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Applied mechanics of materials  

Components and structures in mechanical and civil engineering are made 
of various materials, and design engineers must have a good knowledge of their 
mechanical properties. This book deals with this area. The first chapter summarises 
the principal terms: stress, strain, and strain energy. The second chapter compares 
the finite element method and analytical methods for the determination of stresses 
and deformations. Chapter 3 presents the principal criteria for fracture and for 
the onset of permanent deformations. The following chapter is devoted to plastic 
deforming. Attention is also paid to thermal stresses. Chapter 6 deals with stress 
concentration at sudden changes of shape. Chapters on fatigue, fracture mechanics 
and analysis of fractures follow. Chapter 10 explains the mechanics of viscoelastic 
materials, whose deformations depend on the duration and time course of loading. 
The following chapters are devoted to components with treated or coated surfaces, 
to the properties of composite materials and of elastomeric materials. The methods 
of shape optimisation for improvement of strength and material economy are 
the topic of Chapter 14. The last chapter is devoted to the theory of similarity 
and dimensional analysis and their use for increasing the design effectiveness.  

The book contains numerous figures and examples, which illustrate the use of the 
described methods.    

The book is accessible freely via https://hdl.handle.net/10195/72948 or after 
writing its titleinto Google. 
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Aplikovaná mechanika materiálů 

Konstruktér či projektant musí mít dobré znalosti o chování různých materiálů při 
zatížení. K tomu přispívá v patnácti kapitolách i tato kniha. První kapitola shrnuje 
základní pojmy: napětí, přetvoření a deformační energie. Druhá kapitola stručně 
porovnává metodu konečných prvků a metody analytické pro stanovení napětí  
a deformací v konstrukcích. Třetí kapitola uvádí kritéria pro posuzování porušení 
nebo vzniku trvalých deformací. Následuje kapitola o plastickém deformování. 
Pozornost je dále věnována napětím, která vznikají při změnách teploty. Kapitola 
šestá pojednává o koncentraci napětí v místech náhlých změn tvaru, kapitola sedmá 
je o únavě materiálů. Následují kapitoly o lomové mechanice, analýze lomů  
a o mechanice viskoelastických látek, kde deformace závisí na časovém průběhu 
zatížení. Další kapitola je věnována součástem se speciálními povrchovými 
vrstvami pro dosažení vyšší životnosti nebo specifických vlastností. Další kapitoly 
podávají základy mechaniky kompozitních materiálů, elastomerních materiálů  
a velmi poddajných těles, včetně textilních. Následují metody optimalizace tvaru 
těles. Poslední kapitola je věnována použití teorie podobnosti a rozměrové analýzy 
pro zvýšení efektivnosti vývoje a konstruování.  

Kniha obsahuje četné obrázky i příklady, které ilustrují použití popisovaných 
metod. 

Kniha je volně přístupná na http://hdl.handle.net/10195/947 nebo po zadání jejího 
názvu do vyhledávače Google. 
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Foreword  
 

The components and constructions for mechanical, civil, chemical and transport 

engineering are made of various materials. The design engineer thus must have a 

good knowledge if their behaviour under load. This book wants to help in the 

selection of material and finding the optimum shape and dimensions. It wants to 

remind what should not be forgotten in design, if mistakes should be prevented. 

The calculations alone are not sufficient. The designer should understand all in 

context. The author assumes that the reader has absolved or is attending the basic 

course of the mechanics of materials. This book reminds the basic terms, shows the 

interesting features of the Mohr´s circle, including its use in the analysis of 

fractures, reminds thermal stresses and how they can be influenced. It explains 

briefly the fatigue processes. It shows the importance of stress concentrators, and 

their unexpected consequences. It also brings the reader brief introduction into 

newer branches of mechanics of materials, such as plasticity, fracture mechanics, 

mechanics of viscoelastic materials, polymeric and composite materials, and of 

components with coated or treated surface.  

The book also explains briefly the principle of the finite element method, which 

today represents the major tool for the analysis of complex components and 

structures. Also it presents general approach to their optimisation, including the 

robust design, with emphasis on setting the appropriate tolerances during the 

design stage. The advantages of similarity theory and dimensional analysis in 

design are also shown.    

All principal relationships are explained by means of simple formulae; the 

knowledge of college mathematics is sufficient. The text is accompanied by 

numerous figures, simple solved examples, and references.  

 

 

The author wishes that the reading of this book brings the readers similar pleasure, 

as its writing made to the author.  
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1. Stress - strain - strain energy

1.1  Stress 

Loads generate in components internal forces and stresses. Stress is defined as 

force per unit of area. In general case, the internal forces are obtained by the 

method of fictitious cut: the component is cut in the investigated place by an 

artificial cut, into which normal and shearing forces are placed, as well as bending 

and twisting moments. Their magnitudes are then determined from the equations 

of equilibrium of all forces and moments acting on the separated part [1 - 4].  

Two kinds of stresses can be distinguished: normal stress , acting in the direction 

normal to the section, and shear or tangential stress   in the direction tangential 

to this plane. Both stresses have the same dimension (N/m
2
 or Pa, MPa or GPa), 

their effects, however, are different. Normal stress is positive (tensile), if it acts out 

of the material and tries to enlarge the distance between the adjacent layers of 

atoms. Compressive normal stress (negative) presses the adjacent layers of atoms 

together. Shear stress causes mutual sliding of the neighbouring layers. These 

stresses endanger the component in different way. Normal tensile stress contributes 

to brittle fracture by tearing off, while shear stress promotes plastic deforming.     

Both normal and shear stresses act nearly always together in the loaded component, 

even if it is not obvious at first sight. For example, if we consider a long rod loaded 

by tensile force (Fig. 1.1), we know immediately that at places distant from the 

ends normal tensile stress acts of magnitude 

0 = F / S ;        (1.1) 

F is the axial force and S is the area of the cross section. We have tacitly assumed 

that the section is perpendicular to the axis (as denoted in the formula by subscript 

0). What is the situation in an inclined cut? 

Fig. 1.1.  Rod loaded by tensile force – dimensions and deformations. 
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This situation is depicted in Fig. 1.2. The cut is inclined by angle . The normal 

force N acts perpendicularly to it, and the tangential force T acts in the plane of the 

cut. Both forces are in equilibrium with axial force F, and it holds 

 N() =  F cos   T() =  F sin   .        (1.2) 

These forces generate normal and tangential (shear) stress. These stresses are 

obtained by dividing the force N or T by the area of the inclined cut. This area, S, 

is related with the area S of the perpendicular cut as  

 S = S / cos  .             (1.3) 

The combination of Eqs. (1.2) and (1.3) yields (with respect to Eq. 1.1) stresses  

 () = N/S = 0 (cos )
2
 ,  () = T/S = 0 sin  cos  (1.4a, b) 

   

      Fig. 1.2.  Forces in an inclined cut. 

1.2  Plane stress, Mohr´s circle 

Let us look at the stresses in an oblique cut if in the directions x and y normal 

stresses x and y act, and shear stresses xy and yx. The subscript at normal stress 

denotes the direction of the stress and of the normal to the oblique plane. The first 

subscript at the shear stress shows the normal direction to the pertinent plane, while 

the second subscript denotes the direction of the stress itself.   

The situation in an infinitesimal element is depicted in Fig. 1.3. After writing the 

equations of equilibrium in the direction normal and tangential to the oblique cut, 

one obtains (with respect to the relationships between the size of the inclined area 

dS and vertical and horizontal areas dSx a dSy) the following expressions: 

 


 2sin2cos
22

)( xy
yxyx







   ,       (1.5a) 

 


 2cos2sin
2

)( xy
yx




  .        (1.5b) 
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         a.         b.   

    Fig. 1.3.  Plane state of stress – stresses in an inclined cut.  

a – stress components, b – equilibrium of forces. 

In the derivation of these equations the rule of complementary shear stresses was 

used: If at some point shear stress acts in certain plane, then shear stress of the 

same magnitude acts also in the perpendicular plane. Both vectors are oriented 

towards the intersection line of both planes, or away from it. For directions x, y,   

 xy = yx .             (1.6) 

Equations (1.5a), (1.5b) enable calculation of normal and shear stress in any cut, if 

the stress components x, y, xy in some coordinate system x, y are known. A pair 

of values (), () can be depicted by a point in the plane   . Such points for 

all angles  lie on a circle  (Fig. 1.4), called Mohr´s circle [1  4]. In the past, it 

was used for the geometrical determination of characteristic stresses. Today, this is 

no more necessary, as every computer program for stress analysis can calculate the  

  

 
     Fig. 1.4. Mohr´s circle. a) – stress components, b) construction of the circle.  
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stress components in any section. Nevertheless, Mohr´s circle remains a very 

useful tool that gives a good idea on mutual relationships of stress components in 

various directions and on the character of stressing. It also enables easy evaluation 

of safety of components from brittle or ductile materials, and the orientation of 

strain gauges for experimental determination of stresses in components and 

constructions. It is also useful in the analysis of fractures. We shall therefore look 

at it in detail. 

Mohr´s circle has a centre at point C [(x +y)/2; 0] and radius 

 2

2

2
xy

yx
R 










 
 .            (1.7) 

The mutual magnitudes of the normal and shear stress depend on the orientation  

of the investigated cut. Two sections, containing angle , are represented in the 

Mohr´s circle by rotation of the radiusvector by angle 2. Two perpendicular 

sections (90º) correspond in this circle to the straight angle (2 × 90 = 180º) and to 

two end points of the diameter. When constructing the Mohr´s circle, we plot the 

shear stress as positive if it tries to rotate the element clockwise, and as negative, if 

it rotates the element anticlockwise. Always at least two mutually perpendicular 

directions exist, in which the shear stress equals zero, and normal stress has 

extreme value (Fig. 1.4). These directions and stresses are called principal 

directions and  principal stresses, 1, 2. Stress 1 is always the pricipal stress far 

right in the Mohr´s circle. Maximum shear stress  max acts in the sections 

containing angle 45º with the directions of principal stresses; the corresponding 

rotation of the radiusvector in the Mohr´s circle is 90º. It holds     

 2

2

2,1
22

xy
yxyx

RC 


 






 



  ,     (1.8a,b) 

 
22

212

2

max
















 
 xy

yx
R  .            (1.8c) 

The angle between the plane of the cut with stresses x,  xy and the principal plane 

with stress 1 can be determined from the relationship 
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 0  =  

yx

xy
arctg







2

2

1   .            (1.9) 

The knowledge of principal directions is important for the orientation of 

reinforcement, for example steel bars in concrete or fibers in a composite material, 

and also for orientation of strain gauges.  

The construction of Mohr´s circle will be shown on the following example. 

Example.  

In coordinate system x, y normal stresses x = 120 MPa, y = 60 MPa, and shear 

stress  xy = 40 MPa act. Determine the principal stresses 1, 2 and their directions.   

Solution. After inserting the input values into equations (1.7) – (1.9) we obtain: 

     1 =  2
2

40
2

60120

2

60120








 


  = 90 + 50 = 140 MPa 

 2 =  90 –50 = 40 MPa 

 5040
2

60120 2
2

max 






 
 R MPa 

 0  =  56,26
60120

402

2

1





arctg º  .  

The construction of Mohr´s circle is obvious from Fig. 1.4. 

Now, we shall look at several simple, but important cases. For each, the element 

with acting stresses is shown together with the corresponding Mohr´s circle, and 

also the values of principal stresses and maximum shear stress are given. 

Simple (uniaxial) tension  (Fig. 1.5a) 

Normal stress   acts in the investigated section, but no shear stress acts here. This 

means that the stress   is the principal stress 1, which makes the first point of the 

Mohr´s circle. No stress acts in the perpendicular section, so that the corresponding 

point (0,0) forms the second point of the circle, and represents the second principal 

stress 2 (= 0). The maximum shear stress corresponds to the radius of this circle 

(i.e. max = /2), and is inclined against the direction of stress   by 45º.  
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a.                                                          1 = , 2 = 0, max = /2 

 

 

b.                                                          1 = 0, 2 = , max = /2  

 

c.                                                          1 = , 2 = , max = 0   

 

 

d.                                                           1 = , 2 = , max =  

 

 

Fig. 1.5.   Mohr´s circles - examples.   

Uniaxial compression (Fig. 1.5b) 

The situation is similar to the previous case, but the circle lies now in the half-plane 

of negative stresses. The principal stresses are 2  =  p, 1 = 0 (the corresponding 

point of the Mohr´s circle for 1 is lying at right from 2).  

Isotropic tension  (Fig. 1.5c) 

The values of stress in two mutually perpendicular directions are the same, and 

shear stresses are equal zero. Both points in the plane – have merged together, 

and the Mohr´s circle has degenerated to a single point. No shear stress acts in this 

plane  ( = 0). The real situation, however, is more complex, as we shall see in the 

section about triaxial state of stress. 

Simple shear  (Fig. 1.5d)   

In this case, the center of Mohr´s circle lies in the origin of coordinate system. No 

normal stresses act in the considered sections of the element, but only shear 

stresses, one positive and the other negative. the situation is the same as if in the 

cut inclined by 45º tensile stress 1 =   acts, and compressive stress 2 =   in the 

perpendicular cut. The stresses  1, 2 are the principal stresses. 

This state of stress exists, e.g., in a rod of circular cross section, loaded by twist. 
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A rod or shaft from brittle material breaks in this case due to normal stress, as it is 

witnessed by oblique fracture surface (Fig. 1.6). Similarly, when wet washing is 

twisted, the water flows out of it thanks to compressive stress acting in the inclined 

sections. In the past, before reliable safety ski binding was developed, torsion 

fractures of skiers´ shin-bones were rather common.   

