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Abstract 

Theoretically simulated kinetic data were used to evaluate the performance of the 

linear, cubic spline and Bezier mathematic interpolations (in comparison with the physically 

meaningful tangential area-proportional interpolation) in case of the complex kinetics 

involving two independent processes with different degrees of overlapping. The Bezier 

interpolation exhibited best performance; the linear interpolation performed significantly 

worse than the two other ones. In general, the data-distortions caused by application of the 

mathematic interpolations do not significantly influence the model-free kinetic parameters – 

apparent activation energy and pre-exponential factor; errors below 2 % occurred even for the 

most extremely distorted data. On the other hand, the integrated peak area and the model-

based parameters such as kinetic exponents and the complexity ratio can be significantly 

influenced by the interpolations-caused data distortions, with the associated errors being in 

the order of tenths of percent. Nevertheless, the distortions associated with the choice of the 

thermokinetic interpolation were found to not affect the thermal stability predictions for the 

complex kinetic processes; only the precise predictions based on the mid-range degrees of 

conversion (e.g. controlled preparation of glass-ceramics) can be significantly affected by the 

incorrect interpolation of the thermokinetic background. 
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1. Introduction 

Methodologies-wise, the kinetic treatment of thermal analysis data was during the past 

years improved almost to perfection. Numerous methods were developed and many equations 

were derived in order to (more-or-less) accurately determine the quantities from the basic 

kinetic equation [1, 2]:   

(1) 

where α is the degree of conversion, t is time, T is temperature, f(α) is a substitute for a kinetic 

model, I is the integrated area under the kinetic peak, A is the pre-exponential factor and E is 

the apparent activation energy of the process. The most famous model-free methods (being 

independent from f(α) and designed for determination of E and A) include the methods based 

on the temperature corresponding to the maximum of the kinetic peak (e.g. Kissinger [3], 

Ozawa [4], Takhor and Mahadevan [5, 6]) and isoconversional methods providing the 

apparent activation energy in dependence on α (e.g. Friedman [7], Kissinger-Akahira-Sunose 

[8], Starink [9], Ozawa-Flynn-Wall [10], Vyazovkin [11-13], invariant kinetic parameters 

method [14]). The model-based methods then involve either non-fitting methods (master plots 

[15], method based on the compensation effect [16]) or data-fitting methods (combined 

kinetic analysis [17], Koga method [18], multivariate kinetic analysis [19]). Description and 

commented analysis of these methods can be found in the Recommendation of ICTAC 

Kinetic Committee [20]. However, neither the first Recommendation article, nor the 

following one [21] (aimed at correct data acquisition via the methods of thermal analysis) 

dealt in detail with proper baseline determination/subtraction in case of the most common, 

derivative thermokinetic data - usually obtained by differential scanning calorimetry DSC.  

The proper subtraction of the thermokinetic background is particularly crucial for 

kinetic analysis applications because even slight distortion of the data due to the inaccurate 

baseline determination may lead to significantly different enumeration of the basic kinetic 
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equation (Eq. 1) and as a result to largely incorrect kinetic predictions (which are the main 

goal for applying the kinetic analysis). This was demonstrated recently for the case of single 

kinetic process [22-24], where the physically meaningful tangential area-proportional (TAP) 

baseline [25] (see Eq. 2) was replaced by the arbitrary mathematic functions (linear, Bezier 

[26] or cubic spline baselines [27]) - note that this issue occurs very often in literature (see 

e.g. [28-32]) because the tangential area-proportional baseline is not implemented in a 

majority of commercial softwares:  

(2) 

where B(T) is the temperature dependence of the baseline curve, α is degree of conversion, z0,r 

and z1,r are the coefficients characterizing the tangent going through the starting point (in the 

reactants area), z0,p and z1,p are the coefficients characterizing the tangent going through the 

end point (in the products area) and Tf is the end point temperature. Extensive tests performed 

on simulated data (and resolving situations involving various peak asymmetries and various 

heights of the heat capacity steps between the reactants and products) have shown that in most 

cases the value of activation energy E (and as a consequence also the value of pre-exponential 

factor A) change only negligibly if the inaccurate subtraction of the thermokinetic background 

is done. On the other hand, the area of the kinetic peak and the model based parameters, such 

as the kinetic exponents or the model itself, changed significantly - up to ΔI = 30 % and 

values of kinetic exponents changing by more than 80 % in certain cases. 

