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Modelling driver propensity for traffic accidents: a comparison of 

multiple regression analysis and fuzzy approach 

This research proposes an assessment and decision support model to use when a 

driver should be examined about their propensity for traffic accidents, based on 

an estimation of the driver’s psychological traits. The proposed model was tested 

on a sample of 305 drivers. Each participant completed four psychological tests: 

the Barratt Impulsiveness Scale (BIS-11), the Aggressive Driving Behaviour 

Questionnaire (ADBQ), the Manchester Driver Attitude Questionnaire (DAQ), 

and the Questionnaire for Self-assessment of Driving Ability. In addition, 

participants completed an extensive demographic and driving survey. Various 

fuzzy inference systems were tested and each was defined using the well-known 

Wang-Mendel method for rule-base definition based on empirical data. For this 

purpose, a programming code was designed and utilised. Based on the obtained 

results, it was determined which combination of the considered psychological 

tests provides the best prediction of a driver’s propensity for traffic accidents. 

The best of the considered fuzzy inference systems might be used as a decision 

support tool in various situations, such as in recruitment procedures for 

professional drivers. The validity of the proposed fuzzy approach was confirmed 

as its implementation provided better results than from statistics, in this case 

multiple regression analysis. 

Keywords: traffic accidents; road safety; driving behaviour; fuzzy systems; fuzzy 

rules based on data; multiple regression 

1. Introduction 

The Global Status Report on Road Safety 2018 (World Health Organization, 2018) 

reveals that in 2016, approximately 3700 people died in traffic accidents per day, and 

tens of millions of people are injured or disabled every year. Traffic safety professionals 

have a complex task to determine the reasons for accident occurrence. This should 

enable policy-makers to make better decisions to improve safety. 

Each accident is unique with many particular circumstances; however, some 

general causes relate to the driver, such as human factors, the vehicle and the road 



conditions (Evans, 2004). A notable study that considers the vehicle factor is by 

Vranjes, Vasiljevic, Jovanov, Radovanovic and Duric (2019) where a research was 

carried out to investigate how certain vehicle malfunctions affect the road safety. Based 

on data for the period from 1997 to 2014, they concluded that the technical malfunction 

of vehicles as a cause for accident occurrence has a share of just 0.72% in the total 

number of accidents. 

When it comes to the road characteristics as a cause of accidents, it may also be 

stated that this factor rarely contributes to the occurrence of accidents. For example, 

Rudny and Sallmann (2016) critically analysed the actual physical evidence of accidents 

involving alleged road defects. However, the severity of road accident can be strongly 

correlated with hazardous weather conditions, such as fog, snow, heavy rainfall and 

storms (Lee, Chae, Yoon, and Yang, 2018). Certain conclusions about the road safety 

can be obtained by analysing the road characteristics and Shah and Ahmad (2019) 

proposed a methodology for identification of risky segments of a motorway considering 

the road infrastructure and traffic stream characteristics. 

In the literature, it is generally accepted that human factors have the biggest and 

most frequent impact on the occurrence of traffic accidents. For example, based on 

European Union research (European Commission, 2019), 95% of all traffic accidents on 

Europe's roads involve human error. This factor may be analysed in various segments, 

such as fatigue, inattention, impairment from drugs or alcohol, risky manoeuvres, 

violation of traffic rules, etc. Duan, Xu, Ru, and Li (2019) classified and quantified 

driving fatigue according to the driving fatigue degree. Further, they came to the 

conclusion that drivers become fatigued within a significantly shorter time while driving 

in high-altitude area. Dehzangi, Sahu, Taherisadr, and Galster (2018) proposed a 

monitoring system to assess the level of driver distraction, which occurs as a results of 



different non-driving related activities such as communicating with passengers, phone 

use, eating and drinking. Li and Chang (2019) used the geographic information system 

to collect traffic accidents data and concluded that the most frequent cause of accidents 

were: illegal overtaking, road races, lane change, improper driving direction, drunk 

driving and not maintaining a safe distance. 

Although previously mentioned depicts the complexity of identifying the cause 

of an accident, there are studies confirming that the driver’s personality can affect their 

behaviour in traffic, and the likelihood of being involved in a traffic accident (Shinar, 

2007). Accordingly, there is a need to investigate which psychological traits can 

indicate an accident-prone driver, and how to identify them in order to prevent or reduce 

the number of traffic accidents and their consequences. 

In this research, we chose four psychological instruments to measure certain 

psychological characteristics of participants and to assess their driving behaviour. The 

aim was to determine which of these four instruments might be the best tool to use for 

the identification of characteristics that accident-prone drivers possess. This might be 

possible using just one instrument, or a combination of two or three, or all four 

instruments. In addition, the goal was to propose a decision support tool that could be 

used, for example, in recruitment procedures for professional drivers. For these 

purposes, fuzzy logic was used. Various fuzzy inference systems (FIS) were designed 

and tested on empirical data. The results from FIS tests that provide the minimum error 

in the description of data were compared with the implementation of multiple regression 

analysis, which was previously demonstrated in the paper by Cubranic-Dobrodolac, 

Lipovac, Cicevic, and Antic (2017). 

The organisation of this paper is as follows. In the next section, a review of 

literature on fuzzy logic implementation in the field of transportation (particularly driver 



behaviour) is presented. The third section offers a detailed explanation of modelling 

process, including a description of the variables used and the procedure of fuzzy rules 

generation, based on empirical data. The calculations and results are given in Section 4. 

A detailed procedure for solving the FIS with two input variables (x1 and x2) is 

demonstrated, followed by the results of the complete modelling process, where 15 

various FIS structures are tested. Finally, we conclude with a specification of possible 

benefits from the obtained results and proposals for further research. 

