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Abstract: In pairwise comparisons, several scales are used to compare objects. 
Perhaps the most known is Saaty’s fundamental scale for the AHP/ANP from 1 to 9 
(with reciprocals), but other scales with 3, 5 or 10 items are also used in practice. 
Since the AHP/ANP is scale invariant, the following problem arises: for example, a 
preference of one object over other object expressed by the value 2 means something 
else for the scale from 1 to 3 (it expresses the medium preference) and the scale from 1 
to 100 (in this case the preference is almost negligible). Therefore, the need of a 
normalization for pairwise comparison scales arises. The aim of the article is to 
propose a suitable transformation of a general linear scale for pairwise comparisons 
to a unit real interval that preserves several natural and desirable properties.  
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Introduction 

Pairwise comparisons (PCs) belong among the most common tools for multiple 
criteria decision making since the introduction of the analytic hierarchy process (AHP) 
and the analytic network process (ANP) by T. L. Saaty in 1977 and 1980 respectively, 
see Saaty (1977 and 1980). The list of successful AHP/ANP applications is rapidly 
growing, see e. g. Vaidya and Kumar (2006), Subramanian and Ramanathan (2012), 
Kramulová and Jablonský (2016), or Lidinská and Jablonský (2018). It should be noted 
that PCs method has a long history predating the papers by T. L. Saaty, with the first 
mention of the PCs method dating back to the work of the Catalan scholar and monk 
Ramon Lull in the 13th century, while the first modern work on PCs can be attributed to 
L. L. Thurstone and his Law of Comparative Judgments, see Thurstone (1927).   

In the AHP/ANP, the so called fundamental (linear) scale from 1 to 9 (with 
reciprocals) is used for pairwise comparisons. However, other linear scales with 3, 5, 
7, 8 or 10 items were also proposed, see Koczkodaj (1993) or Koczkodaj et al. (2016). 
In particular, Fülop et al. (2010) and Koczkodaj et al. (2016) provide strong arguments 
to use the scale only up to three. Variety of other studies suggested the use of non-
linear scales such as logarithmic scales, exponential scales, or scales based on a 
logistic function, see for example Lootsma (1993), Donegan et al. (1992), Ma and 
Zheng (1991) or Salo and Hämäläinen (1997). Ishizaka and Labib (2011) provide a 
comprehensive review of scales of pairwise comparisons up to year 2010.  

Studies on scale comparisons are rather seldom, see Dong et al. (2008), Elliot 
(2010), Triantaphyllou et al. (1994), or Starczewski (2017). Dong et al. (2008) 
provided comparisons on several scales for pairwise comparisons, and concluded that 
with respect to their algorithms the best scale was the geometrical one. Elliot (2010) 
experimentally compared three different scales with the result that none of the scales 
captured accurately the preferences of all individuals. Triantaphyllou et al. (1994) 
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compared 78 scales to conclude that no single scale could outperform all the other 
scales. Starczewski (2017) examined the effect of a scale (he compared the 
fundamental scale, extension scale and geometric scale) on a priority vector, and found 
that scales with more options lead to a better (more precise) evaluation of a priority 
vector. Franek and Kresta (2014) compared Saaty’s scale to other scales for both 
consistent and inconsistent pairwise comparison matrices. According to the authors, 
Saaty’s scale is still favorable, but if a decision maker demands higher consistency, 
he/she should use root square or logarithmic scales.  

The AHP/ANP is scale invariant, which means that the result (a priority vector) 
does not depend on a scale used. However, when using different scales for PCs, the 
same value from a given scale has a different meaning. This problem was explicitly 
expressed by Koczkodaj (2015) and dubbed the “pairwise comparisons rating scale 
paradox”. Koczkodaj (2015) also offered a solution to this paradox, a normalization of 
a rating scale via linear transform. However, the proposed linear transformation in 
Koczkodaj (2015) has a main drawback as it does not preserve consistency of PCs.  