 
        Fig. 1.6.    Torsion fracture of a bar fro brittle material. 

As we shall see later, plastic deformations arise if the maximum shear stress attains 

the yield strength in shear; the plastic flow occurs by mutual sliding of material 

layers in the direction of shear stresses. This can be seen sometimes in a sheet of 

soft steel loaded by axial tension. Due to plastic flow systems of tiny lines appear 

at the edges of the sheet, which are inclined by 45º to the sheet axis (so-called 

Lüders lines, generated by the material slipping due to shear.  

Remark. If twisting moment in a shaft should be measured by strain gauges, it is 

necessary to orientate them into the directions of maximum normal stresses, i.e. in 

the angle 45º to the shaft axis (Fig. 1.7a). If they were oriented in the direction of 

shaft axis or perpendicular to it (Fig. 1.7b), nothing could be measured, as the 

sensors react only to length changes. The arrangement of two strain gauges 

according to Fig. 1.7a, one loaded by tension and the other by compression, doubles 

the sensitivity, and, moreover, compensates the influence of temperature changes.  

The Mohr´s circle is useful also in the analysis of fractures, as we shall see later.  

  

a.        b.         

           Fig. 1.7. Shaft loaded by twist, with strain gauges. 

   a - suitable orientation of gauges, b - these sensors will measure nothing. 
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1.3  Triaxial state of stress 

We have seen Mohr´s circle for stresses acting in the plane x, y. Similarly, normal 

and shear stresses can act in the planes x, z and y, z. Every stress state is generally 

tri-axial (Fig. 1.8). In coordinate system x, y, z, three normal stresses exist: x, y, 

z and six components of shear stresses: xy, yx, yz, zy, and zy, xz. Shear stresses 

are characterised by two subscripts; the first shows the direction normal to the 

plane of shear stress, and the other subscript shows the direction of the shear stress 

itself. This distinguishing is necessary: it is obvious from Fig. 1.8 that the shear 

stress in one plane (e.g. x) can act in direction y or z. Normal stress acts always 

perpendicularly to the plane, so that one subscript is sufficient. (In theory of 

elasticity, two subscripts are sometimes used, as well). The description of stress 

state at a certain point needs nine stress components in general. With respect to the 

rule of complementary shear stresses it follows xy = yx, yz = zy and zx = xz, so 

that six values are sufficient: three for normal and three for shear stresses [1  4].  

     
         Fig. 1.8.  Triaxial state of stress. Coordinate system and stress components. 

Some stress components can equal zero. Principal stresses can be found in every 

plane. Always three mutually perpendicular directions exist, in which only normal 

stress acts, and shear stress equals zero. These are the principal directions, and the 

corresponding stresses are principal stresses, denoted 1, 2, 3. Generally, three  

Mohr´s circles can be plotted, with 1  2  3; the stress far right is always 1 

(Fig. 1.9). One circle corresponds to the plane xy, the second to the plane yz, and 

the third to the plane zx. If the state of stress is defined by nine (or 6) stress 

components, the principal stresses and their directions can be obtained by solution 

of a cubic equation (see [1  3]); a common software for stress analysis can do it. 

The situation is simpler, if certain principal direction is known, for example from 

the symmetry of the body or from the character of load. Some principal directions  
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Fig. 1.9.   Mohr´s circles for triaxial state of stress. 

are „natural“: radial and circumferential direction for a rotational body with axi-

symmetrical load, axial, circumferential and radial direction for a cylindrical 

pressure vessel. For a spherical pressure vessel, any tangential direction is also 

circumferential, and the stress state is isotropic; the third principal direction is 

radial. The axial direction in long bars, shafts and beams, loaded by axial force or 

bending moment is the principal direction. In plates, thin shells and plane 

problems, one principal direction is perpendicular to the surface; the same holds for 

unloaded surface of a body. In such cases the formulae given above (or Mohr´s 

circle) are sufficient for finding the principal stresses. 

The knowledge of principal directions is very important for the orientation of fibers 

in some composites, for orientation of reinforcement in concrete (the steel bars 

serve for transfer of tensile stresses and should be oriented in their directions), and 

for the proper orientation of strain gauges (Fig. 1.7). Their knowledge helps also in 

the analysis of fractures and identification of the causes of failures in machines or 

buildings, as we shall see later. 

1.4  Strain 

Hooke´s law 

Components are deformed by acting stresses. The strain intensity is described by 

relative elongations   and changes   of the initially right angles (Fig. 1.1, 1.10),  

  = l/l  ,   u/a = tg  .           (1.10) 

The angles   are small for small strains, so that tg   ;  is called shear strain. 
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         Fig. 1.10. Shear strain (a schematic).  

 

 

Direct proportionality between normal stresses and strains exists for small strains 

in elastic bodies (till the proportionality limit). This is called Hooke´s law, and its 

form for uniaxial load is  

   =  / E     or     =   E  ;            (1.11) 

  is normal stress and E is Young´s tensile modulus of elasticity, defined as 

 E =  /   .            (1.12) 

It corresponds to the stress, which would cause doubling of the initial length of the 

specimen (i.e.  = 1). It is thus measure of material stiffness. 

Every state of stress is, in general, triaxial, with stresses and strains in all 

directions, and general Hooke´s law is  

 x  = [x – (y + z)] / E , 

 y  = [y – (z + x)] / E ,           (1.13)  

 z  = [z – (x + y)] / E ;

the subscript indicates the direction.  is the coefficient of transverse contraction, 

so-called Poisson´s number, which expresses the ratio of shortening in transverse 

direction to the elongation in the load direction (Fig. 1.1): 

  =  D / D .              (1.14) 

Hooke´s law for shear strains is 

 xy  =  xy / G ,    yz  =  yz / G ,   zx  =  zx / G  ;         (1.15) 

 is shear stress, and G is the shear modulus, related to the tensile modulus as  

 G = E/[2(1 + )] ,   or      E = 2(1 + )G .         (1.16) 

The stresses x, y in plane stress can be expressed as functions of strains x, y: 
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 .           (1.17) 

These formulae are used for the determination of stresses in constructions by 

means of strain gauges, which measure strains. 

Fig. 1.11 shows tensile test diagrams of various materials. Brittle material (Fig. 

11.1 a) breaks suddenly if the stress has reached the tensile strength p. In ductile 

materials, the deformations start growing faster after the yield strength Y has been 

attained, and permanent deformations remain after unloading. The yield strength is 

sometimes obvious by a dwell in the stress-strain diagram  (Fig. 11.1c). Sometimes 

it is not visible (Fig. 11.1b); then it is defined as the stress, that causes permanent 

relative elongation 0,2% = 0,002. Various symbols are used. In material standards, 

Re is used for pronounced yield stress and  Rp, 0,2 for imperceptible; fY is used in the 

codes for metallic structures; here we shall use Y (in Czech literature also k). The 

ultimate tensile strength is denoted Rm or fu (ultimate); in Czech literature (and 

here) also P. Plastic deformations will be treated in detail in Chapter 4. 

   

           a.        b.   c. 

         Fig. 11.1.  Tensile tests of various materials. a - brittle materials, 

         b, c - elastic-plastic materials.  - stress,  - strain.  

Mohr´s circle for strains 

Relative deformations depend on the orientation of the ivestigated plane. The 

pertinent expressions are similar to those for stresses:   

 () = 


2sin
2

1
2cos

22
xy

yxyx






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The term ½ at  in (1.18) follows from the fact that ½  expresses the angle of 

rotation of the line of direction . The shear strain  expresses the change of the 

right angle, and is created by the sum of rotations  (½) of two perpendicular lines.  

The points (), ½ () plotted in the system , ½   for various orientations of 

fictitous cuts lie on a circle similar to the Mohr´s circle (Fig. 1.12). Similarly with 

stresses, we can also say for deformations that two mutually perpendicular 

directions exist, in which the shear strain equals 0 and strains are extreme. These 

are principal strains (1, 2) and lie in the principal directions of elongation.     

 

 

    

                   Fig. 1.12.  Mohr´s circle  

o            for strain. 

              . 

 

The principal directions of strains in isotropic materials coincide with the principal 

directions of stress. Their knowledge facilitates the orientation of strain gauges; if 

possible, they should lie in principal directions. It is thus reasonable to make 

general analysis of stress state in the component before gluing the strain gauges.         

1.5  Work of loading forces and strain energy 

A compliant body is deformed, when loaded. This causes movement of the acting 

forces, which do work. This work is positive, if the displacement occurs in the 

direction of force, and negative, if the displacement direction is opposite. (Work is 

also done by the moments during their rotation.) The work performed by constant 

force equals the product of the force and displacement, W = F. If the force F 

varies during deforming (Fig. 1.13), the work must be calculated as the integral  

 
)(L

dFW  .             (1.19) 

In elastic bodies with direct proportionality between the force and deformation,  

F = k  ,            (1.20) 
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     a.              b. 

Fig. 1.13.   Deformation work. a – elastic deforming, b – deformong elastic-plastic. 
0AB0 – work expended during loading, ACB – energy released during unloading. 

the work equals 

 W = ½ F  = ½ k 2 = ½ F 
2
/ k ;          (1.21) 

k is the stiffness, corresponding to the force needed for causing the deformation of 

unit magnitude. If an elastic body is deformed, the work of loading forces is 

transformed into potential energy of elastic strains, 

W = U .             (1.22) 

This is the law of energy conservation. The potential energy can be expressed by 

means of forces and displacements, and then by means of stresses and strains. 

For example, the energy accumulated in a rod of length l and section area S, loaded 

by axial force F, is  

 U = ½  S ×  l = ½ 2
/E × Sl = ½ 2

E Sl .        (1.23) 

All these expressions contain the term Sl, which is the volume of the rod. Division 

of the expressions (1.23) by the volume yields energy per unit volume, called 

strain energy density . This is used for the evaluation of the possibility of 

fracture or plastic deformations (see Chapter 8). 

If the body is unloaded, the deformations and accumulated energy disappear.  

The energy conservation law enables sometimes a very quick estimation of forces 

or stresses in a body, for example under impact, as it will be shown further.   

Example.  

A vehicle with an elastic bumper hits a massive wall by velocity v = 10 km/h. 

Determine  the maximum force,  if the vehicle has the mass  m = 1000 kg,  and the 
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stiffness of the bumper is k = 500 N/mm = 500000 N/m. 

Solution. The maximum force at impact can be obtained easily from the law of 

energy conservation. At the beginning the vehicle has kinetic energy Ekin, which is 

gradually changed into the potential energy Upot in the bumper spring, The initial 

velocity is v = 10000/3600 = 2,78 m/s, so that the kinetic energy Ekin = ½ mv
2
 = 

3865 J. Rearrangement of Equation (1.21) gives 

 
kinkEF 2max  = 38655000002   = 62169 N . 

This force can be used for the determination of the path and time to stopping. The 

pertinent expressions and results are presented in Chapter 4 of the book [5].  

Loads often cause permanent deformations (Fig. 1.13b). The direct proportionality 

between deformation and force is no more valid, and the work must be calculated 

according to the general formula (1.19). The total work of deforming equals the 

sum of the potential energy of elastic stresses and of the dissipated work. During 

unloading, only elastic part of the deformation and work disappears, as obvious 

from Fig. 1.13b. The energy is spent irreversibly for plastic deforming and for the 

friction or for creation of new fracture surfaces in fracture processes.  Equation 

(1.19) is valid also in these cases. The energy spent in irreversible processes is 

often much larger than the accumulated energy of elastic stresses. 
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2. Finite element method,

analytical and numerical methods

2.1   Finite element method 

The analysis of stresses and deformations in complex construction and components 

is done mostly by the finite element method (FEM). Various commercial programs 

exist for this method, which are used by design engineers and researchers. This 

section will be, therefore, limited to basic information.  

The finite element method is a numerical method, which, after the first steps in 

the second half of the last century, has proven as very powerful, and was gradually 

developed for solution of problems in mechanics of bodies, heat transfer, flow of 

liquids and gases, magnetic fields, and other areas [1  5]. We shall use a brief 

interpretation from the mechanics of elastic bodies, where the method is based on 

the Lagrange principle: In stable equilibrium, the total potential energy of the 

system, consisting of the deformation energy and the decrease of the potential 

energy of the loads, is minimum, 

 =  + z = min !        (2.1) 

This principle will be illustrated here on a simple body  a rod with one end fixed 

and the other loaded by axial force F (Fig. 2.1). This force is related with the 

displacement   of the free end by the formula 

F  = K ;        (2.2) 

K  = F/  is the rod stiffness in tension; here K = F/[FL/(ES)], where L is the length 

of the rod, S is the area of its cross section, and E is the modulus of elasticity in 

tension. During deforming, strain energy was accumulated in the bar 

  =  ½ F   =  ½ K 2 .        (2.3) 

Fig. 2.1. Rod loaded by axial force. 
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The force F moves by  and its potential energy decreases by z = F. The total 

energy of the system equals  

  =  ½ K2  F.             (2.4)  

According to the Lagrange principle this energy will be minimum for such 

displacement , for which its derivative (with respect to the path) will be zero. 

Differentiating Equation (2.4) by  gives   

 d/d   =  K   F  = 0 .            (2.5) 

This expression can be rewritten into the form 

 K    =  F ,              (2.6) 

which says „force F equals the product of deformation  and stiffness K“. Vice 

versa, the solution of Eq. (2.6) for the known load and stiffness yields the value . 

For the above rod of stiffness K = ES/L, the known formula for elongation,   = 

F/K = FL/(ES), is obtained. 

