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Abstract—The paper describes an approach to the robot 
manipulator control based on a compensation of non-linear 
gravity terms and inertial terms in the robot motion equations 
and applying the PD or PID-type control law. While benefits of 
the compensation of the gravity force effects are well known, 
the inertial effects compensation, which seems to be more 
difficult to implement, brings additional enhancement of the 
control quality. An approximate compensation can be carried 
out in a relatively simple and efficient way, if the robot 
dynamics is represented by a mass-point model. The remaining 
influences can be treated as disturbances. Unlike the inverse 
dynamics approach, complete and precise mathematical model 
of the robot is not needed, which is an important advantage, 
since models of robots containing more than three links are 
usually very complex and difficult to obtain.  
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I. INTRODUCTION 
From the control perspective, robot manipulators are 

multi-dimensional non-linear dynamic systems. Although the 
influence of non-linear terms in the motion equations is 
partially suppressed by using gears in the actuators, 
especially in the case of light-weight, high-velocity robot 
arms for manipulating purposes, the non-linear terms in the 
robot motion equations cannot be neglected to achieve 
optimal performance. 

In this paper the problem of motion control in the robot 
joint space is discussed. The position in the joint space is 
described by a n-dimensional vector of joint coordinates. It is 
assumed that the trajectory of the end point of the effector 
defined in the robot operational space is transformed into the 
robot joint space by the algorithm of inverse kinematics [1,2] 
before the motion task is performed. The motion control 
layer then works with the information about the robot joint 
positions and velocities.  

There exist more approaches to the design of the robot 
manipulator feedback control system. A comprehensive 
overview can be found in [3]. The simplest approach, 
suitable only for low-velocity motions, works with the 
actuators as with velocity generators and the effects of the 
robot dynamics are considered as unknown disturbances. The 
feedback control then can be based on common PI or PID 
controllers. To enhance the performance, cascade 
configuration with additional velocity or even acceleration 
feedback can be used [1]. If a partial knowledge of the robot 
mathematical model is available, additional enhancement can 
be achieved by a partial compensation of the disturbances 
corresponding to non-linear terms in the robot motion 
equations [1].  

More advanced robot control architectures consider 
actuators as torque generators [1-3]. This approach is utilized 
in centralized control systems, viewing the robot dynamics in 
full complexity as a high-order, coupled and non-linear one. 
The centralized methods utilize special features of the robot 
dynamics. In particular, the inverse dynamics method 
transforms the controller design problem into a decoupled 
linear one by means of additional interior loop. However, 
applicability of this approach depends on precision of the 
robot mathematical model, which often cannot be guaranteed 
due to unknown influences, such as backslashes and 
flexibilities in the gears or saturations of the action forces. 
Therefore, practical usability usually requires some 
extensions, guaranteeing at least closed-loop stability [1].  

An alternative approach to non-linear robot control 
utilizes multivariable PID-type controllers, where the 
controller parameters are represented by square gain 
matrices. If the gravity effects are perfectly compensated, it 
has been shown that globally asymptotically stable position 
regulation can be realized by the PD-type controller if the 
controller gain matrices are positive definite [1-5]. 
Analogous results in the case of the PID controller under 
certain conditions were obtained in [6].  

A goal of this paper is to point out to the fact that besides 
the gravity effects, it is relatively easy to express and 
compute inertial terms in the robot motion equations. This 
additional knowledge can be used to further enhance the 
closed-loop behaviour in the case of multivariable PD or 
PID-type controllers. The remaining part of the robot 
dynamic model, which is evaluated in a more difficult and 
computationally more demanding way, plays the role of a 
disturbance and is suppressed by the feedback control loop.  