Therefore, the aim of this paper is to introduce a new (power) transform of a 
(linear) rating scale to a unit interval that has several desirable properties, namely it 
preserves consistency of PCs, the ranking of objects and the most inconsistent triad.  

The paper is organized as follows: section 1 provides brief introduction to pairwise 
comparisons and the problem with different scales, in section 2 the normalization is 
proposed along with several of its properties, section 3 provides a numerical example 
and several aspects of the paper are discussed in section 4. Conclusions close the article. 

1 Statement of a problem 

1.1 Preliminaries  

Let  1,..., nC c c , 2,  nNn , be a set of compared objects (concepts, entities). Let 

 1 / ,ija m m denotes the relative importance of an object ic over object jc . Then the 

(square) matrix nnijaA )( ,  , 1, ...,i j n  is called a pairwise comparison matrix (PCM). 

The matrix A is reciprocal if and only if: 

1 /ij jia a ,  , 1,...,i j n   (1) 

The matrix A is consistent (or, alternatively, pairwise comparisons are said to be 
consistent) if and only if: 

ij jl ila a a   , , 1,...,i j l n   (2) 

The final weights of objects (priority vector) w in the AHP/ANP, which were pairwise 
compared, is derived by the eigenvalue method, and satisfies the following condition: 

wAw max   

where max  is the maximum (positive) eigenvalue of the matrix A. 

As pairwise comparison matrices are often inconsistent, various inconsistency 
indices were proposed. Perhaps the most known are Saaty’s consistency index C.I. and 
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consistency ratio C.R., see Saaty (1980, 2008). For other inconsistency indices 
proposed in the literature see e.g. Alonso and Lamata (2006), Brunelli and Fedrizzi 
(2015) or Brunelli (2017).  

In this paper Koczkodaj’s inconsistency index (KII) is used to measure PCM 
inconsistency, which is defined as follows:    

Definition 1. Koczkodaj’s inconsistency index (KII), Koczkodaj (1993, 2014):  Let 
( )n  be the set of all ordered triples (“triads”)  , ,ij jk ika a a  satisfying (2) for 

 , , 1, 2,...,i j k n  . Then:  

( )
max min 1 , 1 ij jkik

n
ij jk ik

a aa
KII

a a a

  
        

 (3) 

The KII expresses inconsistency of a pairwise comparison matrix in terms of the 
most inconsistent triad, and  1,0KII . 

Let  m,1  with reciprocals (which will be further omitted in the text) denote alternative 
scales for pairwise comparisons, where 2,  mRm . In the context of this study whether 
the scale is discrete or continuous is not important. For Saaty’s scale m = 9. 

1.2 The problem of different scales 

Originally, T. L. Saaty proposed to use the linear scale from 1 to 9 for the pairwise 
comparisons, see Saaty (1977). The strength of preference or importance for the 
Saaty’s scale is shown in Tab. 1.  

However, when at least two different scales are used for pairwise comparisons, the 
following problem emerges. 

Let’s consider two pairwise comparisons scales,  3 1, 2,3S  , and  100 1, 2,...,100S  . 

If, for instance 2ija  , then its meaning for the scale  3 1, 2,3S   and the scale 

 100 1, 2,...,100S   is different. In the former case, the preference 2ija   means medium 

preference of the object i to the object j, while in the latter case the preference is almost 
negligible, see Fig. 1. Therefore, the scale for pairwise comparisons cannot be neglected. 
This is true especially in situations when different scales are used simultaneously, or, 
when results of pairwise comparisons of the same set of objects with different scales 
need to be compared. In such cases, scale normalization is necessary.  