2. Related work 

Fuzzy logic is widely used in the field of road transportation. Ivanov (2015) offers a 

review of fuzzy methods in automotive engineering applications where the following 

domains are differentiated: vehicle dynamic control systems, driver and driving 

environment identification, ride comfort control, and energy management of electric 

vehicles. The field of interest for the current paper relates to modelling driver 

behaviour. This field is of particular relevance for fuzzy applications, because 

psychological and emotional parameters generally imply a certain level of imprecision 

and fuzziness. 

By reviewing the literature, we segment the implementation of fuzzy logic to 

model driver behaviour in the following areas: 

 Examination of interaction between the driver and road infrastructure; 

 Examination of interaction between the driver and in-vehicle systems; 

 Testing the psychophysical characteristics of drivers; 

 Determining a driving style. 

An example of modelling the interaction between the driver and road 

infrastructure using fuzzy logic can be found in the study by Lee and Donnell (2007), 



where a preference is determined for particular types of road markings most suitable 

during night-time driving. On the other hand, Sentouh, Nguyen, Rath, Floris, and 

Popieul (2019) analysed the interaction between the driver and the in-vehicle system, 

and proposed a steering controller for keeping in lane, based on the integrated driver-

vehicle model using the Takagi-Sugeno control technique. 

With regard to the psychophysical characteristics of drivers, Boyraz, Acar, and 

Kerr (2008) designed an FIS to predict the drowsiness level of the driver. The selected 

signals for analyses included the level of eye closure, gaze vector, head motion, steering 

wheel angle, vehicle speed, and force applied to the steering wheel by the driver. 

Similar research was carried out by Wu and Chen (2008), who analysed the facial 

images of drivers and proposed a fuzzy system to warn the driver of drowsiness. 

Lin, Tsai, and Ko (2013) used fuzzy logic as a method for the early detection of 

motion sickness. These type of distractions while driving can endanger safety because 

of a decline in a person's ability to maintain self-control. 

Fazio, Santamaria, De Rango, Tropea, and Serianni (2016) used fuzzy logic to 

identify a particular driving style and to model driving behaviour. However, their 

conclusions about driving style were based on the car velocity and acceleration 

measurement using on-board diagnostics in the vehicle. Similar research with the same 

input parameters and on-line collection of data was previously proposed by Dorr, 

Grabengiesser, and Gauterin (2014). Saleh, Aljaafreh, and Albdour (2013) proposed a 

fuzzy system to classify driving styles in terms of vehicle-human interactions. They 

used three input variables: acceleration, speed, and distance between the preceding and 

host car. 

Aggressiveness in driving, although a psychological category may be assessed 

by explicit parameters of vehicle movement, for example by analysing driving 



performance. An example of this is demonstrated in the paper by Aljaafreh, Alshabatat, 

and Najim Al-Din (2012). The authors measured aggressiveness based on the Euclidean 

norm of lateral and longitudinal acceleration, as well as considering car velocity. 

In the current study, we use four psychological instruments to assess driver 

behaviour. The aim is to propose a model that when implemented would quantify driver 

propensity for traffic accidents, based on scores obtained from the considered tests. For 

this purpose, we use fuzzy logic and compare the results with the implementation of 

multiple regression analysis. The proposed model is described further in the next 

section. 

3. Model development 

The result of the modelling process will be the proposal of a model that can provide 

information about driver propensity for traffic accidents, based on the scores obtained 

from four psychological instruments. The modelling process consists of testing various 

types of FIS to select the one that produces the minimum amount of error in the 

description of data. Finally, the selected FIS will be compared with the results of 

statistical analyses; in this case with multiple regression analysis. 

All the variables that appear in the tested FIS structures are presented in 

Subsection 3.1 together with the sample description. An explanation of the modelling 

concept and method used for fuzzy rules generation based on data is presented in 

Subsection 3.2. 

3.1 The sample and variables description 

 

The sample included 305 drivers, comprising 103 drivers of privately owned vehicles, 

100 bus drivers, and 102 truck drivers. A convenience sampling technique (a non-



probability technique), was implemented. To collect data on professional drivers, 12 

transport companies (with some sort of previous cooperation with the authors) were 

contacted. This might explain why there was a very high response rate, because of this 

connection. The participating professional drivers completed paper-based 

questionnaires, while drivers of privately owned vehicles completed web-based 

questionnaires. The online response rate was 65.6%, which is well above the average of 

34.2% determined by Poynton, DeFouw, and Morizio (2019). 

The sample comprised 88% male and 12% female drivers. This relationship was 

expected due to the demanding nature of professional driving and the fact that generally 

a large majority of drivers are male. With regard to age structure, 18% of the sample 

were aged 18 to 30 years old, 56% between 31 and 45, 17% between 46 and 60, and 9% 

above 60 years old. Further descriptive statistics could be presented with more detail; 

however, this is not the focus of this paper. 

For data collection, the modelling process required two methods of testing of the 

participants. The first methods utilised four psychological instruments for assessing 

driver behaviour and the second method involved a demographic and driving survey. 

Four psychological instruments considered in this research, which were the Aggressive 

Driving Behaviour Questionnaire (ADBQ), the Barratt Impulsiveness Scale (BIS-11), 

the Manchester Driver Attitude Questionnaire (DAQ), and the Questionnaire for Self-

Assessment of Driving Ability. The demographic and driving survey completed by the 

respondents provides a range of information; however, for this study, the main purpose 

was to obtain information about the number of traffic accidents in which each 

respondents had been involved. Accordingly, the final database for the modelling 

process contained data on the score each participant obtained for each of the 

psychological instruments (which could be taken as input to the system or independent 



variables), and the number of accidents per participant, which may be considered as 

output or dependent variables. 