 In the present work we aim to map the situation for the case of complex kinetic 

processes. Four scenarios covering the most common cases of two-process overlaps will be 

theoretically simulated with the difference between the heat capacities being modeled by 

using the TAP baseline. Consequently, the above-mentioned purely mathematical baseline 

approximations will be applied to subtract the thermokinetic background and detailed kinetic 

analysis will be applied to demonstrate the deviations arising under the different scenarios. 
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The most common sources of errors will be pointed out and discussed with regard to the 

different types of kinetic complexity. 

 

2. Data preparation 

 The simulations performed to prepare the four datasets were based on the standard 

kinetic equation (Eq. 1) accommodated for the non-isothermal DSC setup, i.e.: 

(3) 

where q+ is the applied heating rate. The complexity of the data is represented by two 

independent overlapping processes with similar Johnson-Mehl-Avrami (JMA) kinetics [33-

36] expressed by Eq. 4, where the overlap is adjusted by the pre-exponential factor,  

(4) 

where n is the model kinetic exponent corresponding to the dimensionality of the process. The 

overall area under the complex kinetic peak was set to I = 1 and the ratio between the sub-

peak areas corresponding to the two respective sub-processes is equal to 3:7. For easier 

orientation the two sub-peaks will be identified by subscripts S (= small, Is/I = 0.3) and L (= 

large, IL/I = 0.7). The kinetic parameters for one (smaller) peak were: ES = 150 kJ·mol-1, 

AS = 1015 s-1 and nS = 2. The kinetic parameters for the other (larger) peak were: 

EL = 150 kJ·mol-1, nL = 2 and the relative position toward the smaller peak was for each 

dataset adjusted by changing value of AL = 1014 s-1, AL = 1014.5 s-1, AL = 1015.5 s-1 and 

AL = 1016 s-1. Within each dataset the curves for the following q+ were simulated: 0.5, 1, 2, 5, 

10, 20 and 50 °C·min-1 – the four respective datasets are depicted in Fig. 1. 

 For each curve in each dataset two variations (upwards and downwards) of the heat 

capacity step were prepared by using the TAP baseline. The absolute magnitudes of the heat 

capacity steps were in all cases similar, equal to 1·10-4 dα/dt step at q+ = 0.5 °C·min-1 (i.e. the 

thermokinetic backgrounds of the smaller and larger peaks contributed in this case by 3·10-5 
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and 7·10-5, respectively); note that the magnifying effect of q+ was properly reflected also in 

the height of the heat capacity steps. Consequently, the arbitrary mathematic functions (linear, 

Bezier and cubic spline) were used to subtract the TAP-modeled thermokinetic background 

again – see the two lower graphs in Fig. 1 for the demonstration of the construction of the 

particular baselines. In this way, 24 datasets containing differently distorted complex kinetic 

curves were created: 4 types of mutual peak positioning (defined by different AL) x 3 types of 

baselines (linear, Bezier, cubic spline) x 2 directions of the heat capacity change (upwards, 

downwards).  

 

3. Results of kinetic analysis and discussion 

 Kinetic analysis of the distorted complex kinetic datasets was performed by means of 

model-free and model-based approaches [20]; the following methods were used - modified 

isoconversional KAS [9] (Eq. 5), isoconversional Friedman [7] (Eq. 6) and multivariate 

kinetic analysis [19] (Eqs. 7 and 8): 

(5) 

 

(6) 

 

(7) 

(8) 

 

where (dα/dt)α and Tα are the conversion rate and temperature corresponding to arbitrarily 

chosen values of conversion α, RSS is the sum of squared residua, n is number of simulated 

curves, j is index of the given simulated curve, Firstj is the index of the first point of the given 

curve, Lastj is the index of the last point of the given curve, Yexpj,k is the experimental value 
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of the point k of curve j, Ycalj,k is the calculated value of the point k of curve j and wj is 

weighting factor for curve j.  

 Starting with the model-free analysis, in Fig. 2 the resulting E values obtained for all 

simulated datasets via the modified KAS and Friedman methodologies are shown. For each 

method two evaluations are shown, averaging the E-α dependences in the 0.1 - 0.9 and 0.3 -

 0.7 α ranges, respectively. As is apparent, the range of averaging does not play major role in 

the determination of the mean E value. The deviations caused by the application of 

mathematic baselines are generally very small (~ 0.7 %) and even in the most extreme cases 

do not exceed 2 %. As expected, the datasets with significantly separated peaks (cases with 

AL = 1014 s-1 and AL = 1016 s-1) exhibit larger absolute errors (i.e. lower accuracy) and also 

larger error bars (i.e. lower precision) during the isoconversional evaluation of apparent 

activation energy. The data also show that the magnitude of errors caused by the usage of the 

respective baselines increases in the order Bezier < cubic spline < linear (with linear baseline 

being the least accurate and precise).  