Fig. 1. A comparison of two different scales 

 
Source: author 

126



Tab. 1. Saaty’s fundamental scale. 
Intensity of importance Definition 

1 Equal importance 
2 Weak or slight 
3 Moderate importance 
4 Moderate plus 
5 Strong importance 
6 Strong plus 
7 Very strong importance 
8 Very, very strong importance 
9 Extreme importance 

Source: Saaty (1977, 1980, 2008) 

2 Methods 

2.1 Normalization of a pairwise comparison scale  

To avoid the problem described in the previous section, normalization of the 
comparison scale is applied.  

Let the general pairwise comparison scale  1,GS m , 2,  mRm . Then, by the 

normalization, this scale is transformed into the  1,2  unit interval of real numbers. 

The transformation f (the normalization) should satisfy the following (obvious) 
conditions: 

i)    : 1, 1, 2f m  , 

ii) f is strictly increasing. 
iii) (1) 1f   and (m) 2f  . 

In Koczkodaj (2015), a linear transform f is proposed for normalization: 

1 2
( )

1 1

m
f x x

m m


 

 
 (4) 

 However, the linear transform (4) has a serious drawback: it does not preserve 
consistency of pairwise comparisons.   

Consider for example the consistent triad (2, 3, 6), and let m = 9. Then, after the 

linear transform, the triad (9/8, 10/8, 13/8) is not consistent, because 
9 10 13

8 8 8
   . 

2.2 Properties of the proposed power normalization 

Definition 2. Let A(a )ij  be a pairwise comparison matrix,  1 / ,ija m m , 2,  mRm . 

Let f be the power transform:  

( ) k

ij ijf a a , 
ln 2

ln
k

m
   (5) 

Proposition 1: The power transform (5) satisfies conditions i)-iii). 

Proof is obvious. 
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Proposition 2: The power transform (5) preserves consistency: if ij jl ila a a  , then also 

( ) ( ) ( )ij jl ilf a f a f a  . 

Proof: Let ij jl ila a a  . Then    ( ) ( )
kk k k

ij jl ij jl ij jl il ilf a f a a a a a a f a       . 

Proposition 3: Let A be a PCM of the order n. Let 0 0 0 0( , , )T x y z  be a triad (from A) with 
maximum KII. Let A* be the matrix A transformed by (5). Then the KII of the 
transformed triad  0 0 0 0( , , )T x y z  (from A*) is also maximal. 

Proof: For a triad 0 0 0 0( , , )T x y z  one of two possible cases holds: either 0 0

0

1
x y

z


 , or   

0 0

0

1
x y

z


 . Without loss of generality suppose that 0 0

0

1
x y

z


 . Also, because KII is 

maximal for T0, 0 0

0

x y

z




x y

z


holds for all triads ( , , )x y z . After transformation (5), 

where k > 0, we get: 0 0 0 0

0 0

k
k k

k

x y x y

z z

  
  
 

kk k

k

x y x y

z z

    
 

, which is true for any 

positive k.  

Proposition 3 allows to show that if a pairwise comparison matrix A is more 
inconsistent than a pairwise comparison matrix B (with respect to KII), this relation is 
preserved by the power transform (5). 

Proposition 4. Let ( )ijA a and B(b )ij  be inconsistent pairwise comparison matrices of 

the order n. Let KII be the Koczkodaj’s inconsistency index (3) and 
let ( ) ( )KII A KII B . Let ( )ijA a and B (b )ij

 be transformed pairwise comparison 

matrices by the transform (5), where
ln 2

ln
p

m
  . Then ( ) ( )KII A KII B  . 

Proof: Let the most inconsistent triad of the matrix A be  , ,ik ij jka a a   and the most 

inconsistent triad of B  , b , bik ij jkb . Then, either 1ik

ij jk

a

a a



 and 1ik

ij jk

b

b b



, or 1ik

ij jk

a

a a



 

and 1ik

ij jk

b

b b



. Without loss of generality assume the latter. 

Since ( ) ( )KII A KII B , we have 1 1ik ik

ij jk ij jk

a b

a a b b
  

 
, hence ik ik

ij jk ij jk

a b

a a b b


 
. 

