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Abstract. In herein presented work, the rela-
tion between number of ES iterations and con-
vergence of the whole GPA-ES hybrid algorithm
will be studied due to increasing needs to ana-
lyze and model large data sets. Evolutionary al-
gorithms are applicable in the areas which are
not covered by other arti�cial intelligence or soft
computing techniques like neural networks and
deep learning like search of algebraic model of
data. The di�erence between time and algorith-
mic complexity will be also mentioned as well
as the problems of multitasking implementation
of GPA, where external in�uences complicate
increasing of GPA e�ciency via Pseudo Ran-
dom Number Generator (PRNG) choice opti-
mization.

Hybrid evolutionary algorithms like GPA-ES
uses GPA for solution structure development
and Evolutionary Strategy (ES) for parameters
identi�cation are controlled by many parame-
ters. The most signi�cant are sizes of GPA pop-
ulation and sizes of ES populations related to
each particular individual in GPA population.
There is also limit of ES algorithm evolution-
ary cycles. This limit plays two contradictory
roles. On one side bigger number of ES itera-
tions means less chance to omit good solution for
wrongly identi�ed parameters, on the opposite
side large number of ES iterations signi�cantly
increases computational time and thus limits ap-
plication domain of GPA-ES algorithm.
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1. Introduction

Increasing amount of data to be processed
forces needs for improving e�ciency of exist-
ing algorithms. While arti�cial neural networks
and deep learning technology can be reasoned
rather as data representation or interpolation,
recall and approximation tool, evolutionary al-
gorithms are capable to transform data into
models which can be understood and analyzed
by humans, searched for optima, and solved
many next tasks on the base of training data. In
the area of model development by evolutionary
algorithms called symbolic regression, Genetic
Programming Algorithms (GPA), Analytic Pro-
gramming [1] and related techniques are used.

Hybrid evolutionary algorithms like GPA-ES
[2] uses GPA for solution structure development
and Evolutionary Strategy (ES) for parameters
identi�cation are controlled by many parame-
ters. The most signi�cant are sizes of GPA pop-
ulation and sizes of ES populations related to
each particular individual in GPA population.
There is also limit of ES algorithm evolution-
ary cycles. This limit plays two contradictory
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roles. On one side bigger number of ES itera-
tions means less chance to omit good solution
for wrongly identi�ed parameters [3] and it was
the main idea of GPA-ES hybrid algorithm de-
velopment. On the opposite side large number
of ES iterations signi�cantly increases computa-
tional time and thus limits application domain
of GPA-ES algorithm.

In this study, the relation between number
of ES iterations and convergence of the whole
GPA-ES hybrid algorithm will be studied. The
di�erence between time and algorithmic com-
plexity will be also mentioned as well as the
problems of multitask and multithread imple-
mentation of GPA as algorithms where exter-
nal in�uences complicates increasing of GPA ef-
�ciency via Pseudo Random Number Generator
(PRNG) choice optimization.

2. Hybrid GPA-ES

algorithm

GPA-ES hybrid algorithm combines GPA algo-
rithm for solution structure development and
ES algorithm for optimization of parameters of
each individual in GPA population. Such de-
sign of evolutionary algorithm prevents situa-
tions when good structure solution (e.g. well
composed equation) but with wrongly estimated
constants (coe�cient) is eliminated from popu-
lation and replaced by individual of worse struc-
ture but better �tted constants, which has worse
evolutionary potential.

Algorithm 1. Studied GPA algorithm.

1) FOR ALL individuals DO Initialize() END
FOR;

2) FOR ALL individuals DO Evaluate()⇒ �t-
ness END FOR;

3) Sort(individuals);

4) IF Terminal_condition() THEN STOP
END IF;

5) FOR ALL individuals DO

SELECT Rand() OF

CASE a DO Mutate()⇒ new_individuals;
CASE b DO Symmetric_crossover() ⇒
new_individuals;
CASE c DO One_point_crossover() ⇒
new_individuals;
CASE d DO Re-gerating() ⇒
new_individuals;
END SELECT;
END FOR;

6) FOR ALL individuals DO

New ES_algorithm_object;