The Lagrange principle was applied first on simple bodies, in the form of so-called 

Ritz method. With this method, the deformations of the body are expressed by 

means of simple functions, e.g. polynomials: w = a0 + a1x + a2x
2
… Then, Hooke´s 

law is used for the determination of deformations and stiffness from the strains and 

elastic properties.  Since the displacements depend on (yet unknown) values of 

constants  a0, a1, a2…, an1, the minimum of potential energy is sought so that the 

expression (2.6) is differentiated by each of them, d/daj, and each derivative is 

put equal zero.  This gives a system of n linear equations. Its solving yields the 

unknown constants, and the deformations and stresses in the body. 

A disadvantage of the Ritz´ method is that it always works with only one 

approximation function w = f (x) for the whole body. Therefore, it cannot be 

adjusted to a more complicated body shape or load distribution. Fortunately, in the 

sixties it was only one step from here to the finite element method, the more so that 

this was the time of advent of computers, which are indispensable for it. At that 

time, moreover, also the use of matrix methods for the analysis of large truss 

structures became common.  

With the finite element method, the analysed body is divided by fictitious cuts into 

high number of small parts, so-called finite elements, which are connected together 
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in nodal points (Fig. 2.2). The mesh of elements is created so that the loads act in 

nodes. The solution finds the displacements of the individual nodes, from which 

the strains, internal forces and stresses in various places are calculated. The work 

with high numbers of these values is facilitated by their arrangement into matrices. 

 

 

 

 

 

 

 

 

Fig. 2.2.  Finite element method – examples of simple meshes [4]. 

The displacements within individual elements are usually expressed by 

polynomials;  for example, a polynomial of second degree for the j-th element is: 

wj = a0j + a1jx + a2jx
2
. It is important that the deformations of individual elements 

can be approximated by various functions, provided that the conditions of 

equilibrium and boundary conditions are satisfied.  The displacements are then 

used for the creation of strain and stiffness matrices of the individual elements. In 

the following step these matrices are composed together so that the stiffness 

matrix of the whole body is created. Load matrix and node displacements matrix 

for the whole body are created in similar way. The advantage of matrix notation is 

its simplicity and clear arrangement. The basic equation of the finite element 

method looks identically to Equation (2.6) for the deformation of a spring loaded 

by force F.  The difference between them is that K, F and   in the finite element 

method represent matrices of the body stiffness, load and displacements of all 

nodes. The arrangement of the individual values into the pertinent matrices is a 

matter of a mathematician or programmer. The final task is the solution of a large 

system of equations with several hundreds to several hundred thousands of 

unknowns. 
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Programs for the finite element method consist of three parts: preprocessor, 

processor (solver), and postprocessor.  

Preprocessor serves for the definition of the body geometry, prescription of 

material properties, loads and boundary conditions. Every commercial FEM 

program offers ample choice of elements and material models. Some programs are 

suitable especially for certain problems, such as plastic deformations or contact 

problems, analysis of elastomeric materials, dynamic problems, etc.  

Solver (processor) contains tools for the solution of large systems of linear 

equations. It was just the finite element method and its big potential for solution of 

problems in automotive and aircraft industry, which have contributed to the 

development of efficient methods for solution of large systems of equations.   

Postprocessor processes large amounts of calculated values, for example node 

displacements, and from them it calculates strains, stresses and forces. It also 

calculates the values of equivalent stresses according to various failure hypotheses. 

For better illustration it presents them in graphic form and in colours.    

The well-known finite element method (FEM) programs are (in alphabetical order) 

Abaqus [6], Ansys [7], Cosmos [8], LS Dyna [9] and Marc [10]. They also enable 

solution of nonlinear problems, for example large deformations, plasticity and 

contact problems, dynamic or flow problems, and other. Some programs are 

integrated into systems for computer aided design CAD.  

More information on the individual programs can be found via the pertinent web 

pages.  

2.2   Use of numerical and analytical methods for problems in mechanics 

Computers have changed solution of many problems. The analysis of stresses and 

deformations of complicated components is today done mostly by the finite 

element method. This method and the pertinent programs are universal – suitable 

software can solve nearly everything. This is a big difference compared to the pre-

computer time, when a specific method of solution existed for every kind of 

problem. The deflection of beams was obtained by integration of the differential 

equation of deflection curve, by the Mohr´s method, by means of Castigliano´s 

theorem, or by other methods. Twist of rods was solved by means of differential 

equations ordinary or partial, but also in experimental way using so-called 

membrane analogy. The solution for circular plates was obtained by integration of 
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simple differential equation. Rectangular plates, on the other hand, needed the 

finite differences (mesh) method or the use of Fourier series. With elastic-plastic 

deformations, only the simplest material models and geometries could be analysed.          

On the other hand, the algorithm for the use of the FEM is the same for the solution 

of any problem: proposal of the element types and creation of the corresponding 

mesh in the investigated body, definition of suitable material models, boundary 

conditions and loads, and „letting the computer to do its job“. Then, „only“ the 

analysis of results and interpretation of them follow. No wonder that if a design 

engineer has got some experience with the finite element method, he is no more 

willing to solve the problems by older „classic“ ways. However, each of them 

confirms that he (or she) needed a lot of time to master the FEM, and made many 

mistakes at the beginning, such as defining the boundary conditions, creation of the 

mesh, or description of the loads. Sometimes he also admits that he faced to a 

problem, which even recognised software was unable to solve. We should not 

forget that also the FEM codes have been gradually improved, partly thanks to 

solving problems from actual practice, and this often revealed their week places, 

which were gradually removed.     

The computers take the burden of the routine calculations from the design 

engineer, and give him a space for better understanding the problem and 

considering all possible loads, actual shape of the structure, boundary conditions 

and material properties, and, therefore, give the space for general increase of 

technical level and reliability of the designed object. This, however, needs also 

some theoretical knowledge. And, as E. Becker has said, 

   computation without a good theory is nothing else than production of rubbish.  

The statistics from the past show that about 30% of failures of civil engineering 

structures were due to “misunderstanding of their static action” during the design 

stage. A good design engineer must understand the terms “force equilibrium” and 

the “method of fictitious cut”, understand the difference between the normal and 

shear stress, know the main features of stresses in uniaxial and multiaxial loads, 

and understand the origin and effects of thermal stresses. He should understand the 

term strain energy density, and know the criteria of material failure both brittle and 

ductile. He (or she) must also be aware that real structures contain some 

imperfections and that the computations are often done under simplifications 

regarding the geometry, loads, and material models. The analytical (or technical) 
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science on the strength of materials is very important even in this „computer age“. 

It provides the engineer with general view on the matter and with the terminology 

and concepts. It also shows the solutions of basic problems, which can be used for 

testing of new procedures and programs. In certain sense of the word, these 

solutions are asymptotical, similar to beacons in the unknown sea, in which we sail. 

The simple analytical solutions have also other advantages. They show 

illustratively, which factors influence the result, and enable very easy and vivid 

assessment of the influence of the individual factors. (Of course, one must always 

be aware of the conditions and limitations of validity of these solutions.) The 

analytical solution for small deflections of thin beams teaches us the engineering 

way of thinking. It was here that the preliminary analysis enabled neglecting of 

insignificant terms, and this then markedly simplified the solution. Also, the 

approximate models used in some finite elements are based on simplified analytical 

models. Analytical formulae can also be transformed easily to nondimensional 

expressions, corresponding to similarity criteria (cf. Chapter 14). Therefore, they 

enable - similarly to the mentioned beacons - to direct the design proposal in the 

right direction in the early stages of design. As an example, a problem from 

technical practice will be shown here. 

Example. The force pushing the movable part of vulcanisation press is generated 

by the pressure of compressed air on a circular membrane (Fig. 2.3). A steel 

membrane was used in the original design (as usual in mechanical appliances), but 

it broke after short time of operation. Despite of several attempts to improve the 

shape using demanding FEM computations, with changes of the shape at places of 

stress concentration, the stresses remained always very high. Therefore, general 

analysis of stresses in a circular elastic plate was done. The basic formulae for the 

deflection w of a plate of thickness h and radius a, loaded by pressure p, and for the  

        
Fig. 2.3.  Pressure chamber of the mechanism in a vulcanisation press. 



Jaroslav Menčík: Applied mechanics of materials 

 

29 

maximum stress acting in radial direction at clamping are [5]:  
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The combination of these equations gives, after a rearrangement, the following 

expression for maximum stress: 
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
  ;           (2.8) 

E and  are Young modulus and Poisson´s number of the plate material. It is 

obvious that the stress, corresponding to the prescribed deflection w (needed for the 

demanded motion of the movable part of the mould), could be significantly 

reduced only by reduction of the bending stiffness of the membrane, especially by 

significant lowering the modulus of elasticity. The simplest solution, which then 

appeared as successful, was the replacement of the original steel membrane by a 

membrane from a special polymer. Its elastic modulus, lower by four orders, has 

ensured that, despite of much larger thickness of the membrane, the operation 

stresses were lower than fatigue strength of this elastomer. 

Equations (2.7) and (2.8) can be expressed in nondimensional form, in which they 

would be more general. Dimensional analysis and similarity will be addressed in 

Chapter 15.  

The presented example has shown that general analytical relationships can 

sometimes show direction to very efficient solutions, even with the use of less 

traditional materials. (As regards materials selection, the excellent book [12] by M. 

F. Ashby can be recommended.) For similar reasons and with the aim to support 

the engineering way of thinking, simple analytical approach will be used also in 

this book. 
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3. Failure hypotheses and criteria

If a component should be dimensioned, one needs to know the load that would 

cause failure, either by fracture or by plastic deforming. The state of stress is often 

multiaxial, with various stress components (, ) in various directions. The 

ultimate strength and the yield stress are usually measured in uniaxial tension or 

compression. We thus need to have rules for the determination of equivalent stress 

(from the known stress components), which could be compared with the yield or 

ultimate strength. The equivalent stress is such uniaxial normal stress, which has 

the same effect on the possible failure, as the investigated triaxial stress state. 

Several criteria have been proposed for the evaluation of possible failure by brittle 

fracture (i.e. without observable change in shape), and for the creation of permanent 

(plastic) deformations. Some of these strength hypotheses will be described here. 

3.1  Brittle fracture 

Hypothesis of maximum normal stress (Rankine) 

The component fails if the maximum tensile stress attains (or exceeds) the tensile 

strength p,t, or if the maximum compressive stress attains the uniaxial strength in 

compression p,d. It is always principal stress, so that the conditions are 

eq  =  1    p,t  ,  or   ekv  =   3     p,d  .          (3.1) 

Hypothesis of maximum shear stress (Guest) 

It was formulated from the observation that a brittle specimen, loaded by uniaxial 

compression, fails by shear under 45º, that is in the direction of maximum shear 

stress (Fig. 3.1). It says: Fracture occurs if the maximum shear stress attains the 

shear strength, 

max    p  .        (3.2) 

Two stress states are equivalent if they have the same value of maximum shear 

stress. This stress equals the radius of the largest Mohr´s circle (Fig. 1.9). For 

triaxial stress, max = (1 – 3)/2. For uniaxial stress state,max = 1/2 = eq/2. 

Comparison of shear stresses in both cases gives, after a rearrangement, 

eq  =  1 – 3    p,t  .  (3.3) 
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       Fig. 3.1. Shear failure under compression.  

 

 

  

Mohr – Coulomb hypothesis 

The compressive strength of brittle materials is usually several times higher than 

the tensile strength, and the above hypotheses do not consider sufficiently the 

simultaneous action of tensile and (higher) compressive stress in various directions. 

According to O. Mohr, failure occurs if the largest Mohr´s circle touches certain 

limit curve, constructed as the envelope of Mohr´s circles corresponding to failures 

at various combinations of tensile and compressive stresses. Coulomb then 

proposed the limit curve as the straight line touching the Mohr´s circles for uniaxial 

tension and uniaxial compression (Fig. 3.2).   

       

              Fig. 3.2. Mohr – Coulomb failure criterion. 

3.2  Onset of plastic deformations 

Hypothesis of maximum shear stress (Tresca) 

Plastic flow of material occurs if the highest shear stress reaches the yield strength 

in shear (Fig. 1.9). This hypothesis is similar to Guest´s one, and similar also is the 

expression for equivalent stress:   
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eq  =  1 – 3    Y  .                 (3.4) 

Hypothesis of distortion energy density (von Mises, HMH) 

Beltrami has proposed a hypothesis saying that failure occurs if the density of 

strain energy  attains certain critical value. This hypothesis, however, is not 

universal, because a homogeneous material can sustain any high hydrostatic 

pressure without failure. Richard von Mises has proposed to split the stress state 

(and the strain energy densities) into two components: one, corresponding to the 

change of volume, and the other, corresponding to the shape change. According to 

von Mises, ductile material starts deforming permanently, if the strain energy 

density corresponding to the shape change attains a critical value. Comparison of 

the energy densities for shape change in a triaxial case and in the uniaxial tension 

by equivalent stress gives the following expression for the equivalent stress [1  5]: 

      )(3
222222

zxyzxyxzzyyxzyxekv   .    (3.5a) 

This expression shows strong influence of shear stresses on the onset of plastic 

deforming. If, for example, only shear stress xy acts (and all other stress 

components are equal zero), its influence is the same as if uniaxial tensile stress of 

magnitude x3 would act, which is by 73% higher! The equivalent stress (3.5a) 

can also be expressed by means of principal stresses: 

2
13

2
32

2
21 )()()(

2

2
 ekv

.          (3.5b) 

The expressions in brackets correspond to diameters of Mohr´s circles, and the 

diameter of each circle equals two times the maximum shear stress in the pertinent 

plane (Fig. 1.9). We thus see that the influence of shear stresses is present even in 

the criterion based on the strain energy density; moreover the influence of all three 

shear stresses, in contrast to only maximum shear stress in Tresca´s criterion. 

