclusions 
The scope of the research concerns issues associated with group decision making (GDM) as the most 
challenging process which entails various viewpoints and preferences of individuals that must be taken 
into consideration and somehow combined into one meaningful outcome. 
 When group decision making process was taken into consideration, the AHP seemed a particularly 
attractive methodology to examine the process. Although the methodology has been evaluated 
numerous times from the perspective of its effectiveness and applicability in GDM processes, a 
research gap has been identified and examined in this research paper. The impact of which 
inconsistency of judgments makes on confidence about priority ratios (PRs) of the priority vector (PV) 
established for a group of decision makers (DMs) has been studied. Although individual relations have 
been studied, examination results generalize to the synthesized pairwise comparison matrix (SPCM) 
that is obtained on the basis of individual pairwise comparison matrices for all group members. 
 The relation between the consistency of PCM and the PV estimate credibility has been thoroughly 
examined. The examination process has proceeded with the application of Monte Carlo simulations 
coded and executed in Wolfram Mathematica Software. To properly examine the problem, a 
sophisticated simulation algorithm has been elaborated and applied. 
 Having in mind that a consistency index for the PCM denoting group preferences cannot be greater 
than the consistency index of the most inconsistent individual PCM, it became possible to designate 
the credibility of the preference vector for the group on the basis of the most inconsistent individual 
PCM. The examination’s conclusion is based on the fundamental assumption that individual 



judgments of decision makers are raised to their voting power and the group outcome is established 
on the basis of their individual judgments i.e. the weighted geometric mean is formed. Then, and only 
then, the credibility of the group outcome can be designated with the application of the consistency 
index of the most inconsistent individual PCM. 
 It is emphasized that thus far only few papers have dealt with the problem concerning the relation 
between the level of the pairwise judgments (in)consistency and the size of possible estimation errors 
for established vector of priority ratios. However, the outcome of those papers is limited because those 
research efforts examined only average estimation errors within particular priority vectors which made 
those results less accurate as compared to this research paper, especially when relative measures for 
estimation errors were applied. This research paper overcomes limitations of those other examinations 
which distinguishes it from other papers and emphasizes its novelty. 
 Certainly, there is a place for further examinations in the research area e.g. other consistency 
indices and other prioritization techniques can be studied from the perspective of this research effort’s 
objectives to enhance its findings and broaden its methodological implications. 
 

Fig. 3: Performance of CI(LLSM) in relation to AD(MAD) and AD(MRD). Plots are based on 18,000 
random reciprocal PCMs for n=3. The results are generated with application of LLSM as the PT and 
Saaty’s preference scale. Plot |A| presents the relation among CI(LLSM) and 0.95-quantile of AD(MAD). 
Plot |B| presents the relation between CI(LLSM) and a mean AD(MRD). 
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Fig. 4: Performance of CI(LLSM) in relation to AD(MAD) and AD(MRD). Plots are based on 18.000 
random reciprocal PCMs for n=6. The results are generated with application of LLSM as the PT and 
Saaty’s preference scale. Plot |A| presents the relation between CI(LLSM) and 0.95-quantile of 
AD(MAD). Plot |B| presents the relation among CI(LLSM) and a mean AD(MRD). 
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Abstract 
 
Pairwise Judgments Consistency Impact on Quality of Multi-Criteria Group Decision-Making with AHP 
 
Pawel Tadeusz Kazibudzki, Jiři Křupka 
 
The scope of this research encompasses issues associated with group decision making (GDM) as the 
most challenging process which entails various viewpoints and preferences of individuals that must be 
taken into consideration and somehow combined into one meaningful outcome. When GDM is taken 
into consideration, the AHP seems to be a particularly attractive methodology. From the perspective of 
its applications, an existing research gap has been identified and examined in this research paper. 
Thus, the inconsistency of judgments impact on priority vector quality has been examined from the 
perspective of group decision making. Examination results generalize to the synthesized pairwise 
comparison matrix that is obtained on the basis of individual pairwise comparison matrices for all 
group members. The examination process has proceeded with the application of Monte Carlo 
simulations coded and executed in Wolfram Mathematica Software. Having in mind that a consistency 
index for the PCM denoting group preferences cannot be greater than the consistency index of the 
most inconsistent individual PCM it became possible to designate the credibility of the priority vector 
for the group on the basis of the most inconsistent individual PCM. It is emphasized that thus far only a 
few papers have dealt with the problem concerning the relation between a level of the pairwise 
judgments inconsistency and the degree of possible estimation errors for established vector of priority 
ratios. This research paper overcomes limitations of other examinations which distinguishes it from 
other papers and emphasizes its novelty. 
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