 Even better result regarding the determination of E were obtained by means of the 

multivariate kinetic analysis, using which the apparent activation energy was determined for 

each respective sub-process – see upper graphs in Fig. 3. The maximum errors in E values are 

in these cases approx. 1 % for ES and 0.5 % for EL (again, the linear baseline provides the 

worst results out of the three tested interpolations). Similar conclusions are valid also for the 

pre-exponential factor A (which is highly correlated with E); also in case of this quantity the 

changes are rather negligible (< 1 %) – see the middle row of graphs in Fig. 3. Different 

situation however arises in case of the model-based quantities. The deviations of the JMA 

kinetic exponent n are for the two sub-processes depicted in the lower row of graphs in Fig. 3. 

None of the tested mathematic interpolations performs particularly well, with the average 

errors being ~ 10 %. Nonetheless, in certain situations the linear interpolation can result in 
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errors as high as 30 %. Similarly high level of distortion is present also for the evaluation of 

the integrated area under the kinetic peak I, with the error magnitude varying around 5 – 

15 %. It is noteworthy that the Bezier interpolation performed particularly well with regard to 

the determination of the overall area of the kinetic peak (most errors for this interpolation 

were lower than 5 %). Significantly worse results were obtained for the ratio between the 

particular areas attributed to the two overlapping kinetic peaks – this is in Fig. 4 expressed as 

the relative area corresponding to the smaller kinetic peak IS/I (note that this quantity is very 

important e.g. for controlled preparation of ceramics/glass-ceramics or for quantitative 

identification of multicomponent material composition). For the present data the IS/I errors 

vary between 15 – 35 %, but in one extreme case the 65 % error occurred. Lastly, as the 

multivariate utilizes non-linear optimization of the whole set of simulated kinetic peaks, the 

overall correlation coefficient can be obtained as a measure of the quality of the fit; for the 

sake of clarity the correlation coefficients are for the present data plotted as log(1-r2) – see 

Fig. 4. It is apparent that application of the linear interpolation in case of the downwards step 

change and data with negative asymmetry (all JMA kinetic peaks exhibit negative asymmetry 

[37]) results in largest distortions, as demonstrated by almost an order of magnitude worse r2 

due to the deviation of the standard JMA model peak shape. 

 To demonstrate the consequences of the baseline-caused data distortions in kinetic 

analysis, one needs to realize that one of the ultimate goals of the kinetic analysis are the 

kinetic predictions. In accordance with this statement, the kinetic results obtained for the most 

extreme distortions will be compared to the prediction simulated for the original (undistorted) 

dataset. Simple isothermal prediction (the most common utilization of kinetic calculations) of 

the conversion change ca. 50 °C below the onset of the kinetic process measured non-

isothermally will be employed for the demonstration – extrapolation by 50 °C is reasonably 

large to justify the usefulness of the prediction and, at the same time, to expect an acceptable 
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accuracy. The predictions for isothermal annealing at 100 °C depicted in Fig. 4 are based on 

the dataset with AL = 1014 s-1, as the situation with only partially overlapping processes is 

more prone to distortions. The largest (percent) errors obtained throughout the present study 

were employed to show the “worst case scenarios”. The black line corresponds to the 

prediction from the original undistorted data. The solid red line corresponds to the scenario, 

when only the E and A deviations were taken into account (red solid line; simulation for 

ES = 151.498 kJ·mol-1, AS = 1015.163 s-1, EL = 150.375 kJ·mol-1, AL = 1014.061 s-1; other 

parameters were similar to the undistorted dataset, i.e. nS = nL = 2, IS/I = 0.3). As is apparent, 

sole deviations of E and A have no effect on the kinetic predictions, even the quite far 

extrapolated ones. On the other hand, significantly different predictions were obtained when 

full sets of deviated parameters were taken into account – the graph in Fig. 4 depicts two 

extreme cases, utilizing the model-based parameters from distorted datasets with AL = 1014.5 

and AL = 1015.5: dashed red line (ES = 151.498 kJ·mol-1, AS = 1015.163 s-1, EL = 150.375 kJ·mol-