However, it is impossible to say which criterion is better. They both are used.  

Comment. The symbol HMH gives the first letters of the names of three persons 

who contributed to the formulation of this criterion: Huber, Mises, Hencky.  

Remark. Equivalent stress, defined by Eq. (3.5a) or (3.5b) is also called stress 

intensity. 
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The values of equivalent stress determined by both criteria coincide in some cases 

(e.g. uniaxial tension), while they differ in others. The largest difference is for pure 

shear. The equivalent von Mises stress is eq = 3, while Tresca´s stress is eq = 

2, that is by 15% more. Also these differences (and the impossibility to decide, 

which criterion is more correct) are one of the reasons for the use of the factor of 

safety in design. Another reason is insufficient knowledge of strength or yield 

stress of the material. (Caution ! The minimum strength, as given in material data 

sheets, corresponds to 5%  quantile of strength. This is such value, that probability 

5% exists of occurrence of weaker products. If the design engineer would like to 

ensure safety of its products only by dimensioning them according to this 

“minimum” strength, every 20-th piece would fail!) Further reason for the use of 

safety factor is insufficient knowledge of loads, which are related to the conditions 

of operation (for example weight and distribution of cargo in the vehicle, its 

velocity, conditions of the road and also condition of the suspensions and 

damping), and other factors.      
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4. Basics of plasticity

Figure 4.1 shows diagrams of tensile tests of various materials. Brittle materials fail 

suddenly (Fig. 4.1a) if the stress attains the ultimate strength p, while ductile 

(metallic) materials can sustain also permanent change of shape. Figures 4.1b, c 

show work diagrams of elastic-plastic materials, for example steels.  

a. b. c. d.

      Fig. 4.1.  Tensile test diagrams of various materials. a - brittle materials, 

      b, c - elastic-plastic materials, d - elastomeric materials (e.g. rubber).  

 - stress,  - strain, p - tensile strength, Y - yield strength.

If the stress is lower than the yield strength Y, the deformations are reversible and 

disappear after unloading. Until the proportionality limit e linear relationship 

(Hooke´s law) exists between stress  and strain: 

 = /E ;        (4.1) 

 is strain, and E is the modulus of elasticity in tension. Hooke´s law is valid in

similar form also for multiaxial state of stress, and also for shear deformations.

The situation during loading and unloading of elastic-plastic materials is depicted 

in Fig. 4.2. If the stress has not exceeded the yield limit, during unloading the 

record returns back along the initial curve, and the deformation disappears (Fig. 

4.2a).  If the stress exceeds the yield strength (point B in Fig. 4.2b), deformations 

start increasing faster. The following unloading (from point C in Fig. 4.2b) 

proceeds in the diagram along the straight line parallel to its initial part, and 

permanent deformations remain in the material (point D). During new loading, the 

deforming proceeds first along the straight line DC. If the load increases further, 

the loading curve proceeds from the point C along the initial solid line.  
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   a.             b.   

       Fig. 4.2. Stress-strain diagram of a material: elastic (a) and elastic-plastic (b). 

 - strain, e - elastic component of strain, p - plastic component of strain. 

If residual stresses remained in the body from the previous load, they are summed 

with the stress from new loading.     

Reaching the yield stress does not mean end of use of the component. Everybody 

has seen a car whose metal body showed permanent traces of previous collision 

with another vehicle or obstacle. If the deformations are not too large, the vehicle 

can fulfil its task further, though in limited extent. Metal constructions for civil 

engineering tolerate small plastic strains if they do not endanger the safety and 

proper function of the structure. This brings better utilisation of the material and 

reduces the costs. However, the designer must know what he can afford. Especially 

he (or she) must have sufficient knowledge on material properties.   

4.1  Material properties  

The basis is the stress-strain diagram of the material, obtained in a tensile test. 

For better understanding, these diagrams are often approximated by simple 

expressions. Three most usual approximations are shown in Fig. 4.3 [1 – 6]: 

1)  Bilinear function (Fig. 4.3a): 

  ≤ Y ,      = /                  Y is the yield strength                  (4.2a) 

  > Y ,      = Y + (  Y)/E´;   E´ is the strain-hardening modulus (4.2b) 

2) Power-law function (Fig. 4.3b), 

  ≤ Y ,      = /            (4.3a) 

  > Y ,      = Km ;                  K, m are constants                    (4.3b) 
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           a.         b.  c. 

  Fig. 4.3. Idealised stress-strain diagrams. a – bilinear function, tg  = E, tg ´= E´,  
  b – power-law function, c – ideal elastic-plastic material without strain hardening. 

 

3) Ideal elastic-plastic material without strain-hardening (Fig. 4.3c). 

  ≤ Y ,         = /          (4.4a) 

  > Y ,         = Y   Y is the strain for  =Y     (4.4b) 

These expressions and diagrams are valid only for small strains. Stress in common 

tensile tests is usually calculated as the load divided by the nominal area of the 

cross section,  = F / S, and such diagrams are called conventional.  The fact, that 

also the size of cross section changes, is neglected. This is acceptable for strains 

smaller than several percent. At larger deformations the changes of the cross 

section area are not negligible, and the true stress starts differing significantly from 

the nominal one. The relationship between the true stress and strain at tensile test 

of a soft steel is shown in Fig. 4.1c by dashed line. The differences increase 

especially at stresses approaching the ultimate strength, when a neck is formed at 

the place of the future fracture (Fig. 4.4a). 

     

 a.   b. 

  Fig. 4.4.  Large deformations of ductile materials under: a – tension, b - compression  
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The opposite situation exists under compression: the cross section area becomes 

larger (Fig. 4.4b) and the true compressive stress lower than the nominal ones. 

Very ductile material could sustain uniaxial compressive load nearly without 

limits. For example, thin Al foils are produced by rolling from massive blocks. 

In some materials, for example low-carbon steels, the yield strength is easily 

recognisable by the dwell in the stress-strain diagram (Fig. 4.1c). This limit is 

denoted in material data sheets [7] as Re. If the stress-strain curve is smooth (Fig. 

4.1b), the yield stress is defined as such stress, which causes permanent relative 

elongation 0,2% = 0,002. This value, denoted Rp,0,2, was chosen for practical 

reasons. It can be revealed from the diagram of tensile test without extreme 

demands on measuring technology, and usually does not preclude the use of the 

component. The ultimate strength is denoted Rm; here, symbol p will be used. 

Remark. In codes for steel structures, yield stress is denoted fY and ultimate 

strength  fu.  

Several words must be said here to the approximations of stress-strain diagrams. 

The first two (Figs 4.3a,b) are easily understandable, as they correspond to the 

stress-strain diagrams for metals without pronounced yield limit (Fig. 4.1b). The 

approximation shown in Fig. 4.3c, i.e. ideal elastic-plastic material without strain 

hardening, seems to be unrealistic. However, it corresponds acceptably to the left 

part of the stress-strain diagram of material with pronounced yield limit, such as 

low-carbon structural steel (Fig. 4.1c). We must not forget that even if plastic 

deformations will be allowed, they are usually acceptable only to very small extent, 

up to several percent; that means before the curve  starts again increasing. 

From the safety point of view: if the component appears safe in the check based on 

the material model without strain hardening, the more so the component from real 

material will be safe, because this material gets stronger during plastic deforming, 

and the ultimate strength is higher than the yield strength. 

The standard for metallic constructions [7] allows plastic deformations, but only 

under the following conditions:  

1) ultimate strength must be at least 20% higher than the yield strength (fu  1,2 fY),  

2) material must have sufficient ductility; elongation at rupture A5 at least 15%.  

The first condition is here because the quantities fu and fY were measured with 

certain dispersion, and also the load is usually not known accurately. The second 
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condition wants to ensure that the material does not start breaking due to larger 

plastic strain. For ensuring higher safety, and with respect to the uncertainties in 

design, the mentioned standard [7] allows creation of only such number of plastic 

hinges (see later), that the initially statically indeterminate construction becomes 

statically determinate. Higher load is not allowed here.   

If the standards do not need to be considered, or with components that would be 

cold formed, higher strains and larger permanent deformations may be allowed. 

The relevant material properties are, however, necessary; especially high ductility. 

Now we shall look at some features typical for elastic-plastic deforming. For 

simplicity, they will be illustrated on simplest problems. 

4.2 System of rods loaded by tension  

Figure 4.5 shows two rods, loaded by tensile force F. Using the method of 

fictitious cut, the equation of equilibrium forces in the vertical direction gives, after 

a rearrangement, the forces in the rods: 

 
cos2

1

F
N   .             (4.5) 

 

 

 

      

 

 

 

       Fig. 4.5. System of two rods.        Fig. 4.6. System of three rods.  

 

Vertical displacement  of the connecting pin (see also l2 in Fig. 4.6) is: 

 




2
11

cos2cos ES

lFl



  .            (4.6)  

The same stress acts in both rods of the same area of cross section: 
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S

N1
1   .              (4.7) 

This stress reaches the yield strength at the load  

 
mYY FSF  )cos2(   .             (4.8) 

If the rods were made of ideal elastic-plastic material without strain hardening, 

they could (after reaching the yield stress, corresponding to the load FY) flow 

without limitations. As plastic deforming proceeds under constant stress, the 

volume of the rods is also constant. Their cross section becomes smaller during 

their elongation, so that the true stress, true = N1/Strue, increases. The process thus 

becomes instable, and after a while the rods break. The force, corresponding to the 

onset of yield, is, therefore, the limit load, and can be denoted Fm.  

Now we can look at the system of three rods (Fig. 4.6). The side rods have length 

l1, and the rod in the middle l2. This problem is statically indeterminate and its 

solution is more complicated; a deformation condition must be used that all rods 

connected by a pin will be deformed as a whole. The forces in rods are, therefore, 

mutually related. After several steps, one obtains the forces in elastic deforming [1, 

2, 8]: 

 




3

2

1
cos21

cos


 FN  ,                   (4.9) 

 

3
2

cos21

1


 FN  .           (4.10) 

If all rods have the same cross section area S, the stresses in them will be 

 1 = N1/S , 2 = N2/S .          (4.11) 

The stress in the central rod 2 is higher (the exception is for   = 0). This rod starts 

deforming plastically as soon at the stress here attains the yield strength. This is at 

the total load of the system 

 FY = Y S (1 + 2cos
3)  .           (4.12) 

From this instant the stress in rod 2 remains constant, equal the yield limit (non-

strain-hardening material is assumed), and carries the force 

 N2 = Y S .             (4.13) 
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The problem has become statically determinate, and its solution is simpler. The 

situation is the same as with the system of two rods according to Fig. 4.5, but 

loaded by the force F  N2. The stress in the edge rods is still lower than the yield 

stress, so that the system can carry higher force. Any load increase is transmitted 

only by the edge rods, with the following force in each 

 




 cos2cos2

2
1

SFNF
N Y




  .          (4.14) 

As soon as the yield strength is achieved also in them, they start flow plastically 

without limitation, and the system collapses. The corresponding limit load is 

  Fm = Y S (1 + 2cos )  .          (4.15) 

This load for  < 90º is higher than FY ; the system can thus be overloaded. Let us 

see how many times the limit load Fm is higher than the load FY at the onset of 

plastic flow in rod 2. A rearrangement of the ratio of Eqs. (4.15) and (4.12) gives: 

 1
cos21

cos21
3











Y

m

F

F  .          (4.16) 

This ratio shows the possible overloading (till failure) from the instant that the 

stress in the most loaded rod has attained the yield limit. For giving an idea, it is 

shown here for several values of angle : 

 .       0 º 30 º 45 º 60 º 75 º   . 

    Fm/FY  1 1,19 1,41 1,60 1,47 

As we can see, the utilisation of plastic properties enables certain degree of safe 

overloading. Or, vice versa, the bars dimensioned for certain load may be thinner, 

and this means material savings. The deformations on attaining the limit state are 

only slightly larger than at the load corresponding to the onset of plastic flow (the 

exception being large angles ).   

4.3  Deformations in elastic-plastic state 

Until the limit state is reached, the deformations of the body can be determined by 

means of such part, which is still deformed only elastically (with respect to the 

links between the individual parts). Figure 4.7b shows displacement of the 

connecting pin as a function of the load F. It is the work diagram of the body, in 
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contrast to the work diagram of the material (Fig. 4.7a). Diagram 4.7b has three 

parts. The first part, for the loads from 0 to FY, corresponds to the situation when 

all rods are deformed elastically; the displacement of the pin can be calculated as 

the elongation of rod 2. In the second part, for FY < F ≤ Fm, the deformations grow 

faster, as the rod 2 is now unable to transmit higher load than YS. The 

deformations could be calculated from the elongation of rod 1, corresponding to 

the force N1 according Eq. (4.14). As soon as the limit load Fm is attained, the 

deformations can increase without limitations (horizontal part of the broken line in 

Fig. 4.7b).  

      

a.          b. 

               Fig. 4.7.  a – work diagram of the material,      

b – work diagram of the system according Fig. 4.6. 

There is no direct proportionality between the load and deformations of the body, 

so that the principle of superposition cannot be used. The deformations must 

always be calculated for the actual load!   

 

4.4  Situation after unloading 

As long as the stresses everywhere are lower than the yield strength, all 

deformations are elastic and disappear after unloading (Fig 4.6). However, if the 

load has exceeded FY, the rod 2 is deformed plastically, and if it were free, it would 

remain longer after unloading. The rods 1 would like to shrink to the initial length. 