//for each GPA individual new independent
parameter optimizer is created

FOR ALL ES_individuals DO Initial-
ize()END;
evaluate() ⇒ ES_�tness
FOR ALL ES_cycles DO
FOR ALL ES_individuals DO
Evaluate ⇒ ES_�tness
END FOR;
FOR ALL ES_individuals DO
intelligent_crossover() ⇒

new_ES_individuals
Evaluate ⇒ new_ES_�tness
END FOR;
FOR ALL ES_individuals DO
IF new_ES_�tness>ES_�tness THEN
ES_individual = new_ES_individual;
�tness = new_�tness;
END IF;
Sort(ES_individuals, ES_�tness);
END FOR;
END FOR;
new_individual=ES_individual[0];
new_�tness = ES_�tness[0];

7) FOR ALL individuals DO IF
new_�tness<�tness THEN

individual = new_individual;
�tness = new_�tness;
END IF;

8) GOTO 3);

Size of GPA population and sizes of ES pop-
ulations related to each particular individual in
GPA population are the most signi�cant param-
eters of GPA-ES algorithm. In�uence of popu-
lation sizes was studied in many publications,
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see e.g. [2]. Small GPA populations forces evo-
lutionary pressure and in the case of speci�c
conditions it might speed up evolution. On the
opposite side, in the small populations there is
increased risk of stuck in local optima on the
place of global one. Very large populations bring
problems with small speed and low e�ciency of
evolution frequently. Problem is that precise
meaning of terms small or big population de-
pends on �tness function landscape. Extremely
small GPA populations also bring big dispersion
of needed evolutionary cycles and thus also of
computational time. In the case of ES popula-
tions, analogical reasons are valid only if there
are eliminated random in�uences of task switch-
ing and other sources etc.

It is possible to accept results of experiments
concluding that large populations might be re-
placed by bigger number of generations and vice
versa. But such reasons are about ability to
�nd solution. When the number of �tness func-
tion evaluations (computational complexity) or
computational time is evaluated, dependencies
between them and population sizes are not the
same and small populations are more e�cient as
it will be presented in the next sections.

There is also parameter representing number
of ES algorithm evolutionary cycles. This num-
ber plays two contradictory roles. The bigger
number of ES iterations means less chance to
omit good solution for wrongly identi�ed param-
eters [3]- [9] and it was the main idea of GPA-
ES hybrid algorithm development but the large
number of ES iterations signi�cantly increases
computational time and thus limits application
domain of GPA-ES algorithm. Standard set-up
of this algorithm in this study except results
presented on Fig. 2 is 40 populations of ES
algorithm for each GPA individual but in the
last experiment series there are studied in�u-
ences of ES population number and population
sizes onto required number of GPA cycles (and
thus whole GPA-ES algorithm number of itera-
tions). Equivalent of pure GPA is none ES pop-
ulation cycle. The experiments published in the
next section describe in�uence of this parame-
ter. Previous study of PRNGs in�uence onto
GPA dynamics pointed that results of experi-
ments are similar and di�erences between di�er-

Fig. 1: Count of the ES population improvements for

whole GPA population evaluated from the best

to the worst individual.

ent combinations of PRNGs are on the similar
magnitude as observed noise.

These �rst experiments were executed with
�xed parameters of 1000 di�erent initial PRNGs
seed magnitudes. Sizes of populations were 1000
individuals both in GPA and related ES popu-
lations. The number of ES algorithm cycles was
�xed and equal to 40 (it was not shorten in �t-
ness value of the best individual in the popu-
lation reached residual error limit, in contrary
to superior GP algorithm). Such large popula-
tions causes small numbers of iterations and thus
small resolution of obtained results.

GPA-ES algorithm allows to apply not only
di�erent PRNGs for GPA and ES part of
the algorithm but even eight di�erent PRNGs
for initialization, re-initialization, mutation and
crossover operators and control of GPA and ini-
tialization, re-initialization and control includ-
ing in�uencing of intelligent crossover operator
of ES part.

Resulting average numbers of iterations are
displayed on Fig. 2. It can be easily ob-
servable that di�erences between partial com-
binations are small and random. The mean-
ing of used abbreviations is following: MIN-
STD0 means simple multiplicative congruen-
tial pseudo-random number generator as well
as MINSTD one (with di�erent parameter set-
ting), RDEVICE is hardware random num-
ber generator that produces non-deterministic
random numbers, RANLUX24 subtract-with-
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carry pseudo-random generator of 24-bit num-
bers and RANLUX24 is the same type produc-
ing 48-bit numbers, RAND denotes standard
C/C++ rand() function and MT19937 repre-
sents Mersenne Twister pseudo-random gener-
ator of 32-bit numbers with a state size of 19937
bits. Detail dynamics of GPA-ES system is com-

