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The paper deals with the determination of the terminal velocity of solid spherical 

particles falling slowly in unbounded purely viscous shear-thinning polymer solutions. 

The relationships are given for calculation of a sphere terminal velocity falling in the 

creeping flow region using a power-law viscosity model. The comparison is presented 

for terminal velocities calculated according to the aforementioned relationships with 

those obtained experimentally by measuring the terminal velocity of spheres in the 

aqueous solutions of polymers. By considering the shape of the viscosity function of the 

polymer solutions, it was necessary to use a simple iterative method to estimate the 

suitable interval of shear rates for determination of the power-law model parameters. 
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Introduction 

 
A knowledge of the terminal velocity of a rigid particle is necessary for the 
solution of numerous theoretical and practical problems such as, for example, 
design calculations of thickeners, fluidised bed equipment, pipeline transport 
systems, falling particle viscometry, etc. A comprehensive review of literature 
and an analysis of the investigation of the motion of particles falling freely in a 
fluid, especially in non-Newtonian one, are given in the book by Chhabra [1]. 
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Prediction of the terminal falling velocity is based on the knowledge of the 
drag coefficient cD of the flow around the particle. For a sphere falling at its 
terminal velocity ut, the coefficient cD is related to the terminal falling velocity ut 
by the expression 
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Here, g is the gravity acceleration, d the sphere diameter, s the sphere density, 
and  the liquid density. If the drag coefficient cD is known, the terminal velocity 
ut can simply be calculated from Eq. (1). 

For the determination of the drag coefficient in the flow in purely viscous 
non-Newtonian fluids, different rheological viscosity models are used [1]. In solving 
engineering problems, a frequently used model is  for its simplicity  the 
two-parameter power-law (Ostwald-de Waele model)  

 1   ɺ
nK  (2) 

where  is the shear viscosity, ɺ  the shear rate, K the fluid consistency coefficient, 
and n the power-law index. The disadvantage of this model is that it describes the 
course of the viscosity dependence on the shear rate with a sufficient accuracy 
only in the limited intervals (nearly linear in the log-log coordinate system) of the 
shear rate. Therefore, when calculating the falling velocity ut of a particle, it is 
first necessary to estimate the appropriate viscosity function interval in order to 
determine the values of K and n parameters of the power-low. Beside other, the 
power-law predicts unreal high values of the apparent viscosity at sufficiently low 
shear rates. 

In this paper, the results are presented of an iterative calculation of terminal 
velocities of spheres falling in unbounded purely viscous polymer solutions using 
the power-law. The calculated values of the terminal velocities are compared with 
those obtained experimentally by Strnadel [2,3]. 
 
 
Fundamentals 

 
Analogously to Newtonian flow, the drag coefficient cD for the fall of a sphere in 
an unbounded purely viscous non-Newtonian fluid and for the creeping flow can 
be expressed as  
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where  
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is the power-law Reynolds number and Xn(n) is the drag coefficient corrective 
factor depending on the power-law index n. 

After expressing the coefficient cD in the equation (1) according to the 
relation (3), we get for the terminal velocity of a sphere falling in a power-law 
fluid the relationship 
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The functional dependences of Xn on n reported by different investigators 
differ widely from each other [1]. Nevertheless, the results of the numerical 
solution of the flow of a power-law fluid around a sphere in the creeping flow 
region obtained by the authors [2,4–6] coincide very well. The resulting values of 
the factor Xn are along with their average values Xn,av summarized in Table 1. The 
values of Xn,av can be determined with the mean relative deviation of 0.3 % 
according to the relationship 

 3 20.270 1.666 1.133 1.264   nX n n n  (6) 

The comparison of the values Xn,av with those calculated according to Eq. (6) 
is shown in Fig. 1.  