II. THE ROBOT MATHEMATICAL MODEL 
The mathematical model of a robot arm consisting of n  

links in an open kinematic chain and moving freely in the 
operation space can be considered in the form [1-3] 

      ,  B q q C q q q g q τ    

where q  is the vector of joint positions and τ  the vector of 
total generalized force effects of actuators. If K  and P  
denote the total kinetic and potential energy, respectively, 
  2 2/K  B q q  is a positive definite position-dependent 

inertia matrix,  
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2
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C q q q q
q q q
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 



is a non-linear term corresponding to the effects of 
centrifugal and Coriolis forces and   /P  g q q  is the 
vector function corresponding to the gravity-force effects. If 
we assume only electrical DC actuators, by neglecting the 
winding inductance and mechanical friction in the actuator,  

 u v M K u K ω  

can be considered, where M  is the vector of motor output 
torques, u  the input voltages, ω  the vector of motor angular 
velocities and 0u K , 0v K  constant diagonal matrices. 
In principle, (3) allows using the motors as velocity 
generators, where the connected load is represented as a 
disturbance. Alternatively, the motor can play the role of a 
torque generator, where the term vK ω , corresponding to 
induced voltage in winding, is considered as electromagnetic 
friction. In this case, the motor is usually equipped with inner 
current feedback, which reduces the term vK ω  and protects 
from overload [1]. 

 The total force effects of the actuator then depends on u  
as follows:    

  r u v  τ K K u K ω Dq  

where 0r K  and 0D  are diagonal matrices. The term 
Dq  corresponds to viscous friction in bearings and gears 
and rK  is the mechanical gear ratio. Coulomb friction is not 
taken into account. Since 1

r
q K ω  by definition of rK ,  

 r u r τ K K u D q  

where 0r r v r  D K K K D . The equation (1) can be then 
rewritten into the form  

      ,  B q q C q q q g q Ku    

where r uK K K  and    , , r C q q C q q D   .  

III. THE ROBOT CONTROL WITH COMPENSATION OF GRAVITY 
AND INERTIAL EFFECTS 

One basic approach to the PID control of robots [1] 
utilizes partial knowledge of the inertia matrix  B q , which 
is decomposed as  

      B q B B q  

where B  is a constant diagonal positive definite matrix, 
corresponding to approximate average inertial effects on 
individual axes. The linear decentralized model for the 
controller design is then in the form 

 r  Bq D q Ku d   

where  

      ,   d B q q C q q q g q    

is considered as the disturbance. Since the dynamic model 
(8) without the disturbance is decoupled, each robot axis can 
be controlled separately from the others by its own PID 
controller. The control performance can be enhanced by 
computing the term  g q  in real time and adding it to the 
control input. However, omitting the other non-linear terms 
in the robot model leaves slow modes in the response, so the 
control performance need not be satisfactory in the case of 
fast motions.  

 If the inertia matrix  B q  can be computed in real time 
as well, its knowledge can be utilized to improve the control 
performance in the way proposed below. The model (8) is 
replaced by    

    B q q Ku d  

where   

      , d C q q q g q   .  

Let dq  denote the desired value of q  and d e q q . 
Consider the control action in the form   

      0 1  Ku B q R e R e g q  

where the square matrices 0R  and 1R  are symmetric and 
positive definite. The corresponding control system structure 
is displayed in Fig. 1.  

 

 

Fig. 1. The robot motion control system with the PD-type controller and 
compensation of  g q  and  B q  

 

 If 0d q  is assumed, which corresponds to the position 
regulation problem, the error dynamics is expressed as  
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which is equivalent to  
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If we use the Lyapunov function candidate   
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the time derivative of  ,V e e  along a trajectory of (13) 
equals  
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It is possible to use the assumption that  , mCC q q q   

and  1
mB B q , where 0mC   and 0mB   are known 

constants [3]. Since  q e   if d q 0   
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By choosing the elements of 1 0R  sufficiently large it is 
possible to ensure that there exists a region n nR R   
containing the origin such that  , 0V e e   on  . 
Consequently, the error dynamics (13) is stable in the origin. 
Further,  , 0V e e   implies e 0  and (13) then yields 

0 R e 0 , so  te  converges to zero by LaSalle's theorem 
[7,8].  

 Since the described compensation of the terms  g q  and 

 B q  usually cannot be precise, in real situations the 
controller containing integrating component 

   0 1 1
0

t

dt

 
   

 
v B q R e R e R e  

will have to be used, where 1 0 R . Alternatively, to 
eliminate the modeling errors, adaptive approach can be 
utilized, as proposed e.g. in [10]. Although it seems that the 
analysis above cannot be directly extended for the controller 
(17), it can be expected that if 1R  is chosen sufficiently low 
with respect to 0R  and 1R , stability will be preserved. The 
modeling errors of  B q  have no influence on precision of 
achieving the target positions, but affect the control 
performance. Nevertheless, it can be easily seen from (16) 
that even in the cases of imperfect modeling of  B q  the 
convergence of  te  to zero can be achieved by choosing 
elements of 1R  sufficiently large. 