Fig. 2: Average number of iterations of GPA-ES algo-

rithm depending on PRGNs in�uencing GPA

and ES part of the algorithm.

plicated and in�uenced by many control param-
eters. Fig. 1 illustrates decrease of population
activity in the time. We can identify periods of
100 individuals given by size of GPA population
because individuals were evaluated sequentially.
Fig. 1. also con�rms that after �rst three evo-
lutionary cycles when only mutation is applied
evolutionary activity decreased. In the rest part
of data in�uence of crossover operations which
are not used to whole populations but only ran-
domly. They cause periodic boosting of activ-
ity. Periods of 100 individuals of decreasing ac-
tivity also illustrates that activity of individuals
with better �tness function is bigger than activ-
ity of worse ones non looking to the fact that in
each period to each individual one evolutionary
operator is applied but this complicated micro-
dynamics study is not the main subject of this
work.

Small number of individuals in ES population
represents analogy of small populations in GPA
part of algorithm. Also there they can bring
faster convergence in average (from the view-
point of time), but because the number of gen-
erations is �xed, it cannot correspond to larger
number of generations. Thus the quality of

results (resulting �tness function magnitudes)
must be worse for small ES populations due to
ill-identi�ed parameters. In the superior GPA
it might cause worse recognition between good
and wrong structures against original ideas of
GPA-ES design. As the conclusion, if the num-
ber of ES population decreases, superior GPA
will need more population to achieve the com-
parable quality results. The signi�cant question
is if the faster is to decrease of ES populations
or to increase of GPA ones.

Paper [10] was focused to relations between
GPA and ES population sizes of composed GPA-
ES algorithm. Now the in�uence of ES popu-
lation size and ES population number limit is
studied applying modi�ed methodology of ex-
periments. Very low limit of generation number
for constant optimizing embedded ES part of the
algorithm was not studied yet. This modi�ca-
tion focuses to elimination in�uences a�ecting
PRNG used in evolutionary algorithm as

- in�uence of other tasks running on the same
node of computing cluster

- PRNG number series stationarity

- thread switching (if the used number gener-
ator is hared between threads or if threads
mutually communicate)

- task allocating on cluster nodes

The �rst point is caused by the fact that other
tasks in the operating system in�uence in the
next point described task switching and also
function of (P)RNGs if they are not imple-
mented as thread safe. Problem is that each
operating system also runs at least di�erent, it
is possible to say "service", tasks like network
communication support, cluster operation sup-
port, etc. These tasks cannot be stopped during
these experiments and they can cause changes of
parallely executed sub-task run order during ex-
periments. There plays its role also task sched-
uler of used operating system. Linux systems
frequently o�ers normal, batch, round-robin and
FIFO CPU schedulers in�uencing order of tasks
and threads. On clusters there is also the last
mentioned source of non-determinism, alloca-
tion of tasks on computational nodes which also
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might not be deterministic because it s in�u-
enced by computer network tra�c etc.

Presented experiments eliminate some of
these sources of non-determinism by the simplest
way � by elimination of multi-thread execution.
Each task was running ES for parameter opti-
mization as single-thread one without any com-
munication with others.

3. Experiments and

obtained data

Lorenz attractor system served as test case for
experiments with symbolic regression of di�er-
ential equations describing this dynamic system
on the base of pre-computed data set. Lorenz
attractor system is described by (1) and (2).

x′ (t) = σ (y (t)− x (t)) ,
y′ (t) = x (t) (ρ− z (t))− y (t) ,
z′ (t) = x (t) y (t) − β z (t)

(1)

σ = 16, β = 4, ρ = 45.91 (2)

The limit of GPA algorithm iteration number
was set to 10000 cycles, the termination condi-
tion was set to sum of error squares less than 10-
8 for applied 599 samples of training data, while
the number of ES algorithm iterations has vary-
ing between magnitudes 1,10 and 100, as well as
the sizes of ES populations was varying magni-
tudes 10, 40 and 100. Size of GPA population
was 64 individuals. Experiments were repeated
10000 times for di�erent seeds of used PRNGs.