They all are, however, connected by the pin. The permanently elongated rod 2 

prevents the rods 1 in full shrinking, and generates permanent tensile stress in 

them. Vice versa, the rods 1 generate permanent compressive stress in the rod 2. 
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The deformations are depicted in Fig. 4.8. The unloading proceeds along the 

straight line parallel to the initial part of the work diagram 4.7b. It holds generally: 

Residual forces, deformations and stresses after unloading can be determined as 

the difference of the actual values in elastic-plastic state, and the values 

determined for the same load under the assumption of only elastic deforming.  

     Also: 

After unloading, the residual stress in the part, where the plastic flow occurred 

first, will have the opposite sign than under load. 

 

 

 

 

 

     Fig. 4.8.  Three rods after unloading. 

 

The residual forces in the system will have the following values: 

 N1,res = N1ep – N1,fict,el ,  N2,res = N2ep – N2,fict,el .       (4.17) 

Subscript ep corresponds to elastic-plastic state under load, subscript fict,el denotes 

fictive elastic forces, which would act in the body, if the material had much higher 

yield strength and no plastic flow occurred. 

Expression of the individual quantities by Equations (4.17) and (4.9, 4.10) gives 
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
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The residual forces N1,res and N2,res are mutually in equilibrium, because no external 

forces act. The residual stresses are obtained if the residual forces are divided by 

the cross section area S. 
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Under load, tension acted in all rods. The residual stress in our case will therefore 

be compressive in rod 2 and tensile in rods 1. This is obvious from the equations 

 2 N1,res + N2,res  = 0 ,    or    N2,res  =  –2 N1,res .        (4.19) 

The residual stresses act in the body permanently. During new loading, these 

stresses and deformations superimpose with the elastic deformations and stresses 

from the new load, until they attain the maximum value from the previous loading 

cycle.  This means that the previous plastic deforming has increased the load till 

which the body is deformed elastically (Fig. 4.7). However, in components with the 

same yield stress in tension and compression, the plasticising and creation of 

residual stresses can also lower the limit of plastic deforming of the opposite sense! 

Repeated loading by tension and compression then can cause plastic flow and 

energy dissipation in each cycle, and nucleation of a fatigue crack after some time.  

4.5  Elastic-plastic bending  

It will be shown first how the stress distribution develops with increasing load. 

Figure 4.9 shows a beam on two supports loaded in the middle by transverse force. 

The following Figure 4.10 shows gradual changes of stress distribution in the most 

loaded section in the middle of the span. For simplicity, the analysis will be limited 

to rectangular cross section and ideal elastic-plastic material without strain 

hardening (Fig. 4.3c), with the same value of yield stress Y in tension and 

compression. It is an idealisation, but it is useful for obtaining a general idea.  

      

   Fig. 4.9.   Elastic-plastic bending. 

Plastically deformed region and distribution  

of moments. M – bending moment, MK – the 

moment, at  which the stresses in the outer 

fibres attain the yield strength.  

 

                        
Fig. 4.10. Gradual development of distribution of bending stresses 
in the rectangular cross section. I – elastic bending, II – elastic bending - 

maximum stress has attained the yield strength, III – elastic-plastic bending, 
IV – elastic-plastic bending, the cross section was fully plasticised.  
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At the beginning (Fig 4.10 I.), the material is deformed only elastically, and the 

stresses in the cross section increase proportionally with the distance z from the 

neutral axis.  Tensile stress acts in one half of the cross section, and compressive in 

the other half, and their values are  

 z
J

M
z )(  ;           (4.20) 

M is the bending moment in the investigated section, and J is the moment of inertia 

of the cross section in bending. For rectangular cross section, J = bh
3
/12; h is the 

height of the cross section in the load direction, and b is its width. Similar stress 

distribution exists till the instant when the maximum stress in the surface layer 

attains the yield stress Y (Fig. 4.10 II.). The corresponding moment and load are  
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  ,        (4.21) 

W0 is the section modulus in bending, and l is the distance between the supports. 

During further load increase the stress distribution changes. The stress does not 

increase at places where the yield stress has been attained (the material is without 

strain hardening, Fig. 4.3c). The increase of bending moment above MY is thus 

carried by the material in the regions with the stress still lower than Y. 

Deformations will, therefore, increase faster. Near the neutral axis elastic core 

exists with linear stress distribution (Fig. 4.10 III.). The material in larger distances 

is fully plasticised, and the stress here is constant, equal Y. The transition between 

the elastic core and the plastic region is at the distance from neutral axis [1, 2, 5]: 

 ze  = 
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  ;          (4.22)  

Melpl is elastic-plastic moment, higher than MY. With increasing load, the 

thicknesses of plasticised layers increase, and the thickness of elastic core 

decreases. It finally disappears at the limit magnitude of bending moment 

 
4

2bh
M Ym   ;           (4.23) 

The cross section is now fully plasticised (Fig 4.10 IV.). The limit moment for 

rectangular cross section is 50% higher than the moment MY at the onset of plastic 
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flow. We can see again that if plastic properties of the material are utilised, the 

component can carry much more. (Or, its cross section may be smaller.)  The beam 

deflection at reaching the limit moment is not large. Attaining of the limit moment 

Mm in the material without strain hardening could, however, lead to unlimited 

rotation of both arms of the beam and to the collapse of the structure. (In real 

materials, certain strain hardening occurs.) As the deformations are concentrated in 

the region of maximum moment, the term plastic hinge is used (Fig. 4.9).  

Similar situation is with other shapes of cross section. The limit elastic-plastic 

moment can be determined directly if stress distribution similar to that in Fig.  4.10 

IV is assumed. The situation for general shape of cross section is depicted in Fig. 

4.10. The limit moment is obtained by integration over the whole section S. 

Considering that the stress for full plasticisation of the cross-section is constant, 

equal the yield strength, we can calculate it as   

   )2/()( 212211

)(

SzSzSzdSzzM TTYTTY

S

m   
        (4.24) 

S1 and S2 are areas of the individual halves of the cross section, and zT1, zT2 are the 

distances of their centroids from the neutral axis of the whole cross section; S is the 

total area of the cross section, and zT1T2 is the distance between the centroids of its  

 

 

       Fig. 4.10. Fully plasticised cross section.  

  a – geometry, b – stress distribution. 

 

 

halves. The neutral axis halves the area of fully plasticised cross section. In 

unsymmetrical profiles this does not need to be in the centroid. The limit moment 

can be expressed simply as   

 Mm = Y Wpl  ,            (4.25) 

where Wpl is so-called plastic section modulus. The formulae for some shapes are 

shown in Table 4.1 on the next page. The table also gives the values of the ratio of 

the limit moment Mm and moment MY at the onset of plastic deformations. This 

ratio says how much the beam could be overloaded from the beginning of plastic 

flow to attaining the limit state.  
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TABLE 4.1. Section moduli for bending of various profiles. 

        PROFILE         Welast Wplast       Mo,m/MoY = Wpl/Welast   . 

        1/6 bh
2
 1/4 bh

2
      3/2 = 1,5   

  

        d 
3
/32  d 

3
/ 6   16/(3) = 1,7 

 

       2 a
3
/12 2 a

3
/6            2  

 

             1,15 
 

We see that higher overloading (compared to the onset of plastic flow) is possible 

for profiles with more material near the neutral axis. In contrast, the rolled I-profile 

has only thin web, and only small reserve after plasticisation of the flanges.  

Remark. Profiles with high load reserve after the onset of plastic deforming are 

often those with relatively early start of plastic flow. 

If plastic flow occurred during loading, permanent deformations remain in the 

body after unloading. The elastic deformations disappear. If the stress was 

distributed nonuniformly in the cross section (for example in bending), residual 

stresses will act in the material permanently. Their magnitude at certain point is 

obtained as the difference of the real elastic-plastic stress and the fictitious stress, 

which would act here if the material was deformed only elastically (i.e. as if it had 

much higher yield strength): 

  res =  el–pl  –  f–el  .           (4.26) 

Figure 4.11 shows the distribution of residual stresses in the cross section after 

elastic-plastic stress distribution corresponding to Fig. 4.10 III. Again it holds:  

 

Fig. 4.11.   Elastic-plastic bending. Determination of residual stress. 

el-pl  stress in elastic-plastic state, f-el  fictitious elastic stress due   

to the load corresponding to el-pl. res = el-plf-el : residual stress.    
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The residual stresses acting after unloading at places, where plastic deforming 

occurred first, have the opposite sign than under load.  

During plastic flow much more energy is absorbed than in elastic deforming. 

Therefore the materials for components that should mitigate impact effects by 

plastic deforming must sustain large permanent deformations and must have high 

ductility. This is more important than high strength. Metal elements for absorbing 

energy at impact are often bent [5], and must therefore sustain very intensive 

bending without fracture.     

Some other features of plastic deforming and limit state will be shown on a thick-

walled cylindrical pressure vessel.    

4.6  Elastic-plastic deforming of thick-walled cylindrical pressure vessel 

In the wall of a cylindrical thick-walled pressure vessel (Fig. 4.12), loaded by 

internal pressure p1, circumferential stress (t) and radial stress (r) act. If the 

vessel is closed, also axial stress a acts here. As long as the load is elastic, the 

circumferential and radial stress are [1, 8]  

      ,)(;)(
22 r

B
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r

B
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a is the internal radius, and b the outer. The constant A has the same value as the 

axial stress in a closed vessel. The stress distribution is shown in Fig. 4.12b. 

The vessel from brittle material breaks if the maximum stress, i.e. the 

circumferential stress in the inner surface, reaches the material strength. A vessel 

from ductile material starts deforming in plastic manner if the equivalent stress 

reaches the yield strength. We shall look at this situation. For simplicity, ideal 

elastic-plastic material without strain hardening will be assumed, and also the 

Tresca´s condition for plastic flow, with equivalent stress  

ekv  =  1 – 3  =  t(a) – r(a)  =  Y = const .        (4.28) 

If no plastic flow should occur, the equivalent stress must be lower than the yield 

stress. Equations (4.27) – (4.28) can yield the necessary wall thickness, or the outer   
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  a.     b. 

 
  c.     d. 

Fig. 4.12. Thick-wall cylindrical vessel loaded by pressure on the inner and outer 

surface. a – geometry, b – elastic stresses, c – stresses in fully plasticised wall, d – 

stresses after unloading. p1, p2 – pressures on inner and outer surface, r – radial 

stress, t – circumferential stress, e – elastic, ep – elastic-plastic, z – residual.  

radius b of the wall, with respect to the inner radius a: 
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  ;           (4.29)    

k ( 1) is the demanded degree of safety. For simplicity, k = 1 can be assumed here. 

The pressure, under which the material of the wall with radii a, b starts flowing, is  
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The necessary wall thickness thus increases with increasing pressure pa. As 2pa/Y 

approaches to 1, the denominator in (4.29) approaches to zero, and the necessary 

outer radius b approaches to infinity. This would be attained for 2pa/Y = 1. This 

means that for pa > Y/2 plastic flow occurs for any wall thickness!      

At the beginning this flow happens only in a thin layer at the inner surface. Nothing 

special happens yet, because it is surrounded by much thicker layer of material, 

which is still deformed only elastically. With increasing pressure in the vessel the 

thickness of the plasticised layer grows, and with respect to the condition of plastic 

flow (4.28) also the distribution of stresses changes. They are distributed in this 

layer according the logarithmic function: 

 
YrtaYr rrp

a

r
r   )()(;ln)( .       (4.31) 

If the overpressure in the vessel attains the limit value 

 
a

b
p Yma ln,  ,            (4.32) 

the whole wall is plasticised. The distribution of radial and circumferential stress is 

shown in Fig. 4.12c. Plastic flow (of material without strain-hardening) continues 

under this pressure till the wall bursts; pa,m is the actual limit pressure.  

Now we shall look at the possible overloading from the onset of plastic flow to the 

limit state. The corresponding ratio pa,m /pa,Y  is obtained as the ratio of Equations 

(4.32) a (4.30):  
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 .          (4.33) 

Note that the overloading capacity km,Y for materials without strain hardening does 

not depend on the yield strength. We shall show how km,Y depends on the ratio of 

inner and outer radius: 

 .    b/a   1,1    1,2  1,5 2 3 10 100   . 

    km,Y     1,098    1,19  1,46 1,85 2,47 4,65 9,21   

It is obvious that the onset of plastic flow does not mean, especially for vessels 

with thick wall, any danger of attaining the limit state. 
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If the pressure pa is higher than pa,Y and lower than the limit pressure pa,m, the wall 

is partly plasticised. The material is fully plasticised from the radius a till the 

radius c, and the stresses are distributed according to Eqs. (4.31) and Fig. 4.12c. 

From the radius c till the outer radius b the material is deformed elastically (Fig. 

4.12b), with stresses according to Eq. (4.27). The radius c of the boundary between 

both regions can be obtained by solving the equation 
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obtained from Eqs. (4.27) and (4.32), in which b and a were replaced by radius c. 

Residual stresses after unloading, which can be calculated via Eq. (4.26), are 

depicted in Fig. 4.12d. Similarly to previous cases, compressive circumferential 

stress will act permanently in the layer at the inner surface also in the partly 

plasticised thick-wall pressure vessel. This process is sometimes used for 

increasing fatigue resistance of cyclically loaded pressure appliances, such as 

hydraulic cylinders of gun barrels. Another example, how plasticity can be used, 

will be shown in section 4.8. 