The ADBQ was designed by Mouloua, Brill, and Shirkey (2007). The intention 

of the authors was to create an instrument with good predictive power considering 

aggressive situations that are typical in driving. These vary from gestures directed 

toward other drivers, to explicit aggressive outbursts, such as passing through a red light 

at an intersection. The instrument contains 20 questions. The respondents were asked to 

assess the likelihood of manifestation of aggressive driving using a 6-point Likert scale. 

Results were given in the range of 1 = never to 6 = almost always. 

To define the variables of FIS, in the modelling process the score from the 

ADBQ was taken as variable x1. This variable was named Aggressiveness in the 

programming code. The possible values that variable x1 can take is from 20 to 120. 

However, when examining the values of ADBQ scores from our sample of 305 drivers, 

the minimum value was 26 and the maximum was 76. Therefore, the scores below 26 

belong to the fuzzy set for very low aggressiveness (VLA) with the value of 

membership function equal to 1 (µ(x) = 1). Conversely, scores above 76 are in the fuzzy 

set for very high aggressiveness (VHA), also with the value of membership function 

equal to 1. The average value of all ADBQ scores from the sample was close to 49. 

Therefore, this value was taken as the highest membership function value (µ(x) = 1) in 

the fuzzy set for medium aggressiveness (MA). The remaining two fuzzy sets, low 

aggressiveness (LA) and high aggressiveness (HA) were defined between the limit 

values and medium value, as shown in Fig. 1. The same logic was used to define other 

input variables. The domains and descriptive statistics for the scores achieved by 

respondents are shown in Table 1. 



Variable x2 represents a score obtained from the BIS-11. This instrument is used 

for the assessment of impulsivity while driving; therefore, this variable was named 

Impulsiveness in the programming code. In this study, we used a version of BIS-11 

constructed by Patton, Stanford, and Barratt (1995). The questionnaire consists of 30 

questions, which cover a variety of situations and aspects characteristic of impulsive 

behaviour. The respondents were required to estimate, using a 4-point Likert scale, the 

extent to which they agree with the statements that describe the most representative 

impulsive habits and practices. The scaled responses correspond to the following 

statements: from 1 = never/rarely to 4 = always/almost always. For certain questions in 

the questionnaire, inverse response values were provided. 

Variable x2 is described by the following fuzzy sets: very low impulsiveness 

(VLI), low impulsiveness (LI), medium impulsiveness (MI), high impulsiveness (HI), 

and very high impulsiveness (VHI). The shape and disposition of membership functions 

for variable x2 are shown in Fig. 2. 

Variable x3 relates to the score obtained on the Manchester DAQ. The DAQ is a 

questionnaire for the assessment of attitudes toward risk propensity while driving, 

devised by Parker, Lajunen, and Stradling (1998). The variable x3 is named Risk in the 

programming code. 

The questionnaire consists of 20 questions with a Likert scale of answers from 1 

= strongly disagree to 5 = strongly agree. Most questions refer to the typical traffic 

situations that can be characterised as high-risk. The DAQ includes statements relating 

to speeding, drink-driving, close-following, and dangerous overtaking. We arranged the 

scores such that higher scores correspond to higher risk propensity while driving. Scores 

of subjects could range from 20 to 100 points. 



Variable x3 is described by the following fuzzy sets: very low risk (VLR), low 

risk (LR), medium risk (MR), high risk (HR), very high risk (VHR). The shape and 

disposition of membership functions for variable x3 are shown in Fig. 3. 

Variable x4 is based on the score obtained from the Questionnaire for Self-

assessment of Driving Ability. This questionnaire was developed by Tronsmoen (2008). 

It consists of a set of statements about how drivers react in certain traffic situations. 

Based on the responses, it is possible to obtain information about participants’ self-

perception as a driver. There are 22 questions and answers in the form of 4-point Likert 

scale. Answers ranged from 1 = never, to 4 = always/almost always. Higher score on the 

test corresponds to a better evaluation of one’s own driving abilities. 

Variable x4 is described by the following fuzzy sets: very low self-assessment 

(VLS), low self-assessment (LS), medium self-assessment (MS), high self-assessment 

(HS), and very high self-assessment (VHS). The shape and disposition of membership 

functions for variable x4 are shown in Fig. 4. The variable x4 is named Self-assessment 

in the programming code. 

The output variable y relates to the number of traffic accidents experienced by 

respondents. In the sample, respondents reported the number of accidents from 0 to 8 

(Fig. 5). To describe the variable y, we used 7 membership functions unlike in the 

previous cases where 5 membership functions were used even though the domains of 

input variables cover 100, 90, 80 and 66 points, respectively. The domain of output 

variable y implies 9 points; however, the number of membership functions is increased in 

this case because the traffic accidents are relatively rare events and the intention of the 

authors was to describe each category of drivers as precise as possible. However, drivers 

who participated in 6, 7 or 8 accidents were extremely rare and consequently they were 

grouped under one membership function. Therefore, the output variable y was defined as 



shown in Fig. 6. The following fuzzy sets were introduced: very small number of 

accidents (VSNA), small number of accidents (SNA), moderately small number of 

accidents (MSNA), medium number of accidents (MNA), moderately high number of 

accidents (MHNA), high number of accidents (HNA), and very high number of accidents 

(VHNA). The variable y is named Accidents in the programming code. 