In the presented study we use two variable pa-
rameters, number of ES algorithm iterations and
size of ES populations. They determine num-
ber of evaluations of �tness function both in ES
and composed GPA-ES algorithms. Standard C
and C++ function rand() served as PRNG in
herein presented experiments. To analyze com-
putational e�ciency of GPA-ES algorithm, both
number of needed GPA cycle iterations and com-
putational time are measured (computational
time can be replaced by another HW indepen-
dent measure, number of �tness function itera-
tions).

Results of experiments are presented on the
following Fig. 3-8.

Fig. 3: Number of iterations of encapsulating GPA for

x variable depending on ES.

Fig. 4: Number of iterations of encapsulating GPA for

y variable depending on ES cycle limit and ES

population size.

Fig. 5: Number of iterations of encapsulating GPA for

z variable depending on ES cycle limit and ES

population size.

Because above presented elimination of en-
tropy sources lying out of used PRNG are not
su�cient and e.g. running GPA-ES on the same
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Fig. 6: Computing time of whole GPA-ES for x variable

depending on ES cycle limit and ES population

size.

Fig. 7: Computing time of whole GPA-ES for y variable

depending on ES cycle limit and ES population

size.

Fig. 8: Computing time of whole GPA-ES for z variable

depending on ES cycle limit and ES population

size.

data with the same used PRNG seed magnitudes
give di�erent results in each run, new provision

was applied. The OpenMP was not limited to 1
thread but eliminated completely.

Evolutionary algorithm provides numerical
computations and there in intensive mixing of
cooperating individuals during the time of task
solving. The last research of such dynamic sys-
tems points that there might be observed many
types of chaotic attractors [11]. To prevent
chaotic behavior of GPA-ES and �tness func-
tion evaluation, the numerical precision was ex-
tended from 64bit double data type to 80bit to
lon�g double one. GNU C++ compiler also o�ers
128bit_�oat128 data type but it is extremely
slow, so it was not used. Table 1 presents in-

ES cycles No x y z

5 0 0 0

10 57,93 53684,07 772,40

40 991,44 120123,97 1204,52

Tab. 1: Experiment variability depending on number of

ES cycles for variables x, y and z

creasing of repeated experiments variability with
growing number of ES cycles. This situation
can have only one explanation � presence of
undiscovered source of entropy. Such source can
be undiscovered interaction between application
and operating system or numerical instability of
regressed mode.

Observations summarized in the Table 1
points to Lamarckian inheritance [12] and es-
pecially to Baldwin e�ect [13]. Even small im-
provements of individual behavior can bring im-
provement when it is coded back into DNA.
Thus it is possible to apply computationally eas-
ier search of parameters sub-optima on the place
of computationally exhaustive searches.

4. Conclusions

Above presented data are depending on two pa-
rameters - number of ES algorithm generations
and size of ES populations. While for simplest
equation describing x variable in Fig. 2 was for
smallest ES population of 10 individuals, more
complex equations describing dynamics of y and
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z variables required larger ES population of 100
individuals.

Computing time was di�erent. There was
smaller variance of results and the optima were
between 5 and 50 populations and smallest pop-
ulations of 10 individuals. Such results partially
defers to above described expectations and they
are caused by computational complexity of ES
algorithm which depends quadratically on the
number of individuals but the improvement of
larger population to convergence is of the lower
order.

Presented data points that GPA-ES algorithm
behavior corresponds to expectations in compu-
tational complexity. Time complexity of algo-
rithms corresponds less and it is given by used
hardware properties.

Non looking that Fig. 1 presents decrease
of GPA e�ciency, small populations and higher
numbers of iterations are interesting way of ef-
�ciency increasing except extremely low magni-
tudes. Moreover, with decreasing of population
members number and with increasing of count
of evolutionary cycles there increases dispersion
of needed iterations and thus even if the average
number is small, some runs can be extremely
long.

Presented experiments also points that com-
putational time is controversial measure of al-
gorithm e�ciency � from the algorithm com-
plexity viewpoint numbers of individuals can be
replaced by amount of iterations but GPA and
ES algorithms has incomparable complexity and
their implementation might have di�erent e�-
ciency. ES works faster, thus in time space com-
parison the results displayed on Figs. 5-8 are not
signi�cant and do not copy results from Figs. 2-4
representing numbers of iterations (evolutionary
cycles).

Presented study uses relatively simple prob-
lem as case study. In the future, when more
computational time will be obtained, there will
be need to repeat herein presented experiments
on more complex problems where the area of
highest e�ciency is expected far from the lowest
population sizes and iteration numbers of ES.
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