4.7  Criterion of plastic flow under multiaxial stress state  

Plastic deforming under multiaxial state of stress can be studied using intensity of 

stresses and strains. Stress intensity was defined earlier: 

)(3
222222
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Strain intensity is defined similarly:  
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;          (4.38) 

The strain intensity in plastic deforming is generally a function of stress intensity,  

 i = f(i) .           (4.39) 

Various theories exist for extensive plastic deformations. More information can be 

found, for example, in [1 – 4].  
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4.8  Increasing the fatigue resistance of metallic components  

The growth of fatigue cracks can be slowed down or stopped by creation of 

compressive prestress in the surface layer. The most common method for ductile 

materials is local plastic deforming, for example by shot peening or rolling. In 

these processes, a hard tool with small diameter and rounded surface is pressed 

point after point into the surface of the treated component. One process is so-called 

shot peening: a stream of hard balls is thrown (by the air flow or by blades of a 

blasting appliance), or a hard cylinder of small diameter is rolled under pressure 

along the surface, or the surface is impacted by a system of hard pins or needles 

that are put into motion by an electric hammer or by an ultrasound generator. 

The principle of creation of compressive prestress is as follows. Pressing a hard 

ball or similar hard body into the strengthened object causes high local contact 

stresses in its surface layer, whose material is deformed plastically. The thickness 

of the plastically deformed layer (on the elastic core) becomes smaller and its 

width becomes larger – the material flows in radial directions (Fig. 4.13). The 

material out of this layer adjusts to its permanent widening by elastic stretching. 

After the ball jumps away and the pressure on the surface is released, the elastically 

deformed material tries to shrink to its original dimensions. It thus compresses the 

central plastically extended part of the contact area, in which therefore compressive 

permanent (residual) stress appears. This process occurs at all places hit by the 

balls. In this way, compressive prestress is created on the whole surface layer. 

  

 

 

 

 

 

    Fig. 4.13. Increasing the fatigue resistance of ductile materials by shot peening.  

    Left – the process, Right – creation of compressive prestress in the surface layer.  

 

The fatigue resistance of components with a notch is sometimes increased by the 

preloading, controlled so that certain plastic flow occurs in the notch [9]. After 

unloading, permanent compressive stress arises here.   
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5. Thermal stresses

5.1  Principal equations 

If a body cannot change dimensions during a temperature change, thermal stresses 

arise in it. These stresses and corresponding forces or deformations can worsen or 

make impossible the operation of a certain object, or damage or destroy it. The 

principal features will be explained on a rod of elastic material (Fig. 5.1). 

If the temperature of a free rod increases from T0 to T, its length changes from L0 to 

L. The increase in length, L = L  L0, is

L =  L T ,        (5.1) 

where T = T  T0, and  is the coefficient of thermal expansion (K
1

), which gives

the relative length increase corresponding to the temperature increase by 1 K. We 

shall consider so small changes of temperature, that the coefficient of thermal 

expansion can be assumed constant. Also the changes of the cross section will be 

negligible, and the forces and stresses will be calculated for the initial dimensions.   

 Fig. 5.1. Thermal stresses – principle of determination 

Remark. It is recommended to calculate any increment as the difference of the 

actual and initial value. For example, the temperature distribution in a body can be 

complicated, and it cannot be said immediately whether the stress at a certain point 

will be tensile (i.e. positive) or compressive (negative). Adherence to the sign 

convention facilitates the answer, which will be clear from the numerical values. If 

the result is positive, we know that the stress will be tensile (and vice versa). 
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If both ends of the rod are clamped in a rigid structure, its length cannot change 

due to temperature change (that is, L = 0), and stress appears in the rod. Its 

magnitude can be obtained by the following thought experiment done in two steps 

[1]. In the first step, one end of the rod is released, and the rod is heated by T. Its 

length increases by L according Eq. (5.1), but no forces appear in it. In the second 

step, a compressive force F is applied to the rod and slowly increased. This causes 

shortening of the rod. At certain time the free elongation L is eliminated. The 

corresponding force is such that will act in the heated rod with clamped ends. It can 

be written for the total change in length  

 L = LT + LF = 0 .             (5.2) 

The subscripts at the individual components denote the length increment from 

temperature (T) or from the force (F). With respect that the increase of the rod 

length from the (tensile) force F is generally LF = FL/(ES), where E is modulus of 

elasticity of the rod in tension, and S is its cross section, one obtains after a 

rearrangement  

L =  LT + FL/(ES) = 0 ,            (5.3) 

so that 

 F =  T E S .              (5.4) 

If the temperature was increased, T is positive. For common materials, which 

expand at temperature increase,  is also positive. The force F causes in the rod 

normal stress of magnitude 

 =  T E .              (5.5) 

The sign minus says that temperature increase (T > 0) causes compressive stress 

and force in the rod.  

Equation (5.5) is very important, as it shows the principal quantities, which 

influence thermal stresses at temperature change, if free dilatations of the body are 

precluded:  

1. temperature change (T),  

2. coefficient of thermal expansion of the material (), 

3. material stiffness (E).  

For example, if we want to reduce thermal stresses, we  can use the material with  
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lower thermal expansion () or lower modulus of elasticity E (i.e. more compliant) 

or reduce the temperature difference T, for example by thermal insulation of the 

body if the heat transfer between it and the environment lasts only limited time. 

Other examples are glass oven-ware or electric cooking plates. During their use 

sudden temperature changes can be expected. Therefore they are produced from a 

special glass or glass-ceramics with extremely low thermal expansion coefficient ,   

Expression (5.5) can also be used for finding the necessary value of thermal 

expansion coefficient, elastic modulus, or admissible temperature change, if the 

body should not be destroyed.   

The total force, acting in the body with precluded thermal dilatations, is given by 

Equation (5.4), which differs from stress (5.5) by the area of cross section S. This 

force will be higher for larger cross section area of the rod.  The consequences of 

high force can be critical. For example, decrease of temperature causes tensile 

force in the rod, and if it exceeds the strength of the joints, the rod can be torn off 

from the structure; high tensile stress can cause fracture of the rod.   

Until now, uniform distribution of temperatures and stresses was assumed. If the 

temperature of the environs changes, the temperature of the body starts changing 

gradually from the surface to depth. The situation is depicted in Fig. 5.2. In the first 

instants, only thin surface layer is influenced. The material here wants to expand or 

shrink, according to whether the body is heated or cooled. The dimensions inside 

the body with the initial temperature are still without a change and prevent changes 

of the dimensions of surface layer. It means that compressive stress will act during  

    

Fig. 5.2. Temperature development in a plate heated from: a – both sides, b – one side. 
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heating in the directions parallel with the surface. During cooling, tensile stress 

appears in the surface. This can even cause cracks in teeth enamel, if this comes – 

after hot tea – into contact with very cool liquid. 

Quantitative idea can be obtained from the sudden temperature change on the 

surface of a plate, if the thickness of the influenced layer is so small that the plate 

dimensions in the directions of acting stresses remain practically unchanged. The 

stress in the surface layer at depth z below the surface will be 

  (z) = – T(z) E / (1 – ) ;            (5.6) 

T(z) is the difference between the instantaneous temperature at depth z and the 

initial temperature of the plate. In contrast to Eq. (5.5), the term (1 – ) is here in 

the denominator, because plane strain state exists now in the plate, where the 

stresses at certain depth have the same value in all directions parallel to the surface.      

The resultant of compressive stresses in the surface layer must be in equilibrium 

with the resultant of tensile stresses inside the body. As long as the thickness of the 

surface layer is negligible compared to the interior thickness, the stresses inside are 

also negligible. As the thickness of the influenced region grows, also the force 

caused by the compressive stress grows, and also the reaction tensile force below 

it. Also the mean temperature of the plate changes. The equilibrium of all forces is 

  
)(

0)(
h

dzz  ,             (5.7) 

where h is the plate thickness. 

If the conditions for heating or cooling at each surface are different, unsymmetrical 

stress distribution appears in the plate. This can lead to its deflection, and 

sometimes also to generation of stresses. Let a thin plate be heated from one side so 

that the temperature distribution across the thickness is linear (Fig. 5.3). If the plate 

is free, it can deflect into the shape of a part of spherical surface with radius [2]     

 R = h / ( T)  ;              (5.8) 

h is the plate thickness,  is the coefficient of thermal expansion, and T is the 

difference of both surface temperatures, T = T1 – T2. No stresses occur in it. 

(Equation (5.8) is valid under the assumption that the deflection is small.)  
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       Fig. 5.3. Linear distribution of temperature across the wall. 

If the plate is fixed so that it cannot deflect, thermal stresses arise in it. These 

stresses will be distributed linearly across the thickness. We can thus speak of them 

as of bending stresses. The highest stress acts on the surface, and its magnitude is     

  max =   T E / 2(1 – ) ;            (5.9) 

The positive sign, which means tensile stress, pertains to the half of thickness with 

temperature lower than the mean temperature Ts = (T1 + T2)/2. In the opposite half, 

compressive stress acts. The stress in the mean plane equals zero.   

These and other situations are discussed in detail in books [3 – 8]. 

Example. 

Determine the stress magnitude on the surface of glass plate in the first instant after 

its surface was cooled suddenly from 100ºC to 10ºC. Thermal expansion 

coefficient  = 8,510 
– 6

 K
– 1

, E = 72 GPa,  = 0,2.  

Inserting these values into Eq. (5.6) gives the tensile stress  

 (0) =  8,510 
– 6

  (100 – 10) 72000/(1 – 0,2) = 68,85  69 MPa. 

4.2  Procedures for strength increasing by thermal treatment 

Thermal stresses can lead to the damage of the body. However, sometimes they can 

be useful, for example in strengthening of glass. A drawback of glass is its low 

tensile strength. This drawback can be mitigated by a suitable thermal treatment, so 

called tempering. (Another case is strengthening by ion exchange, which will be 

explained later.) Glass is an amorphous material that has no fixed temperature of 

solidification, but during cooling its viscosity increases gradually to the values 

when it behaves like a solid. Glass tempering [4, 7, 8] is done so that the glass 

object is heated to the temperature at which the glass starts soften, then it is let on 

this temperature so that the temperatures get equalised in the whole volume, and 

then it is quickly cooled, for example by the stream of air. During cooling, 
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temperature gradient is formed between the cooler surface and the hotter interior 

(Fig. 5.4). At the same time glass shrinks, more on the surface and less inside. As 

long as the glass is soft, these deformations are compensated by the viscous flow, 

and the glass remains without any stress. On crossing the glass transformation 

temperature Tg, the individual layers become successively rigid and an arrangement 

is built in the glass, which corresponds to temperature distribution given. If the 

cooling continues with a constant rate, the body remains without stress until its 

surface temperature drops to the ambient temperature. At this time, the inner 

warmer layers continue to cool and contract. This contraction is, however, opposed 

by the cold surface layers. This gives rise to a system of stresses, compressive at 

the surface and tensile in the interior. As the glass is already rigid, these stresses 

cannot be released and remain in the glass permanently.  

The stress distribution in tempered glass corresponds to the temperature 

distribution during the passage across the transformation region. If a glass plate of 

thickness h was cooled from both sides with not very high intensity, its 

temperatures will have parabolic distribution according to Fig. 5.4:     

 T(x, t) = T0(t) (1 – x
2
/h

2
)  ;          (5.10) 

T0 is the temperature in time t in the central plane, and x is the distance from it. 

After cooling the permanent stresses parallel with the surface will act:  
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k is a parameter characterising the intensity of cooling. Equation (5.11) shows that 

the maximum compressive stress acts in the surface (x = h/2) and has the 

magnitude   

 

 

 

 

           Fig. 5.4.   Stress distribution in tempered glass. 
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This stress is twice as high as the tensile stress inside the plate (x = 0), and the 

thickness of the compressed layer is approximately one fifth of the wall thickness. 

Equations (5.10) – (5.12) correspond to the places remote from edges. If the 

influence of edges should be considered, numerical solution and suitable software 

must be used.     

Strengthening by creation of compressive prestress in the surface layer also has its 

limits. Higher compressive prestress in the surface layer and its larger thickness 

mean higher tensile force in the interior. Thickness of the inner part must therefore 

be sufficient to equalise the compressive force. It means that strengthening by 

tempering cannot be used for very thin glass products, as usually also certain 

requirements exist for the minimum thickness of the compressive layer, able to 

prevent its easy breaking through.    

Thermal stresses also mean the accumulation of potential energy in the body. 

Tempered glasses are used in vehicles (windows of railway carriages, side 

windows in cars). If the compressed layer, hit by a small stone with sharp edges, 

was broken through into the inner part with permanent tensile stresses, cracks start 

propagating spontaneously in all directions from the point of damage. If the 

residual stresses were high, these cracks branch: the released energy changes into 

fracture energy. The higher the prestress, the higher the accumulated energy 

released during the process, and a higher number of smaller pieces, into which the 

glass plate disintegrates. Typical appearance of a damaged glass plate is in Figure 

5.5. Thanks to suitable distribution of stresses in the tempered glass the individual 

fragments have not sharp edges, and are not as dangerous as common splinters.    

 

 

        Fig. 5.5.  Fracture of tempered glass  

plate broken through by a sharp body. 
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In the past, tempered glasses were used in cars for all windows. Because the dense 

network of cracks makes the view through the glass impossible, or the damaged 

glass is spilled, the front glasses are made today from laminated glass. Usually, two 

panes of non-toughened glass are connected by a layer of polyvinylbutyral (PVB). 

In this case, a flying small stone can break out a small piece of glass, or the 

window fractures on the side of tensile stress, but the damage does not penetrate 

through the PVB layer. Everybody perhaps has seen such damaged glass in a bus.  

Glass can be strengthened also by ion exchange [4, 8]. Here, compressive prestress 

is created in a very thin surface layer (several mm) by putting the glass for some 

time into a hot bath of melted salts. Ions of the pertinent salt diffund into the glass 

and remain built-in here. As they have larger diameter than the original ions of the 

glass network, they generate permanent compressive prestress (Fig. 5.6). This 

process proceeds below the glass transformation temperature, so that the stress 

cannot be released by viscous flow. The very high compressive stress (several 

hundred MPa) in the surface layer is in equilibrium with the very low tensile stress 

inside the body. Certain advantage is that damaging of this layer does not cause 

destruction of the object, in contrast to failure of tempered glass.   