From Proposition 3 it follows that the most inconsistent triad is preserved by the 
transform (5). Hence, for the transformed matrices A* and B* the most inconsistent 
triads are  , ,ik ij jka a a     and  , b , bik ij jkb    respectively. As above, without loss of 

generality we assume 1
p

ik ik
p p

ij jk ij jk

a a

a a a a



   
 

 and 1
p

ik ik
p p

ij jk ij jk

b b

b b b b



   
 

. 

128



Then we have: ik ik

ij jk ij jk

a b

a a b b


 


p p

ik ik

ij jk ij jk

a b

a a b b

   
          


p p

ik ik
p p p p

ij jk ij jk

a b

a a b b


 
  

ik ik

ij jk ij jk

a b

a a b b

 

   
 

  1 1ik ik

ij jk ij jk

a b

a a b b

 

     
 

 ( ) ( )KII A KII B  . 

Proposition 5: Let A be a PCM of the order n. The transformation (5) does not change 
ranking of all alternatives if the weights of all alternatives are determined by the 
geometric mean method. 

Proof: Let wi,  1, 2,...,i n , be the weights of alternatives derived form a pairwise 

comparison matrix ( )ijA a by the geometric mean method:  

 



 






















n

i

n
n

j
ij

n
n

j
ij

i

a

a

w

1

/1

1

/1

1  (6) 

Without loss of generality it suffices to show that the relation “to be less or equal 
than” is preserved for an arbitrary pair of weights. Hence, let 1 2w w , and let *

1w  and 
*
2w  be the transformed weights respectively, then 1 2w w   should hold. When 

comparing weights given by relation (6), the denominator is the same, so it can be 

omitted. Also, n-th square can be omitted. Hence, 1 2w w  means that 1 2
1 1

n n

j j
j j

a a
 

  . 

After transform (5) we get:  

1 1 2 2
1 1 1 1

k k
n n n n

k k

j j j j
j j j j

a a a a
   

   
     
   

    , hence 1 2w w  . Because the proof for any 

other pair of weights is analogous, the Proposition 5 is proved.  

Remark 1. It is well-known that priority vectors derived from a pairwise comparison 
matrix of the order n = 3 by the eigenvalue method and the geometric mean method 
are identical. Therefore, Proposition 5 is also valid for the eigenvalue method and a 
pairwise comparison matrix of the order n = 3. However, whether Proposition 5 is 
valid for the eigenvalue method and n > 3 remains an open question.   

3 Problem solving 

3.1 Numerical example 

In this section the use of the proposed normalization (5) is demonstrated on an 
example.  

Example 1. Let the pairwise comparison matrix of four objects be given as follows: 
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Tab. 2. The input PCM. 
1 2 3 5 

0.5 1 2 4 

0.33333 0.5 1 3 

0.2 0.25 0.3333 1 
Source: own. 

By the GM method, the vector of weights (the priority vector) is: 
 07.0,17.0,29.0,47.0w . 

The first object has the highest weight which means it is the most preferred or 
important entity, the second object follows on the second place, etc. Further, there are 
four triads: (T1) 132312 aaa  , (T2) 142412 aaa  , (T3) 143413 aaa   and T(4) 

243423 aaa  . It can be easily checked that all four triads are inconsistent, and the most 
inconsistent triad is (T3). 

Now suppose that m is 5, 7, 9 and 20 respectively, or in other words, consider four 
scales: [1,5], [1,7], [1,9], and [1,20] (with reciprocals).  

Then, after the transformation (5) of the PCM given in Tab. 2, normalized pairwise 
comparison matrices are shown in Tab. 3 along with inconsistency of all four triads 
and weights of alternatives (priority vectors) on the right hand side of the table. The 
maximal values are highlighted in blue. 