3.2 The concept of modelling and fuzzy rules generation based on data 

 

In the modelling process, the described variables x1, x2, x3, x4, and y were used to form 

various FIS structures to test which would make the minimum error in description of the 

data. Four types of FIS were considered, as follows: one input–one output system, two 

input–one output system, three input–one output system, and four input–one output 

system. The concrete FIS concepts to be tested are shown in Table 2. The results of the 

test should lead to a conclusion as to which psychological instrument, or which 

combination of two, three, or all four of them, provides the best prediction results 

regarding driver propensity for traffic accidents. 

The basis for fuzzy rules is essential for the performance of FIS. In this paper, 

we used the well-known approach for defining fuzzy rules proposed by Wang and 

Mendel (1992). This method is widely used in the literature. Some examples could be 

found in the papers of Chang, Hieh, and Liao (2005), to solve a problem of due-date 

assignment in semiconductor manufacturing factory. D'Andrea and Lazzerini (2013) 

assessed the condition of solar photovoltaic energy installation, and Blagojevic, Selmic, 

Macura, and Sarac (2013) determined the number of postal units in the network. The 

Wang-Mendel method may be further combined with other optimisation algorithms to 

optimise the FIS structure. For example, Yanar and Akyurek (2011) used simulated 

annealing metaheuristic to tune a Mamdani-type fuzzy model. In the literature, there are 



several examples of improvements to the Wang-Mendel method (Gou, Fan, Wang, Luo 

& Chi, 2016; Gou, Hou, Chen, Wang & Luo, 2015; Lee & Shin, 2003; Wang, 2003; 

Yang, Yuan, Yuan & Mao, 2010). However, we use the original version of this method, 

because the purpose of our research was to determine the relationship between the 

considered instruments and how they explain driver propensity for traffic accidents, and 

not to carry out the optimisation of FIS structure. 

The Wang-Mendel method consists of five steps. Step 1 divides the input and 

output spaces of the given numerical data into fuzzy regions. In the case of this 

research, the implementation of Step 1 is illustrated in Section 3.1. Although this study 

tested 15 FIS structures, and each of them use different input variables, all the used 

variables are described here. For each, the domain interval was determined, that is, the 

interval of the possible values of variables. Each domain interval was divided into 2N+1 

regions. The length of these regions and fuzzy membership functions that describe them 

were determined based on the logic explained in Section 3.1. 

 Step 2 generates fuzzy rules from the collected data. First, our data set was 

structured as shown in Table 3, where letter i represents one of 305 respondents from 

the sample. Depending on the chosen FIS, the specific input–output pairs were 

considered, as shown in Table 4. At the beginning, one data pair was used for 

construction of one fuzzy rule. For example, if we consider FIS No. V, the degrees of a 

given pair (𝑥1
(𝑖)

, 𝑥2
(𝑖)

; 𝑦(𝑖)) should be determined in different regions. Then, this data 

pair should be assigned to the regions with maximum degree. Thus, finally, one fuzzy 

rule from one pair of desired input-output data was obtained. The IF part was composed 

of the names of regions with maximum degree for input variables, and the THEN part 

from the name of region with maximum degree for output variables. 



In Step 3, a problem of conflicting rules needed to be solved. These are the rules 

that have the same IF part, but a different THEN part. For this purpose, each of the 

formed rules should be assigned a degree, defined by Eq. (1) for the case when a rule is 

defined as following: “IF x1 is A and x2 is B, THEN y is C”. 

 

𝐷(𝑅𝑢𝑙𝑒) = µ𝐴(𝑥1) ∗ µ𝐵(𝑥2) ∗ µ𝐶 (𝑦)   (1) 

 

D(Rule) is a degree of a rule, µ𝐴(𝑥1) is a value of membership function of the 

region A when input value is x1, etc. In a conflict group, only the rule that has maximum 

degree should be accepted. 

Step 4 makes a combined fuzzy rule base, which consists of rules obtained from 

empirical data and linguistic rules acquired from a human expert. Finally, Step 5 

determines a mapping from input to output space using a defuzzification procedure. In 

this study, we compared the results of FIS testing in the case when all FIS structures use 

just rules from empirical data and the case when all considered FIS structures use a 

complete rule base. In defining a complete rule base, expert logic was based on the 

assumption of linear interdependence between input and output variables. 

4. Calculation and results 

This section consists of three parts. In the first part, a detailed procedure for solving an 

FIS based on empirical data is demonstrated. The second part presents the complete 

modelling process, in which 15 various FIS are tested. Here, the essence is in the 

results, not the procedure. Further, it is in the second part that the results of the FIS (that 

makes the minimum error in describing the data) is compared with multiple regression 



analysis. Finally, in the third part a sensitivity analysis of the FIS No. XV based on the 

sample decomposition is performed. 

4.1 Demonstration of solving the FIS with two input variables x1 and x2 

To illustrate the proposed methodology, we offer a detailed description of solving FIS 

No. V, with corresponding programming code applied in MATLAB.  

FIS No. V uses two input variables (x1 and x2), which are in the programming 

code labelled as Aggressiveness and Impulsiveness, respectively. The output variable y 

is denoted as Accidents.  

Because we used the Wang-Mendel method for the design of the FIS, the 

previously described five steps were solved in the following way. We divided the input 

and output spaces of the given numerical data into fuzzy regions (Step 1), as explained 

in Section 3.1. The variables Aggressiveness, Impulsiveness, and Accidents are shown in 

Figures 1, 2, and 6, respectively. 

 Algorithm 1 prepared the data for realisation of Steps 2 and 3. The main aim 

was for it to obtain the values in the matrix Membership Functions Product (MFPROD). 