Thermal stresses arise also in welding of metals by flame or electric arc. The 

temperatures in the weld region are very high, and the material expands here. The 

melted or soft material adjusts itself to the dimensions in the vicinity and remains 

without stresses. They appear in it only during solidification and remain then in the 

body permanently. They can be mitigated by annealing. 

 

 

         Fig. 5.6. Distribution of stresses in a glass 

     plate strengthened by ion exchange 

 

 

 

Other examples of permanent stresses in steel components are nitriding, surface 

hardening, or cementing and quenching. In the last process martensite arises in the 

surface layer rich on carbon. Martensite has specific volume larger that the original 
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pearlite that remained in the untransformed interior. As a consequence, favourable 

compressive prestress acts in the very hard surface layer.   

Thermal stress can appear also in composite materials or structures, whose 

components have different coefficients of thermal expansion. The importance of 

knowledge of thermal expansion can be illustrated on one lawsuit from the past. 

The glass cover of airtight lamps for mines was joined with metallic body by 

gluing with an epoxy glue, and this arrangement worked well for many years. After 

some time, the glass manufacturer has decided to reduce the range of produced 

glasses, and to produce only „glass with better thermal resistance“ (i.e. glass with 

better resistance to sudden changes of temperature). The lamp manufacturer has not 

realised that this „resistance“ was higher due to lower thermal expansion of new 

glass in comparison with the original glass, and agreed with the change. And the 

lamps started to break, because the stress arising after gluing the glass to the lamp 

body at higher temperature was higher than the glass strength. In this case, the 

magnitude of forces between the glass and the fitting depended on the difference 

between the high temperature at the beginning of curing and the common 

temperature, and on the difference of thermal expansion coefficients of both parts. 

And the latter difference has become larger.     

Let us look at the following feature of cooling or heating of rounded surfaces. For 

example, when a long cylinder or a sphere is heated, its warmer surface layer wants 

to become longer, and, therefore, to increase its radius. The cooler interior hampers 

it. In the surface layer compressive stress therefore arises in the circumferential 

direction, and also in axial direction in a cylinder (Fig. 5.7). Moreover, radial 

tensile stress appears between this layer and the still cold interior. (During cooling, 

radial compressive stress and tensile circumferential stress in the surface layer 

would arise.) For obtaining simple idea we can assume that the surface layer is 

very thin, with the thickness h very small compared to the radius of curvature R at 

 

 

    Fig. 5.7.   Thermal stresses during heating a      

    massive shaft. Ti  – temperature of the interior,  

 Te – temperature of the surface layer, r  –  

 radial  stress between warmer layer and the 

 interior, t – circumferential stress,  
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the boundary between the layer and interior, and its temperature (assumed constant 

in the whole thickness of the layer and equal to the average value) differs from the 

temperature of the interior (also assumed constant) by T. 
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6. Stress concentration  

6.1  Introduction 

Failure of a component starts often at a place with sudden change of cross section 

or shape, such as a hole, notch or a crack (Fig. 6.1). These places are sources of 

higher stress, and are called stress concentrators. Transfer of forces in a loaded 

body between atoms can be represented by means of force-lines, analogous to 

stream lines in flowing liquid. The density of force lines is proportional to the 

stress. If the cross section is constant or changes slowly, the force-lines are 

distributed uniformly, and so is also the stress. At a sudden change of cross section 

or shape, generally at a stress concentrator, the continuity of the force flow is 

disturbed, and the force lines here become denser and the stress higher. 

Complicated three-axial stress state arises here; the stress is maximal on the surface 

of notch root and decreases with depth (Fig. 6.2); faster for a sharper notch. 

 

 

 

 

 

 

 

 

 Fig. 6.1. Examples of notches in components. The arrows show dangerous places.   

The stress analysis in notches is demanding. Today, suitable computer programs 

(e.g. FEM) can determine detailed distribution of stresses in bodies of complex 

shape, including notches. In the past, such analysis was possible only for simple 

shapes, and the evaluation of notch effects was limited to simple obtaining the 

maximum stress max in the notch root as 

 max =  nom  ,                   (6.1) 
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where  is the stress concentration factor, and nom is the nominal stress in the 

notch region. The values of shape factors  were determined for technically 

important notch shapes and loads, and can be found in various handbooks, for 

example [1 – 4]; an example is shown in Fig. 6.3. Also this approach is useful, as it 

yields simple illustrative idea, important for practical applications.   

 

 

  

 

 

 

 

 

     Fig. 6.2.  Plate with an elliptic hole  

     and stress distribution at its apex. 

     

 Fig. 6.3.  Stress concentration factor   for a stepped shaft loaded by bending [2]. 
 

For example, a component from brittle material breaks if the maximum stress at 

certain point attains the ultimate strength P. It follows from Eq. (6.1) that a brittle 

component with a notch fails if the nominal stress attains the value    

    nom = P /  .             (6.2) 

It means that the notch reduces the technical strength –times! In components 

from ductile materials loaded slowly the notches are not so dangerous, because if 

the maximum stress somewhere attains the yield strength, the material starts 

flowing plastically, the stress here does not increase so fast, and the increasing load 

can be transferred by areas where the stress is still lower and can therefore 

increase, as it was explained in Chapter 4. Despite of it, every notch means a 

danger, especially at impact load (see further). A fatigue crack, generated under 

periodical load, usually starts also at a stress concentrator; however, the reduction 

of fatigue limit is smaller than that given by Equation (6.2).  
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If the body should not fail under impact load, it must be able to absorb the energy 

of impact. If it deforms elastically, the energy consumption is small (Fig. 6.4a). If 

the stress exceeds the yield limit, the material deforms plastically, and more energy 

is absorbed (Fig. 6.4b). Plastic flow in a component with a notch is limited (due to 

 

 

 

 

 

               a.        b.          c. 

      Fig. 6.4. Deformation work. a – elastic deforming, b – elastic-plastic deforming.  

      0AB0 – work expended during loading, CAB – energy released during  

      unloading.  c - test of notch toughness by a pendulum hammer (Charpy). 

nonhomogeneous stress distribution) only to a small volume of material in this 

region. The stresses at larger distances are lower than the yield strength, and the 

material is deformed only elastically. The total consumption of impact energy is 

therefore smaller than in a similar body without a notch, with homogeneous stress 

distribution and thus with better condition for plastic flow in larger volume. (Let us 

compare in Fig. 6.4b the area corresponding to elastic deforming with the area of 

the whole diagram.) In a body of simple shape, the impact energy can be 

distributed in a large volume, and the corresponding stresses will be relatively low, 

while the same energy, passed onto a body with a notch, is concentrated in much 

smaller volume, and causes much more intensive plastic flow here; after the 

material´s plastic ability is exhausted, a fracture follows. The influence of a notch 

can be illustrated on an example of impact on a smooth beam and on a similar 

specimen with a notch, as common in tests of notch toughness (Fig. 6.4c). If the 

smooth specimen has the thickness equal the minimum thickness of a notched 

specimen, the falling hammer bends it, while the specimen with a notch breaks, 

despite of the fact that it is more massive in general – with the exception of the 

notch. Addition of material alone does not increase the strength, if the material was 

not added at the proper place. (See also Chapter 14, the part on the effect of ribs.)     

Further, we shall look at the stress concentration at holes in components.  
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6.2  Stresses around holes  

The main features will be shown on several typical cases.  

1) The first case is a small circular opening of radius a in the centre of a circular 

plate of radius b >> a (Fig 6.5). The outer circumference of the plate is loaded by 

uniformly distributed radial tensile stress r(b) = rB. At the distance r from the 

axis the circumferential stress t and radial stress r act [3 – 6]  

   21)( rar rBt    ,   21)( rar rBr   .    (6.3a,b ) 

On the surface of the opening (r = a) no radial stress act, r(a) = 0, and 

circumferential stress here is t(a) = 2rB; that is two times higher than the stress 

on the loaded outer edge. The stress concentration factor is thus  = 2. If no hole 

were in the plate, the stress rB would act here in all directions. The presence of the 

hole means the local increase of stress here by 100 %.. 

 

 

   Fig. 6.5.  Stress around the circular hole 

    in a plate loaded by isotropic tension. 

 

 

The same increase of stress will exist around a small opening in a large square 

plate, loaded on all edges by the same tensile stress rB. The stress state also in this 

plate is biaxial isotropic, similarly to a circular plate.   

2) The second case is a small circular hole of radius a in a large square plate loaded 

by uniaxial tensile stress 0 (Fig. 6.6). The circumferential stress here is [3, 6] 
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 is the angle between the direction of tensile stress and the point on the radius r, in 

which the stress is determined. The circumferential stress is highest on the surface 

(i.e. at r = a), where it changes with the angle   as 

  0 (1 + 2 cos 2 )  .          ( 6.5 ) 
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     Fig. 6.6.  Stress around a circular hole in  

     a large plate loaded by tension in vertical 

    direction. On the circumference of the hole 

    maximum tensile stress 3 acts at points  

    A and compressive stress –at points B.  

  

 

 

At points A maximum tensile stress t(A) = 30 acts, so that the stress 

concentration factor is   = 3. From here the circumferential stress changes 

continuously to compressive stress 0 at point B. This has several interesting 

consequences. If this plate is also loaded at the edge by the stress 0 in 

perpendicular direction, isotropic stress state has arisen with the stress 0 in all 

directions. Everywhere along the surface of the opening tensile stress in 

circumferential direction 20 will act, similarly to the previous paragraph. For 

example, in vertical direction the stress 30 + (0) = 20 acts, and it holds for any 

direction in the plate plane. 

3) The third case pertains to the loading of the plate by pure shear. Such load acts 

in components loaded by torsion. As it follows from Mohr´s circle (Fig. 1.5d), this 

stress state arises also if the component is loaded by tensile stress 0 acting at angle 

45 and simultaneously by perpendicular compressive stress 0 (Fig. 1.5d). 

Tensile load causes tensile stress 30 on the surface at point A. The perpendicular 

compressive load causes at the point A also tensile stress 0. The resultant stress is 

thus tensile of magnitude 40, so that the stress concentration factor is  = 4. The 

hole in a hollow shaft transmitting twisting moment is therefore more dangerous 

than in a rod loaded by tension, or in a shaft or a bend beam.  

4) Interesting situation is in Fig. 6.7. A crack emanating from the top of a hole in 

the plate loaded by compressive force will grow in the load direction. This looks 

paradoxically. However, it is so because the crack is at the place with tensile stress 

perpendicular to its plane (see point B in Fig. 6.6). If the plate is wide, the crack 

stops as soon as the crack arrives at the region where the tensile stress is low. Vice  
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     Fig. 6.7. Crack propagation in the  

     direction of acting stress. 

 

 

 

versa, a relatively long crack emanating from a hole in a relatively narrow strip 

could grow further, if the strip halves can buckle. 

5) Figure 6.2 shows an elliptical opening in a large elastic plate loaded 

perpendicularly to the long axis of the ellipse [3]. The maximum stress at the ends 

of the long axis is   
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 ;           (6.6) 

nom is the nominal stress in the plate, a is the length of its longer semi-axis, and  

is the radius of curvature of the ellipse at this point. The maximum stress is higher 

for a narrower ellipse. For very high ratios a/  Equation (6.6) simplifies to 

 



a

nom 2max  .            (6.7)  

For  approaching to 0 the elliptic opening approaches to a crack, and the 

maximum stress max grows above all limits. This case will be addressed in the 

chapter on fracture mechanics.  

Besides openings also many further stress concentrators exist. Any sudden change 

in shape or size of the cross section acts as a notch. Generally, the stress increase is 

higher if the notch is deeper (or if the change of diameter or thickness of a shaft is 

larger), and if the radius of notch root is smaller. A significant role is played by the 

shape of the notch. Even small shape change can result in significant reduction of 

maximum stress. These questions will be treated in more detail in Chapter 14 on 

the shape optimisation. 
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6.3  Stress state at concentrated contact 

Local high stresses act sometimes at mutual contact of two bodies. The situation 

will be illustrated on the contact of bodies with rounded surfaces. The forces are 

transferred between the bodies over a small contact region. The stress state here is 

complex: the stresses act in three directions and decrease quickly with the distance 

from the contact area. Under low loads, both bodies are deformed only elastically, 

and the stresses and deformations can be determined according to the theory 

developed by Heinrich Hertz and other scientists. Here, we shall look on the 

contact of two spheres, pressed together by normal force P (Fig. 6.8). The initial 

contact is in one point. As the force increases, circular contact area of radius a is 

formed here, and becomes larger with higher force. Therefore the relationship 

between the load and the stresses or deformation in elastic contact is nonlinear. 

 

           Fig. 6.8.  Contact of two spheres. a  geometry, b  contact stresses. 

           Above horizontal axis: stresses in the contact area, below the axis:  

           stresses beneath the surface in the contact axis. After [7]. 

The distribution of pressure on the contact surface is parabolic (the upper part of 

Fig. 6.8b), with the maximum value p0 in the centre [6 – 9]:  

 p0  =  3
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the equivalent curvature 1/Re of the contact (= the reciprocal of the radius of 

curvature) equals the sum of their curvatures: 

    

21

111

RRRe
  ;             (6.9) 

R1 and R2 are radii of curvatures of their surfaces at the contact. Rj  is positive for 

convex surface, and negative for concave surface. If the surface is plane, the 

curvature 1/Rj equals zero. Ee is the equivalent modulus of elasticity of both 

materials, calculated as 
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In this case, reciprocal values of the moduli, i.e. the compliances, were summed, 

similarly to two springs in series. The Poisson´s numbers 1, 2 are here because 

the deformations in two perpendicular directions are mutually related. 