As can be seen, both the maximum inconsistency and objects’ rankings are 
‘invariant’ for all scales, the triad (T3) is still the most inconsistent one, and the 
ordering of objects remains unchanged.    

Tab. 3. Four PCMs after transformation (5).  
scale   PCM     KII weights 

m = 5 1 1.347866 1.6050366 2 0.11653 0.345465 

  0.741914 1 1.34786552 1.816741 0.183248 0.278091 

  0.623039 0.741914 1 1.605037 0.314114 0.222306 

  0.5 0.550436 0.62303875 1 0.160228 0.154139 

m = 7 1 1.280056 1.4789518 1.7741 0.097399 0.328601 

  0.781216 1 1.28005623 1.638544 0.154155 0.274627 

  0.676155 0.781216 1 1.478952 0.267907 0.228203 

  0.563666 0.610298 0.67615456 1 0.134484 0.16857 

m = 9 1 1.244413 1.41421356 1.661501 0.086757 0.319406 

  0.803592 1 1.24441257 1.548563 0.137801 0.272477 

  0.707107 0.803592 1 1.414214 0.241323 0.231264 

  0.601866 0.64576 0.70710678 1 0.120067 0.176853 

m = 20 1 1.173956 1.28942315 1.451197 0.064396 0.300545 

  0.851821 1 1.1739559 1.378172 0.103044 0.26748 

  0.775541 0.851821 1 1.289423 0.183366 0.237166 

  0.689086 0.725599 0.7755406 1 0.08955 0.194809 
Source: own  
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Also, it’s worth noting that with the growing upper boundary m, the weights of all 
objects are becoming more and more uniform (closer to each other). 

4 Discussion 

In the previous two sections the normalization (the power transform) of the scale 
for pairwise comparisons was introduced, and several natural and desirable 
properties of this transformations with respect to the geometrical mean (GM) method 
and Koczkodaj’s inconsistency index (KII) were shown and proved. The simplicity 
of the proposed normalization and its nice properties might provide incentive for its 
practical use.  

Nevertheless, the use of the GM method and KII could be considered limitations of 
this study. The eigenvalue method for the derivation of a priority vector can be used 
instead of GM method, and there are many other inconsistency indices than KII 
proposed in the literature, such as Pelaez-Lamata PLI index, Golden-Wang GWI index, 
Aguaron and Moreno-Jimenez GCI index, and so on, see e.g. Brunelli and Fedrizzi 
(2015), which might be examined with regard to the proposed normalization. If 
pursued, this direction of research might prove to be interesting as well, though there is 
no certainty that similar results can be obtained for other inconsistency indices than 
KII, since KII is a maximum-based index of inconsistency unlike other, rather mean-
based inconsistency indices. Yet, this research direction certainly deserves attention of 
experts in the field.   

Conclusions 

The aim of the paper was to propose a normalization of the scale for pairwise 
comparisons in the multiplicative AHP/ANP framework, as the AHP/ANP is scale 
invariant. This leads to undesired effects regarding the intensity of preference, which 
is, actually, dependent on the upper bound of an applied scale.  

The proposed solution to the problem is a normalization in the form of a simple 
power transforms. The transform has several virtues, see Propositions 1-5 in section 2, 
namely it preserves consistency of pairwise comparisons, the most inconsistent triad, 
relation of inconsistency between two arbitrary inconsistent matrices, and last, but not 
least, it also preserves objects’ rankings when the inconsistency is expressed in terms of 
Koczkodaj’s inconsistency index. 

The proposed approach, the scale normalization, is recommended as an additional 
step of AHP/ANP when different scales for pairwise comparisons are employed 
simultaneously, or, when results of pairwise comparisons obtained with different 
scales are to be compared. 

Further research might focus on a scale problem in the context of additive 
AHP/ANP or fuzzy AHP/ANP. Also, the research of the effect of the proposed 
normalization on inconsistent pairwise comparison matrices with respect to other 
inconsistency indices would be desirable. 
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