In this case, this matrix has four columns. The first represents the product of values of 

membership functions of the regions with maximum degree, both for input and output 

variables. This value is a prerequisite for the implementation of Step 3, because it 

practically represents the value of D(Rule) from Eq. (1). The second, third, and fourth 

columns denote the region with maximum degree for Aggressiveness, Impulsiveness, 

and Accidents, respectively. This information is essential for the implementation of both 

Step 2, to generate all possible 305 fuzzy rules, and Step 3, to reduce these rules to the 

appropriate number. 

 After the creation of 305 fuzzy rules, there were many same rules in the base. To 

resolve this problem, Algorithm 2 was implemented. In the case of FIS No. 5, after 



excluding the same fuzzy rules, there were 53 remaining. By implementing the 

proposed programming code, the remaining rules could be found in the matrix 

MFPRODfin.  

Among 53 rules, there were certain conflict rules with the same IF part and a different 

THEN part. According to the procedure described in Step 3 of the Wang-Mendel 

method, Algorithm 3 was proposed. The final fuzzy rule base was set in the matrix 

Drules, that is in the matrix Dsort where all the rules are sorted from lower to higher 

values of the first input variable, and afterwards of the second. In the case of FIS No. V, 

there were 18 fuzzy rules obtained from the collected data. 

According to Step 4, the final rule base was formed and missing rules were 

added based on human expert opinion. In this procedure, we used the assumption that 

there was a linear interdependence between input and output variables; for example, if 

the aggressiveness is higher, the number of accidents experienced by a driver should be 

higher. Accordingly, the final fuzzy rule base of FIS No. V containing 25 rules is shown 

in Table 5. Note that the rules written in Italic are proposed by the authors and other 18 

rules are obtained from the empirical data. 

Finally, the defined FIS No. V required testing. This was performed based on 

Equation 2. Cumulative deviation (CD) is a measure that describes how well the FIS 

describes the empirical data. CD was calculated as an absolute value of difference 

between the actual number of accidents experienced by drivers in the sample, and 

corresponding results of FIS No. V. This calculation of absolute values of differences 

was completed for each respondent from the sample, meaning that in this case, CD is a 

sum of all 305 deviations. The result of FIS No. V for a respondent number i in Eq. (2) 

is marked as Propensity(i). The same concept of calculating the performance of FIS 



structures can be found in other papers (see Cubranic-Dobrodolac, Molkova, and 

Svadlenka, 2019; Jovcic, Prusa, Dobrodolac, and Svadlenka, 2019). 

𝐶𝐷 = ∑|𝑦(𝑖) − 𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦(𝑖)|

305

𝑖=1

 (2) 

The result of the final calculation is presented in Table 6. It is interesting to note 

that the results of FIS (where fuzzy rules are based only on empirical data) and FIS with 

complete fuzzy rules base are very similar, and vary in less than 1% in this case. A 

comparison of empirical data and results of FIS No. V is presented in Figure 7. With a 

visual comparison of these results and the results presented in the paper of Cubranic-

Dobrodolac et al. (2019), a conclusion can be reached that the considered psychological 

traits explain the occurrence of traffic accidents significantly better compared to the 

assessment of dangerous places on the road and road characteristics. Further, it is 

interesting to compare the results of other FIS structures proposed in this paper, which 

appears in the next subsection. 

4.2 Results of all 15 FIS tests and comparison with multiple regression analysis 

To achieve the essential aim of this study—to conclude which psychological 

instruments provide the best assessment of driver propensity for traffic accidents—we 

needed to test all of the proposed 15 FIS structures. This was carried out by the same 

procedure as previously described in the case of FIS No. V. The proposed programming 

code was used in all cases; however, certain minor changes were made concerning the 

used variables and their number. 

The results of testing are shown in Table 7. By comparing the second and third 

columns, it is evident how many fuzzy rules were obtained from the empirical data 

compared to the complete fuzzy rule base. Further, the results of testing various FIS 

structures in two cases where the FIS was designed only from fuzzy rules from the 



empirical data, and where there is a complete fuzzy rule base, are presented in the fourth 

and fifth columns, respectively. Even though the results in these columns are very 

similar, there are certain cases where the complete fuzzy rules base provides worse 

results. This means there is a space for optimisation of the fuzzy rule base; however, 

this is not a topic of interest in this paper. The general conclusion from this research is 

that driver propensity for traffic accidents can be modelled in the best way by using all 

four considered psychological instruments. 

Finally, the FIS that shows the best performance should be compared with the 

results of statistical analyses, in this case with multiple regression analysis. The results 

from tests with the same data using multiple regression analysis are described in detail 

in the paper by Cubranic-Dobrodolac et al. (2017). However, the essential aspect of this 

paper, which important for the purpose of comparison, is as follows. A set of data may 

be described by Eq. (3), and in our case Eq. (4) is also valid. 

 

𝑦 = 𝑏0 + 𝑏1𝑥1 +  𝑏2𝑥2 + ⋯ +  𝑏𝑛𝑥𝑛   (3) 

 

𝑦 = 𝑏0 + 𝑏1𝑥1 +  𝑏2𝑥2 +  𝑏3𝑥3 + 𝑏4𝑥4  (4) 

 

where y and xn are variables that mark the same as in the FIS structures, i.e. y is 

Accidents, x1 is Aggressiveness, x2 is Impulsiveness, x3 is Risk, and x4 is Self-

assessment. b1, b2, b3, and b4 are the corresponding regression coefficients, and b0 is the 

intercept. 