 

Table 1 Computed values of the drag coefficient corrective factor Xn 

n 
Strnadel and 
Machač [2] 

Crochet 
et al. [4] 

Gu and 
Tanner [5] 

Tripathi 
et al. [6] 

Average 
value Xn,av 

1 1.000 1.020 1.002 1.003 1.006 

0.9 1.137 1.180 1.140 1.141 1.149 

0.8 1.258 1.270 1.24 1.230 1.249 

0.7 1.355 1.350 1.320 1.316 1.335 

0.6 1.429 1.440 1.382 1.381 1.408 

0.5 1.476 1.470 1.420 1.420 1.447 

0.4 1.495 1.510 1.442 1.440 1.472 

0.3 1.484 1.480 1.458 1.460 1.471 

0.2 1.436 1.460 1.413 1.398 1.427 

0.1 1.341 1.390 1.354 1.360 1.361 
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Fig. 1 Dependence of the corrective drag coefficient factor Xn,av on the flow index n 

 
 
Materials and methods 

 
The relevant falling sphere experiments were carried out in six types of cylindrical 
Perspex columns filled with aqueous solutions of Carboxymethyl Cellulose 
(CMC), Hydroxyethyl Cellulose Natrosol, and Methyl Ethyl Cellulose Tylose. 
The diameters of the columns were 16, 21, 26, 34, 40, and 90 mm which led to 
the ratio d/D .011; 0.499. The polymer solutions were prepared by 
dissolution of powdered polymers in demineralised water. The composition of test 
liquids along with their density is summarized in Table 2. The measurements of 
liquid flow curves, primary normal stress differences, oscillatory, creep & recovery, 
stress relaxation and stress growth tests were carried out in a rheometer Haake 
MARS II (Thermo Fisher Scientific, Karlsruhe, Germany). 
 

Table 2 Characteristics of the liquids tested 

Liquid Polymer Used 
Concentration 

[wt. %] 
Density 
[kg m−3] 

L1 Methyl Ethyl Cellulose Tylose 3.0 1006 

L2 Carboxymethyl Cellulose 1.2 1002 

L3 Hydroxyethyl Cellulose Natrosol 250 HHX) 1.0 1000 

 

Seventeen types of spherical particles made of glass, ceramics, steel, lead, 
and tungsten carbide were used for the drop tests. Typical characteristics of the 
individual test particles are given in Table 3. 

X
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Table 3 Specifications of the spherical particles tested 

Particle Material d [mm] s [kg m−3] Particle Material d [mm] s [kg m−3] 

S1 glass 1.93 2525 S10 ceramics 7.99 3908 

S2 glass 3.13 2486 S11 carbide 0.99 15119 

S3 glass 4.12 2597 S12 carbide  1.49 15119 

S4 glass 4.93 2508 S13 carbide 1.99 15119 

S5 glass 6.12 2495 S14 carbide 2.99 15119 

S6 ceramics 1.99 3908 S15 steel 0.99 7526 

S7 ceramics 2.99 3908 S16 steel 3.17 7789 

S8 ceramics 3.99 3908 S17 lead 2.00 11118 

S9 ceramics 5.99 3908 –  – – 

 
 

The values of the terminal falling velocities ut,exp in unbounded fluid were 
determined by a linear extrapolation of the experimental dependences of the 
terminal falling velocities measured in the individual test columns on the ratio d/D 

to the value d/D → 0. The terminal falling velocities ut,exp obtained had ranged in 
the intervals 0.43–11.4 mm s−1 for the Tylose solution, 0.57–38.0 mm s−1 for the 
CMC solution, and 0.77–49.7 mm s−1. This corresponded to the Reynolds number 
Ren varying from ×10−4 to 0.153. The achieved effective shear rate efɺ  
estimated by the ratio ut,exp/d ranged from 0.22 s−1 to 3.8 s−1 for the Tylose solution, 
from 0.30 s−1 to 13 s−1 for the CMC solution, and from 0.70 s−1 to 16 s−1 for the 
Natrosol solution. 

All experiments are described in more detail elsewhere (see [2,3]). 
 
 
Results and discussion 
 
Rheological measurements 

 
The viscosity functions of the test polymer solutions, evaluated from the 
experimentally obtained flow curves, are displayed in Fig. 2. It is evident that the 
course of these functions can be approximated by the power-law model (2) only 
in the narrow intervals of shear rates (Table 4). 