 

IV. COMPUTATION OF  B q  AND  g q  

The described approach to robot control relies on 
computation of the terms  B q  and  g q  in (6) in real time. 
If the PID controller (17) is used, these terms can be 
computed from an approximate mathematical model of a 
robot. Precise mathematical model is often not available. 
Especially for robot manipulators with more than three links 
the model is usually very complex and even real-time 
evaluation of  B q  and  g q  can be a problem, although 
efficient algorithms based on Newton-Euler formulation of 
the robot dynamics have been proposed in literature [9,1].  

In many cases a simplified model can be obtained by 
replacing the robot links by a set of mass points. Assume that 
k-th link contains the points 1 ,,...,

kk k np p  with the weights 

1 ,,...,
kk k nm m , where the positions kjp  are defined in the k-th 

link coordinate frame. In ideal situation, the points are 
chosen so that 

1
kn

kjj
m

 equals the k-th link weight and 

1
kn l

kj kjj
m x

 , 
1

kn l
kj kjj

m y
  and 

1
kn l

kj kjj
m z

  for 1, 2l   
correspond to the first and second-order moments of the k-th 
link.  

If kr  denotes the position of the k-th link origin in the 
 1k  -th link coordinate frame and kT  the 3 3  orthogonal 
rotation matrix of the k-th link with respect to the  1k  -th 

link, the position of kjp  with respect to the  1k  -th link 
frame is expressed as  

 1k
kj k k kj
  p r T p  

Depending on the link type, some components of kr  and kT  
are constant, the others depend on the k-th generalized 
coordinate kq . Applying (18) recursively it is possible to 
obtain the positions kjp  in any i-th link coordinate frame, 
where i k . In general,          

 1i i
kj i i kj
  p r Tp  k

kj kjp p  

The positions with respect to the base frame are denoted 0
kjp  

in (19).  

 For the purposes below it is advantageous to replace the 
backward recursive computation of 0

kjp . Define 0
kO  the 

origin of the k-th link with respect to the base frame. Then by 
using (19) it is possible to obtain  

 0 0
0,kj k k kj p O T p  

where 0, 1 2 ...k kT TT T , 0,0 T I  and  

 0 0
1 0, 1k k k k  O O T r  



 If 0
kjp  are known in dependence on 1,..., kq q , it is 

possible to express the arm potential and kinetic energy:   

   0

1 1
0,0,
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c kj kj
k j

P g m
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  p  

where cg  denotes the gravity constant. The term  g q  then 
can be obtained directly from   

    
0

1 1
0,0,
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g m
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 

Further, since  
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 B q  can be obtained as   
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1 1

k
T
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 

To compute  g q  and  B q  using (23) and (25) it is needed 
to evaluate the Jacobians 0 /kj p q . From (20)-(21) it follows 
that   


0 0

0,kj kk
kj

i i iq q q
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 
  

p TO
p   
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The equations (26)-(28) can be used for efficient 
computation of  g q  and  B q  from (23), (25). Note that 

/ 0k iq  T  and / 0k iq  r  if i k . The value of 
/k kq T  can be easily computed analytically, depending on 

the type of movement. In particular, if the k-th link rotates 
around the z-axis of the  1k  -th link frame,   


cos sin 0
sin cos 0
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q q
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 

T
 

V. SIMULATION RESULTS  
Consider the 5-DOF robot arm mass-point model in Fig. 2, 
where  , , , , T    q  is the vector of generalized 
coordinates, which uniquely describes the robot joint 
position. For simplicity, each link is represented only by 
single mass point. This seems to be sufficient for a 
demonstration here, although in real cases usually more 
points would be needed. The rotation around the last link 
axis in Fig. 2 was not considered, because it has no effect on 
the robot dynamics.     

 

Fig. 2. The 5-DOF robot approximate model  

 

The chosen values of the robot mechanical parameters are 
listed in Tab. 1.  