After the necessary calculations, the results are as follows: b0 = - 2.770, b1 = 

0.023, b2 = 0.039, b3 = 0.013, and b4 = - 0.011. Based on the formed regression 

equation, and by testing this using Eq. (2), the CD value is 326.7150. The results of 



testing the FIS structures and multiple regression analysis are shown jointly in Figure 8. 

As is evident, FIS No. XV offers the minimum error in description of data, which 

makes it the best decision-making tool in assessing the driver propensity for traffic 

accidents. 

4.3 Sensitivity analysis of the FIS No. XV based on the sample decomposition  

Because the FIS No. XV was determined to be the best of the analysed FIS structures, 

we were interested to perform a sensitivity analysis considering particular groups from 

the sample. Accordingly, we tested FIS No. XV based on the individual categories 

considering gender and age. In this procedure, the calculation of cumulative deviation 

(CD) was slightly different, because the number of respondents differed from group to 

group. To be able to compare the CD values, the following Eq. (5) was used: 

𝐶𝐷𝑔 =
𝑛

𝑘
× ∑|𝑦(𝑖) − 𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦(𝑖)|

𝑘

𝑖=1

 (5) 

where 𝐶𝐷𝑔 is a cumulative deviation of the considered group, n is the total number of 

respondents, and k is the number of respondents in the considered group. 

The results of the test procedure are shown in Table 8. It can be noticed that FIS 

No. XV showed the best performance in three groups: male respondents, respondents 

aged 31–45, and those aged over 60. However, in the remaining three groups, the 

number of respondents was relatively small: 12% for the female group, 18% for those 

aged 18 to 31, and 17% for those aged 46 to 60. To validate the results for smaller 

groups, the research should be expanded to new respondents of respective groups. 

Additionally, the implementation of certain methods for FIS structure optimisation, 

such as metaheuristic algorithms, would be welcome. 



5. Conclusions 

 

The main aim of this paper was to determine which of the considered four 

psychological instruments should be used to assess driver propensity for traffic 

accidents successfully. The results indicate that the most suitable approach was to use a 

combination of all four instruments: the BIS-11, the ADBQ, the Manchester DAQ, and 

the Questionnaire for Self-assessment of Driving Ability. 

 Fuzzy logic was shown to be a convenient technique for obtaining these results, 

offering better results when compared to multiple regression analysis. Furthermore, the 

FIS that makes the minimum error in description of empirical data may be used as a 

useful tool in decision-making processes in various situations. Because the proposed 

FIS provides information about driver propensity for traffic accidents, the criteria used 

in the selection of professional drivers could be significantly improved. This would 

involve the use of proposed instruments for assessing personality traits along with the 

psychomotor tests. 

The results may have their practical implications in the design of training and 

education processes for candidates applying for a driving license. Furthermore, 

programmes for the prevention of accidents and violations of laws, or for the 

rehabilitation of drivers who have been deprived of their driving license may be 

developed more effectively, according to the personality traits of the driver. 

Further, the results of this research could be usefully applied for some categories 

of vulnerable drivers to raise awareness about the consequences of risky behaviour in 

traffic. For example, young drivers show a high rate of involvement in traffic accidents, 

especially at the beginning of their driving experience. According to the World Health 

Organization (2018), road traffic injuries are the leading killer of people aged 5–29 

years.  



 Finally, we would conclude with possible directions for further research. It 

would be useful to perform further sensitivity analysis of the obtained results. This 

means that the parameters of considered FIS structures, such as the shape of 

membership functions, their positions, rules, and method of defuzzification, should be 

changed and tested regarding the consequences. This type of examination represents the 

optimisation of the FIS structure, which would be the final aim in defining the most 

appropriate decision-making tool for assessing driver propensity for traffic accidents. 
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Algorithm 1. Determination of regions with maximum degree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2. Reducing the same rules 

 

 

 

 

 

 

 

 

 

MFPROD=zeros(length(Aggressiveness),4); 
for j=1:length(Aggressiveness)  
    a = Aggressiveness(j); 
    i = Impulsiveness(j); 
    n = Accidents(j); 
    amax = []; 
    imax = []; 
    nmax = []; 
    for c=1:length(Propensity.input(1).mf) 
        amax = [amax 

evalmf(a,Propensity.input(1).mf(c).params,Propensity.input(1).mf(c).type)]; 
    end 
    for d=1:length(Propensity.input(2).mf) 
        imax = [imax 

evalmf(i,Propensity.input(2).mf(d).params,Propensity.input(2).mf(d).type)]; 
    end 
    for f=1:length(Propensity.output.mf) 
        nmax = [nmax 

evalmf(n,Propensity.output.mf(f).params,Propensity.output.mf(f).type)]; 
    end 
    [mfa,ida] = max(amax); 
    [mfi,idi] = max(imax); 
    [mfn,idn] = max(nmax); 
    EVAL(j,1)=mfa; 
    EVAL(j,2)=mfi; 
    EVAL(j,3)=mfn; 
    MFPROD(j,1)=EVAL(j,1)*EVAL(j,2)*EVAL(j,3) 
    MFPROD(j,2)=ida 
    MFPROD(j,3)=idi 
    MFPROD(j,4)=idn 
end 

 

MFPRODnew=MFPROD; 
for k=1:size(MFPROD,1) 
   H=zeros(length(Aggressiveness),1); 
   for g=1:size(MFPROD,1) 
     X(g,1)=MFPROD(k,2)==MFPROD(g,2) & MFPROD(k,3)== MFPROD(g,3) & 
MFPROD(k,4)== MFPROD(g,4); 
     H(g,1)=X(g,1)*g; 
     VMF(g,1)=X(g,1)* MFPROD(g,1); 
     MMAX=max(VMF); 
   end 
   S=nonzeros(H); 
   MFPRODnew(S,1)=MMAX; 
end 
MFPRODfin=unique(MFPRODnew,'rows','stable') 

 



Algorithm 3. Reducing the conflict rules 

 

 

 

 

 

 

 

 

Table 1. Domain intervals for x1, x2, x3, x4 and y and descriptive statistics of the sample. 