It followed from the creep  recovery tests and normal stress 
measurements [2,3] that the test polymer solutions exhibit a negligible elastic 
behaviour and can thus be considered as purely viscous (inelastic) liquids. 
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Fig. 2 Viscosity functions of the model polymer solutions 

 
 
Table 4 Shear rate intervals and power-law parameters of the liquids tested 

Liquid
  gɺ  

[s−1] 

n 

[–] 

K 

[Pa sn] 
m,pl 

[%] 

max,pl 

[%]
 cɺ  

[s−1]
m 

[%]
max 

[%] 

L1 
0.07–1.0 0.964 6.34 – – 0.22–3.6 5.1 10.9 

0.26–3.9 0.927 6.08 1.0 2.7 0.21–3.8 4.4 10.5 

L2 

0.10–1.1 0.842 3.76 – – 0.29–6.9 14.8 45.9 

0.29–6.2 0.731 3.54 – – 0.16–9.7 13.4 30.0 

0.10–9.7 0.753 3.39 5.5 17.0 0.26–9.0 7.6 29.0 

L3 

0.07–1.2 0.884 3.134 – – 0.40–8.1 16.7 51.4 

0.4–7.7 0.739 2.972 – – 0.31–10.8 16.5 34.8 

0.29–11.4 0.742 2.852 4.4 11.8 0.32–11.7 9.7 29.9 

 
 

The courses of the creep  recovery tests are shown in Fig. 3. The primary 
normal stress differences of the solutions were at the relevant shear rates due to 
their small and unmeasurable values. 
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Fig. 3 Creep  recovery tests of the model polymer solutions 

 

 

Terminal falling velocity 

 
Before calculating the terminal velocity ut,c of spheres characterized in Table 3 
according to the relationships (5) and (6), the parameters K and n of the power-
law (2) were determined from the course of the liquid viscosity functions in an 
initial guess  gɺ  of the shear rate interval. Then, using the calculated values ut,c, 
the suitability of the selected shear rate interval was verified by calculating the 
effective shear rates ut,c/d. If the calculated values ut,c/d do not correspond with 
the shear rate interval  gɺ , the shear rate guess must be corrected and the 
determination of K and n parameters and the calculation of the terminal velocities 
ut,c repeated. 

The guesses  gɺ , corresponding values of the parameters K and n, and 

subsequently calculated values  cɺ  are for individual test liquids given in Table 4. 
This table also shows the mean relative deviations m and maximum relative 
deviations max of the calculated and experimental values of the terminal falling 
velocities. It is evident that the gradual change of the interval  gɺ  leads to the 

accordance between intervals  gɺ  and  cɺ  and the deviations m and max 
decrease. 

The best agreement of the ut,c and ut,exp values was achieved for the Tylose 
solution. In this case, the power-law approximates the relevant part of the 
viscosity function with the mean relative deviation of experimental and calculated 
viscosity data m,pl = 1.0 %. At the same time, the effective shear rates ut,c/d are 
low and the shear-thinning of the solution not very significant (n = 0.927). A worse 
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agreement of the calculated and experimental data of terminal velocities was 
achieved in the case of the fall of particles in the CMC and Natrosol solutions. 
Herein, the relevant parts of the viscosity function are approximated by the power-
law with the larger errors pl (see Table 4). Moreover, considering that at lower 
shear rates the power-law predicts a higher liquid viscosity than its real value, 
there is an overestimation of the frictional resistance and the calculated terminal 
velocities are lower than those obtained experimentally. Simultaneously, the 
deviations m increase with the increasing shear rates. These facts are evident from 
Fig. 4, in which the terminal velocities ut,c and ut,exp are compared for CMC and 
Natrosol solutions. 
 