TABLE I.  THE ROBOT MECHANICAL PARAMETERS  

Parameter Value Unit 

1l  0.5  m  

2l  0.5  m  

3l  0.4  m  

4l  0.1  m  

5l  0.3  m  
e  0.2  m  

1m  2  kg  

2m  1  kg  

3m  1  kg  

4m  0.3  kg  

5m  0.7  kg  
 

The terms of the diagonal matrices , ,u v rK K K  in (5) were 
chosen as 1uiiK  , 0viiK  , 10riiK   and 
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 2 diag 2,1,1,1,1 D . The joint initial and target positions 
are chosen as   

 0 , 2, ,0,
2 3

T     
q 

1 1, , , ,0
2 2 10

T

f
     

q  

 First, the joint reference trajectory is chosen in the form 
of step function, which can be viewed as the worst-case 
situation, since the robot will usually track a continuous 
trajectory. Figure 3 shows the histories of the robot joint 
positions in the case of the PD controller with compensation 
of  g q  for 0 10R I  and 1 R I . Figure 4 shows the 
histories obtained for the enhanced controller with 
compensation of both  g q  and  B q  for the same values 
of 0R  and 1R . It can be seen that the compensation of 
 B q  helped to speed up overall response and to suppress 

oscillations.  

 Figures 5 and 6 show the histories obtained for the same 
controller settings, but in the case of tracking the ramp-like  
reference trajectory  

    0 0 min ,1di i fi i
f

tq t q q q
t

      
  

   

with the same initial and target positions (31) as in the 
previous case. The time parameter ft  in (32) was chosen as 

1.5ft s . Although the reference trajectory is continuous, 
slight oscillations are visible. Faster responses that enable 
more precise reference tracking, but at the cost of larger 
magnitude of the control variable, can be achieved by using 
larger values of 0R  and 1R . Fig. 7 shows the ramp 
responses in the case of full compensation with 0 100R I  
and 1 10R I .  

 Finally, Fig. 8 shows the histories analogous to Fig. 6, 
but in the case of the PID-type controller (17), where 

0 10R I , 1 R I  and 1 20 R I . The histories in Fig. 8 are 
somewhat less damped than in Fig. 6, but for lower values of  

1R  the differences are negligible.   
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Fig. 3. The joint step responses - PD controller with compensation of 
 g q , 0 10R I  and 1 R I      

P
os

iti
on

 (r
ad

)

 

Fig. 4. The joint step responses - PD controller with compensation of 
 g q  and  B q , 0 10R I  and 1 R I      
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Fig. 5. The ramp responses - PD controller with compensation of  g q , 

0 10R I  and 1 R I  
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Fig. 6. The ramp responses - PD controller with compensation of  g q  

and  B q , 0 10R I  and 1 R I  

     

Fig. 7. The ramp responses - PD controller with compensation of  g q  

and  B q , 0 100R I  and 1 10R I      

 

Fig. 8. The ramp responses - PID controller with compensation of  g q  

and  B q , 0 10R I , 1 R I  and 1 20 R I      

VI. CONCLUSIONS 
 In the paper an approach to the robot manipulator control 
based on a compensation of the non-linear gravity and 

inertial terms in the robot motion equations was described. 
Although the gravity compensation is sufficient for global 
asymptotic stability of the control error in the case of the PD-
type control law, additional compensation of the inertial 
effects enables to obtain overall faster and more damped 
responses for given magnitude level of the control variable. 
In comparison to the inverse dynamics approach, complete 
and precise mathematical model of the robot is not needed. 
Stability and convergence of the position error to zero for 

0 0R  and sufficiently large 1 0R  has been proven for 
the position regulation problem, i.e. in the case of tracking 
the step-wise reference trajectory.  

 An important aspect of this approach is the way how the 
terms  B q  and  g q  in (6) are efficiently computed in real 
time, which is discussed in this paper as well. For the 
purposes discussed here it seems that a simplified model 
obtained by replacing the robot links by a set of mass points 
is suitable. Since the robot model is usually not precise, the 
terms  B q  and  g q  can be determined only 
approximately, so the PID-type controller (17) has to be used 
instead of the PD controller. The I-component makes the 
responses slower and less damped, but since the integrating 
term role consists mainly in the compensation of modeling 
errors, the values of 1R  in (17) can be set relatively low. In 
such cases it can be expected that the responses with the PID 
controller (17) are not much different from the PD controller 
case and this fact was also demonstrated by simulations.  
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