 

Variable Domain 

Descriptive statistics of the sample 

Number of 

respondents 
Minimum Mean Maximum 

x1 [20,120] 305 26 49.46 76 

x2 [30,120] 305 49 68.44 86 

x3 [20,100] 305 24 62.52 83 

x4 [22,88] 305 34 66.58 88 

y [0,8] 305 0 1.46 8 

 

 

Table 2. Tested fuzzy interference systems 

 

FIS No. Used variables Name of used variable in the programming code 

I x1, y Aggressiveness – Accidents 

II x2, y Impulsiveness – Accidents 

III x3, y Risk – Accidents 

IV x4, y Self-assessment – Accidents 

V x1, x2, y Aggressiveness, Impulsiveness – Accidents 

VI x1, x3, y Aggressiveness, Risk – Accidents 

VII x1, x4, y Aggressiveness, Self-assessment – Accidents 

VIII x2, x3, y Impulsiveness, Risk – Accidents 

IX x2, x4, y Impulsiveness, Self-assessment – Accidents 

X x3, x4, y Risk, Self-assessment - Accidents 

XI x1, x2, x3, y Aggressiveness, Impulsiveness, Risk – Accidents 

XII x1, x2, x4, y Aggressiveness, Impulsiveness, Self-assessment – 

Accidents 

XIII x1, x3, x4, y Aggressiveness, Risk, Self-assessment – Accidents 

XIV x2, x3, x4, y Impulsiveness, Risk, Self-assessment - Accidents 

XV x1, x2, x3, x4, y Aggressiveness, Impulsiveness, Risk, Self-assessment – 

Accidents 

 

D=MFPRODfin; 
for k=1:size(D,1) 
H=zeros(size(D,1),1); 
  for g=1:size(D,1) 
     Y(g,1)=D(k,2)==D(g,2) & D(k,3)==D(g,3); 
     H(g,1)=Y(g,1)*g; 
     VVMF(g,1)=Y(g,1)*D(g,1); 
     [MMAX,idMMAX]=max(VVMF); 
   end 
   H(idMMAX,1)=0; 
   Hfin=nonzeros(H); 
   D(Hfin,:)=0; 
end 
B=zeros(size(D,1),length(Propensity.input)+2); 
Drules = setdiff(D,B,'rows','stable') 
Dsort = sortrows(Drules,[2 3]) 

 



Table 3. Data set of input and output values 

 

Respondent 𝑥1
(𝑖)

 𝑥2
(𝑖)

 𝑥3
(𝑖)

 𝑥4
(𝑖)

 𝑦(𝑖) 

1 66 76 69 41 8 

2 50 60 55 73 0 

3 43 62 52 70 0 

4 61 76 46 56 3 

.... .... .... .... .... .... 

305 45 75 55 66 3 

 

 

Table 4. The use of data in a particular fuzzy inference system 

 

FIS No. Used input-output data 

I (𝑥1
(1)

; 𝑦(1)), (𝑥1
(2)

; 𝑦(2)),…, (𝑥1
(305)

; 𝑦(305)) 

II (𝑥2
(1)

; 𝑦(1)), (𝑥2
(2)

; 𝑦(2)),…, (𝑥2
(305)

; 𝑦(305)) 

III (𝑥3
(1)

; 𝑦(1)), (𝑥3
(2)

; 𝑦(2)),…, (𝑥3
(305)

; 𝑦(305)) 

IV (𝑥4
(1)

; 𝑦(1)), (𝑥4
(2)

; 𝑦(2)),…, (𝑥4
(305)

; 𝑦(305)) 

V (𝑥1
(1)

, 𝑥2
(1)

; 𝑦(1)), (𝑥1
(2)

, 𝑥2
(2)

; 𝑦(2)),…, (𝑥1
(305)

, 𝑥2
(305)

; 𝑦(305)) 

VI (𝑥1
(1)

, 𝑥3
(1)

; 𝑦(1)), (𝑥1
(2)

, 𝑥3
(2)

; 𝑦(2)),…, (𝑥1
(305)

, 𝑥3
(305)

; 𝑦(305)) 

VII (𝑥1
(1)

, 𝑥4
(1)

; 𝑦(1)), (𝑥1
(2)

, 𝑥4
(2)

; 𝑦(2)),…, (𝑥1
(305)

, 𝑥4
(305)

; 𝑦(305)) 

VIII (𝑥2
(1)

, 𝑥3
(1)

; 𝑦(1)), (𝑥2
(2)

, 𝑥3
(2)

; 𝑦(2)),…, (𝑥2
(305)

, 𝑥3
(305)

; 𝑦(305)) 

IX (𝑥2
(1)

, 𝑥4
(1)

; 𝑦(1)), (𝑥2
(2)

, 𝑥4
(2)

; 𝑦(2)),…, (𝑥2
(305)

, 𝑥4
(305)

; 𝑦(305)) 

X (𝑥3
(1)

, 𝑥4
(1)

; 𝑦(1)), (𝑥3
(2)

, 𝑥4
(2)

; 𝑦(2)),…, (𝑥3
(305)

, 𝑥4
(305)

; 𝑦(305)) 

XI (𝑥1
(1)