 
Fig. 4 Comparison of the terminal velocities ut,c and ut,exp for CMC and Natrosol solutions 
 
 

Higher accuracy of approximation of the viscosity function by power-law 
for CMC and Natrosol solutions can be achieved by dividing the relevant shear 
rate interval into two sub-intervals. For the solution of CMC, the power-law 
parameters K = 3.54 Pa sn and n = 0.797 (m,pl = 3.0 %, max,pl = 9.4 %) were 
determined in the shear rate interval from 0.1 to 3.2 s−1 and K = 4.15 Pa sn and 
n = 0.602 (m,pl = 1.2 % , max,pl = 3.1 %) in the interval from 3.0 to 9.7 s−1. After 
recalculation of the terminal velocity of particles, it was found that the deviations 
of the calculated and experimental values decreased only in the interval of lower 
values of the shear rate (particles S1–S9, S11, S15, S17, m = 4.4 %, max = 11.1 %). 
On the contrary, in the interval of higher shear rates, due to worse prediction of 
the polymer solution viscosity at lower shear rates by power-law, a higher 
deviation of calculated and experimental values of terminal velocities were found 
(m = 22.2 %, max = 27.2 %). Analogous results were obtained for the calculation 
of terminal velocity of particles in the Natrosol solution. Here, the power-law 
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parameters K = 2.92 Pa sn and n = 0.815 (m,pl = 2.9 %, max,pl = 5.6 %) were 
determined in the shear rate interval from 0.3 to 3.2 s−1 and K = 3.67 Pa sn and 
n = 0.594 (m,pl = 1.2 % , max,pl = 2.51 %) in the interval from 3.0 to 9.7 s−1. 

Also in this case, it was found that the deviations of the recalculated and 
experimental values of terminal velocity decreased only in the interval of lower 
values of the shear rate (particles S1–S8, S11, S15, m = 4.8 % , max = 10.1 %). 
In the interval of higher shear rates the deviations of calculated and experimental 
values of terminal velocities were m = 19.5 % and max = 21.1 %. 
 
 
Conclusions 

 

The relationships for calculating the terminal velocity of spherical particles falling 
slowly in an unbounded power-law fluid have been presented including a new 
simple formula for determination of the drag coefficient corrective factor. 
Simultaneously, a simple iterative procedure has been proposed for calculation of 
the terminal velocity of spheres falling in purely viscous polymer solutions whose 
viscosity function can be approximated by the power-law only in the limited range 
of shear rate. 

Applicability of this procedure has been verified comparing the calculated 
values of terminal velocity of spheres falling in the Tylose, CMC, and Natrosol 
polymer solutions with the experimental data. A very good agreement between 
calculated and experimental terminal velocity data has been achieved in the 
domain of low values of the effective shear rates ut/d. Here, the shear-thinning of 
the liquid is moderate and for the flow index of the approximated part of the 
viscosity function it is approximately valid that n > 0.8. At higher shear rates, the 
degree of shear-thinning of the polymer solution tested increases, the flow index n of 
the approximated part of the viscosity function decreases, which leads to a more 
pronounced underestimation of the calculated values of the particle terminal velocity. 
Greater accuracy of the terminal velocity prediction in this case is achieved, for 
example, by using relationships that are based on the Carreau viscosity model, which 
includes the zero shear-rate viscosity0 as a specific parameter [1,3]. 
 
 
Symbols 

 
cD drag coefficient – 
d sphere diameter m 
D diameter of test column  m  
G gravity acceleration  m s−2 
K power-law parameter (consistency coefficient) Pa sn 
n  power-law parameter (flow index)  – 
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Ren  power-law Reynolds number – 
ut  particle terminal falling velocity m s−1 
ut  particle terminal falling velocity in unbounded liquid m s−1 

Xn  drag coefficient corrective factor  – 
 
 
Greek symbols 
 
 deformation – 
ɺ  shear rate  s−1 
δ relative deviation % 
 non-Newtonian (apparent) shear viscosity Pa s 
0 zero shear-rate viscosity  Pa s 
 fluid density  kg m−3 
s particle density kg m−3 
 
 
Subscripts 
 

c calculated value 
ef effective value 
exp experimental value 
g guess value 
m mean value 
max maximum value 
pl related to power-law 
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