1, AL = 1014.061 s-1, nS = 1.429, nL = 2.258, IS/I = 0.485) and dotted red line 

(ES = 151.498 kJ·mol-1, AS = 1015.163 s-1, EL = 150.375 kJ·mol-1, AL = 1014.061 s-1, nS = 2.531, 

nL = 1.717, IS/I = 0.202), respectively. In both these cases it is above all the largely deviated 

IS/I value that causes the difference in the predictions. Applications-wise, even the most 

deviated predictions are still quite accurate from the materials stability point of view – these 

applications are mainly concerned with the low-α (i.e. below 0.1) and high-α (above 0.9) 

predictions, where all the predictions relatively well overlap with the one obtained for the 

correct set of kinetic parameters. The present distorted predictions would come short only in 

case of the utilization employing the middle range of α (0.2 – 0.8), where the predictions can 

deviate by as much as 0.2 in the degree of conversion – such applications may involve e.g. 

tailoring of controlled preparation of glass-ceramics or selective preparation of given ratio 

between the two products corresponding to the two kinetic sub-processes. 
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4. Conclusions 

 Theoretical simulations were used to demonstrate the effect of inaccurate baseline 

interpolations on the results of the consequent analysis of derivative complex kinetic data 

with different degrees of sub-processes overlaps, where the two sub-processes had similar 

activation energy. The consequent conclusions were reached:  

 general performance of the tested interpolations was (best to worst): Bezier → cubic spline 

→ linear. 

 largest data distortions occur for linear interpolation applied in the only partially 

overlapped peaks cases when either a downwards heat capacity step accompanies peak 

with negative asymmetry or an upwards heat capacity step accompanies peak with positive 

asymmetry. 

 isoconversional methods for evaluation of E provided good overall results with errors 

< 2 % influenced by inaccurate baseline interpolations.  

 model-based parameters (kinetic exponents and complexity ratio Ii/I) and integral area of 

the kinetic peak are significantly influenced by the baseline choice/inaccuracy, the errors in 

the order of tens of percent occur for these quantities. For model-based complex kinetic 

studies the tangential area-proportional baseline should therefore strictly be used. 

 the choice of baseline (and the associated possible distortions) does not affect the thermal 

stability predictions for the complex kinetic processes; only the precise predictions based 

on the mid-range degrees of conversion (e.g. controlled preparation of glass-ceramics) can 

be significantly affected by the incorrect interpolation of the thermokinetic background. 
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Figure captions 

 

Fig. 1: A) - D) The four base datasets simulated for different values of AL. Each graph depicts 

set of 7 complex kinetic curves prepared for the heating rates 0.5, 1, 2, 5, 10, 20 and 

50 °C·min-1.  

E) Demonstration of the construction of the physically meaningful thermokinetic 

background by using the tangential area-proportional baseline (solid red line) and of 

its consequent subtraction via the three tested mathematic interpolations. Graph F 

depicts the zoomed region with baselines. 

 

Fig. 2: Results of the KAS (graphs A and C) and Friedman (graphs B and D) analyses applied 

to the datasets with different complexity types (located on X axis) distorted by using 

the three mathematic interpolations (different types of points) The upper and lower 

rows of graphs correspond to the averaging of the E-α dependences over the 0.1-0.9 

and 0.3-0.7 α intervals, respectively. 

 

Fig. 3: Results of the multivariate kinetic analysis applied to the datasets with different 

complexity types (located on X axis) distorted by using the three mathematic 

interpolations (different types of points). The results for the apparent activation 

energies E, pre-exponential factors A and JMA kinetic exponents n of the smaller 

(subscript S) and larger (subscript L) kinetic sub-processes are shown.  

 

Fig. 4: Results of the multivariate kinetic analysis applied to the datasets with different 

complexity types (located on X axis) distorted by using the three mathematic 

interpolations (different types of points). The results for the overall integrated area I, 

complexity ratio IS/I  and correlation coefficient r2 are shown. Graph D depicts the 

kinetic predictions based on the kinetic parameters obtained from different distorted 

datasets (red lines) compared to the prediction based on one set of the original 

undistorted kinetic data (AL = 1014 s-1, black line) – the predictions were made for the 

isothermal annealing at 100 °C.  
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Fig 1 
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Fig 2 
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Fig 3 
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Fig 4 

 
 

 

 

 

 

 

 

 

 