, 𝑥2
(1)

, 𝑥3
(1)

; 𝑦(1)), (𝑥1
(2)

, 𝑥2
(2)

, 𝑥3
(2)

; 𝑦(2)),…, (𝑥1
(305)

, 𝑥2
(305)

, 𝑥3
(305)

; 

𝑦(305)) 

XII (𝑥1
(1)

, 𝑥2
(1)

, 𝑥4
(1)

; 𝑦(1)), (𝑥1
(2)

, 𝑥2
(2)

, 𝑥4
(2)

; 𝑦(2)),…, (𝑥1
(305)

, 𝑥2
(305)

, 𝑥4
(305)

; 

𝑦(305)) 

XIII (𝑥1
(1)

, 𝑥3
(1)

, 𝑥4
(1)

; 𝑦(1)), (𝑥1
(2)

, 𝑥3
(2)

, 𝑥4
(2)

; 𝑦(2)),…, (𝑥1
(305)

, 𝑥3
(305)

, 𝑥4
(305)

; 

𝑦(305)) 

XIV (𝑥2
(1)

, 𝑥3
(1)

, 𝑥4
(1)

; 𝑦(1)), (𝑥2
(2)

, 𝑥3
(2)

, 𝑥4
(2)

; 𝑦(2)),…, (𝑥2
(305)

, 𝑥3
(305)

, 𝑥4
(305)

; 

𝑦(305)) 

XV ( 𝑥1
(1)

, 𝑥2
(1)

, 𝑥3
(1)

, 𝑥4
(1)

; 𝑦(1)), (𝑥1
(2)

, 𝑥2
(2)

, 𝑥3
(2)

, 𝑥4
(2)

; 𝑦(2)),…, (𝑥1
(305)

, 

𝑥2
(305)

, 𝑥3
(305)

, 𝑥4
(305)

; 𝑦(305)) 

 

 

 

 

 

 

 

 

 



Table 5. Final fuzzy rule base of fuzzy inference system No. V 

 

𝑥1 VLA VSNA VSNA MSNA SNA MSNA 

 LA VSNA VSNA VSNA MNA SNA 

 MA VSNA VSNA MSNA VHNA VSNA 

 HA MSNA VSNA SNA MHNA MNA 

 VHA SNA MSNA MSNA MHNA HNA 

  VLI LI MI HI VHI 

  𝑥2     

 

Table 6. The result of testing fuzzy inference system No. V 

 

 FIS No. V 

(18 fuzzy rules based on data) 

FIS No. V 

(25 fuzzy rules – complete 

base) 

CD 473.5682 473.0376 

 

 

Table 7. Results of all 15 FIS structures testing 

 

FIS 

No. 

Number of rules 

obtained from 

empirical data 

Number of rules 

in the complete 

fuzzy rule base 

CD when FIS use 

just fuzzy rules 

from empirical 

data  

CD when FIS 

use the complete 

fuzzy rule base 

I 5 5 397.3646 397.3646 

II 5 5 584.1899 584.1899 

III 5 5 365.4782 365.4782 

IV 5 5 402.1822 402.1822 

V 18 25 473.5682 473.0376 

VI 19 25 329.0113 327.1454 

VII 21 25 350.2779 349.0564 

VIII 17 25 323.3962 324.5296 

IX 19 25 306.4532 306.8304 

X 20 25 376.0972 378.7192 

XI 45 125 344.9796 343.0711 

XII 55 125 313.9698 318.7048 

XIII 50 125 354.7903 359.2937 

XIV 47 125 329.1417 329.7905 

XV 101 625 299.7392 305.8853 

 

 

 

 

 

 

 



Table 8. The results of sensitivity analysis of the FIS No. XV based on the sample 

decomposition 

 

FIS 

No. 

CD values       

Gender   Age    

Female Male  18–30 31–45 46–60 over 60 

I 448.4745 390.3084  365.0573 401.1536 396.7205 439.0159 

II 677.1041 571.3622  521.6775 589.0191 568.4074 706.9715 

III 511.7653 345.2819  307.2864 374.8513 331.8670 485.2964 

IV 487.5104 390.4018  354.1721 402.9592 432.9751 434.5825 

V 527.2683 465.5505  431.1230 477.5572 465.6013 541.7410 

VI 465.0236 308.1100  294.2280 335.2239 300.9599 391.3869 

VII 436.5012 336.9838  360.1556 341.3357 365.3794 343.8167 

VIII 461.4502 305.6264  269.9744 321.1395 373.4631 361.3978 

IX 332.9108 303.2297  281.4712 304.9135 319.1121 345.4724 

X 527.9542 358.1160  357.2947 375.6479 381.4629 434.3549 

XI 452.9036 327.9077  298.4880 335.4774 398.5793 373.6620 

XII 366.0940 312.1624  281.0126 330.0676 313.9347 332.6145 

XIII 482.5661 342.2748  327.6299 342.7775 415.5273 417.3337 

XIV 414.9863 318.0284  328.6142 322.7749 355.0851 327.7203 

XV 407.1964 291.8982  281.3575 291.1322 378.4428 308.8877 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1. Input variable x1 – Aggressiveness. 

 

Figure 2. Input variable x2 – Impulsiveness. 

 

Figure 3. Input variable x3 – Risk. 

 

Figure 4. Input variable x4 – Self-assessment. 



 

Figure 5. The number of traffic accidents in the sample 

 

Figure 6. Output variable y – Accidents. 

 

Figure 7. Comparison of empirical data and results of FIS No. V 
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Figure 8. Comparison of results of the FIS structures and multiple regression analysis 
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