The centres of both bodies get nearer by the value   
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C is a constant expressing the contact compliance. Equation 6.11 is nonlinear, so 

that the principle of superposition cannot be used; the problem must always be 

solved for the actual load. 

The radius of contact area is 
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The distribution of contact stresses is shown in Fig. 6.8b. At the edge of contact 

area tensile stress acts in radial direction, i.e. perpendicularly to its edge, 
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In the contact region also shear stress acts. It attains the maximum value at the 

depth a/2; for  = 0,3 it is  
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 max   0.31 p0 .           (6.14)  

The state of stress has similar features also for other shapes of contacting surfaces. 

The formulae of similar kind for contact pressure, stress and deformations can be 

used also in contact of cylinders and other bodies, and it is sufficient if the surfaces 

in the contact region can be approximated by a part of a spherical or cylindrical 

surface, or  in more complex shapes  by means of two semi-ellipsoids; the 

pertinent formulae can be found in [6, 8, 9].  

High stresses in the contact region can cause failure. If the tensile radial stress on 

the edge of contact area in a brittle material attains its tensile strength, a small ring-

shaped crack is generated here. As the pressure on the contact surface increases, 

the material below it is pressed in the direction of force P, and the surrounding 

material prevents it. Shear stresses therefore act between the material outside the 

contact and inside it (that is beneath the loading force), and also at the edge of the 

crack, which gradually extends into a conical surface (Fig. 6.9; the corresponding 

tensile stress that opens the crack, is everywhere inclined to the axis by 45). In 

contact of ductile materials the material starts flowing plastically below the surface, 

in depth a/2, as soon as the maximum shear stress here attains the value Y/2. The 

plasticised region grows gradually, and at several times higher load it spreads to the 

surface [7].   

 

                  Fig. 6.9.  Creation of a conical crack  

      at concentrated contact (so-called 

              Hertz´ conical fracture).  

 

 

A fatigue crack in ductile material can be created below the surface under repeated 

contact, for example in metallic ball bearings. Such crack grows gradually, and 

after some time it penetrates onto the surface, and a small particle of material is 

peeled off. This gradual deterioration of surface is called pitting.  
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7. Response under alternating load; fatigue  

Metal parts loaded cyclically or periodically sometimes fail due to fatigue. This 

phenomenon appears in railway and other transport means, in various machines 

with rotating parts, but also in civil engineering constructions. Figure 7.1 depicts 

schematically the relationship between the stress amplitude and number of cycles 

to failure, so-called S–N or Wöhler curve. The number of cycles to failure increases 

with decreasing stress amplitude a; if a is lower than so-called endurance (or 

fatigue) limit c, the component can sustain unlimited number of loading cycles. 

However, the situation is more complex; some aluminium alloys, for example, do 

not exhibit fatigue limit at all. A role is also played by characteristic load.    

      

           Obr. 7.1.  S-N (Wöhler) curve [1]. 1 ksi = 6,89 MPa. 

Fatigue process has four stages: 1) Change of mechanical properties 2) Creation of 

a crack, 3) Slow crack growth till the critical size, and 4) Fast fracture. Here, the 

first two stages will be discussed; the crack growth will be dealt with in Chapter 8.  

7.1  Change of mechanical properties 

Dislocations in a material start moving at very low stresses (MPa), but it is not 

obvious in the static stress-strain diagram yet. Under alternating loading new 

dislocations are generated; some block mutually and some disappear. All this is 

demonstrated by gradual change of properties (Fig. 7.2). One speaks about cyclical 
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    Obr. 7.2.   Examples of cyclic softening and strengthening [2]. 

strengthening or softening. The first case occurs, e.g., in annealed steels, with small 

number of dislocations; softening occurs in high-strength steels. After several tens 

or hundreds of loading cycles the properties do not change any more; the hysteresis 

loop is saturated. Connecting the extreme values of these loops for various ranges 

of stress or strain gives so-called cyclic deformation curve (Fig. 7.3). This curve is 

usually described by    
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K´ and n´ are constants, which are found in experimental way. 

 

 

 

       

           Fig. 7.3. Cyclic deformation curve [2].  

 

 

7.2  Initiation and growth of fatigue cracks         

Fatigue fracture usually starts at some stress concentrator. However, even without 

it a fatigue crack can be nucleated in a metallic material if the stress amplitude is 

higher than its fatigue limit [2 – 8]. In polycrystalline materials microplastic 

deformations and slips occur in oblique planes where the highest shear stresses act. 
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The easiest situation is in the surface layer, as here the slips are less restricted than 

inside the body (Fig. 7.9). During repeated loading dislocations are generated here, 

and the surface relief changes. The dislocations are gradually accumulated. All this 

damages the material, and since certain instant this place appears as a small crack. 

At the beginning the crack grows in the direction of maximum shear stress, which 

is inclined 45 º to the direction of tensile force in a rod loaded by periodical axial 

force. Similarly fatigue cracks can be nucleated on the surface of any notch. After     

 

      Fig. 7.4.   Nucleation and growth of a fatigue crack. a  slips in the surface 

      layer due to shear stress, b  nucleation of fatigue crack in the direction of 

      maximum shear stress, c  crack tip turning into the direction perpendicular 

      to the maximum tensile stress.   

a while, the influence of macrostress prevails and the fatigue crack turns gradually 

into the direction perpendicular to the maximum tensile stress (Fig. 7.4c). Such 

crack can grow further only if tensile stress acts in its plane at least for a part of the 

loading cycle. In contrast, if the crack gets into the region of compressive stress, it 

can stop. This is used for increasing of fatigue resistance by shot peening, as it was 

shown in Chapter 4.8. 

7.3  Time to fatigue failure 

Under relatively low stresses (and very high number of cycles to failure) one 

speaks on high-cycle fatigue. This is well characterised by means of stress 

amplitude. Various expressions exist for the number of cycles to failure Nf [2 – 8]. 

The simplest one is the Wöhler curve (Fig. 7.1):  

 Nf  = A a 
–m

 ;             (7.2) 

A, and m are constants, found by measurement, and a is the stress amplitude. In 

logarithmic form Eq. (7.2) changes to a straight line (log Nf = log A  m log a). At 

higher amplitudes and lower number of cycles Equation (7.2) is not sufficiently 

accurate. Therefore the standard for metallic constructions uses a broken line (Fig. 

7.5). This is due to the fact that the time to fatigue failure has two principal stages:  
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Fig. 7.5. Fatigue curves for steel 

parts according to the code [9].  

             Exponent of low-cycle fatigue m = 3,  

             exponent of high-cycle fatigue m = 5. 

             Category (detail No.) – see the code. 

 

 

 

 

 

 

 

1) till the crack nucleation, and 2) the slow crack growth, and each is characterised 

by different exponent. At higher loads the Hooke´s law is not accurate, and strain 

amplitude or range are more suitable for the determination of the time to failure. 

Here, one speaks about low-cycle fatigue. Both high-cycle and low-cycle fatigues 

are better described by the universal fatigue curve (Fig. 7.6):   
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It has two asymptotes, which correspond to elastic and plastic component of strain 

in Eq. (7.1). The first component, prevailing at high-cycle fatigue, is the Wöhler 

 
   Fig. 7.6. Universal curve for low- and high cycle fatigue [2]. 
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curve (7.2) divided by the Young modulus. The other component, so-called 

Manson-Coffin, expresses the dependence of the number of cycles to failure on the 

plastic component of the amplitude (apl). This is characterised by the names of the 

individual constants in Eq. (7.3): f´ is the fatigue strength coefficient, b  fatigue 

strength exponent, f´  fatigue ductility coefficient, and c  fatigue ductility 

exponent. At left from the intersection of both asymptotes one speaks about the 

low-cycle fatigue, and right of it about high cycle fatigue.             

Remark. The term 2N in Eq. (7.3) expresses the number of half-cycles. These are 

more suitable for the evaluation of irregular or random loading, similarly as the 

stress range  instead of amplitude ( = 2a), because it is easily determined 

from the (t) record as the difference between the local maximum and minimum. 

 

7.4  Factors influencing the fatigue endurance 

In addition to the stress amplitude or range a role is also played by the mean stress 

in the loading cycle, surface roughness, the component size and notches. The 

influence of mean stress is depicted in the Haigh diagram (Fig. 7.7, thick lines); 

also Smith diagram is used; see [2 – 6]. Tensile stress reduces the fatigue limit, 

while compressive stress increases it. The unfavourable influence of tensile stress 

is understandable, because a part of the fatigue process is spent by crack growth, 

and the crack is opened by tensile stress. Vice versa, compressive stress hinders the 

crack and can it even stop; remember the increasing of the life endurance by shot 

peening. The traces after machining and also any other surface unevenness act        

   

Fig. 7.7. Haigh diagram. a – amplitude, m – mean stress in the  

cycle, Y – yield strength, + tension, – compression. If the operation  

point (m, a) lies below the limit line, the component does not fail. 
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as smaller or larger notches. The component size plays a role in two ways. A larger 

body has larger surface area, with higher probability that a larger material defect 

can exist here, which can act as a fatigue crack initiator. The stress gradient (from 

the surface inwards) in larger components loaded by bending is smaller, so that 

larger is the thickness of the surface layer, where some defect can play a role. The 

influence of a notch is characterised by so-called notch factor , which is 

calculated from the stress concentration factor . The simplest formula for the 

fatigue limit c
*
 of certain place is    

 





vp
cc 

*  ;      (7.4) 

c is the basic fatigue limit, p is the factor for the surface quality, and v is the size 

factor [2 – 6]. Similar recalculation is used for the timed fatigue limit, 

corresponding to certain number of cycles to failure (7.2). Several procedures exist 

for the prediction of the fatigue limit of various components; see, e.g. [4 – 8].   

Certain problem for metal constructions is caused by residual stresses due to 

welding, as they cannot be released by annealing. The code [9] for steel 

constructions uses therefore a different approach. It gives fatigue curves for various 

construction details (Fig. 7.5), which were obtained by measurement on samples 

created by similar procedure as in reality, and contain also the residual stresses.  

7.6  Damage accumulation 

Fatigue curves show the relationship between characteristic load and the number of 

cycles to failure with the same character of loading. In reality, the stress amplitude 

often varies during the operation. The evaluation of the number of cycles to failure 

is not necessary if the largest amplitude is smaller than the fatigue limit. If it is 

higher, it is necessary to determine the number of cycles to failure, or to dimension 

the component appropriately. In such cases, a suitable hypothesis of damage 

accumulation is used. The simplest one, Palmgren-Miner hypothesis of linear 

damage accumulation, assumes that each loading cycle depletes certain part of the 

component life. So-called (relative) damage D is calculated, defined as the ratio of 

the number N of loading cycles undergone to the number Nf of cycles to failure 

under the same way of loading: D = N/Nf. The resultant damage at complex loading 

is calculated as a sum of damages during the individual processes:  
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 
j

jfj NND ,
 .      (7.5) 

Failure can be expected for D = 1. If damage D1 for one day of operation is known, 

the component should sustain Nf = 1/D1 days. However, one must be aware of high 

dispersion of the number of cycles to failure, so that failure can also occur at D ≤ 1. 

Material fatigue is often a source of serious failures. Many procedures have been 

proposed for its evaluation, including random loading, and various commercial 

programs exist. For further study, Refs [4 – 8, 10 – 13] can be recommended.   
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8.  Principles of fracture mechanics 

 

8.1  Situation in bodies with cracks, principles of fracture mechanics 

Figure 8.1 shows cracks in a bituminous pavement, which emanate from the 

corners of a metal hatch. This hatch prevents free dilatations of the asphalt during 

daily temperature changes. Stresses therefore arise here, highest at the cover 

corners. During heating, the bitumen wants to expand. It cannot, but as it is softer 

thanks to higher temperature, the thermal stresses relax. During the decrease of 

temperature, tensile stresses arise in the bitumen due to its effort to shrink. In cold 

brittle bitumen these stresses caused the formation of cracks. Their roots acted as 

strong stress concentrators, so that the cracks continued growing during changes of 

temperature despite of the large distance of their tips from the hatch corners.         

 

 

      Fig. 8.1. Cracks in a bitumen pavement  

       at the corners of a metal cover, which 

       have arisen due to thermal stresses.     

 

 

 

 

 

From the fracture point of view, the situation in bodies with one or more sharp 

cracks is worse than in case of notches, described in the previous chapter. The 

cracks could have been generated during manufacture or operation, for example 

due to fatigue under repeated loading. A body with a crack breaks more easily in a 

brittle manner, especially under impact. Thanks to a sharp root, the crack 

represents a very strong stress concentrator, which significantly limits the plastic 

deforming, and thus also the energy absorption at the region. According to 

theoretical analysis, the stress in front of a sharp crack in an elastic body is 
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r

a
Cr nom )(  ;            (8.1) 

nom is the nominal stress, C is a constant, a is the crack length or another 

characteristic dimension, and r is the distance from the crack tip (Fig. 8.2).  

       

Fig. 8.2. Stress distribution and plastic zone in front of the crack. y – stress 

perpendicular to the crack plane, y´ – stresses corrected for the plastic zone of 

radius rp (hatched), 2c – crack length, Re – yield strength of the material. 

This solution gives infinitely high stress at the crack root (r 0), which is 

impossible. This contradiction made big problems initially in the investigation of 

the conditions for fracture. Later, two approaches were proposed, which have 

overcome the problem [1 – 4]. The first one, formulated by Irwin and Orowan, uses 

the concept of stress intensity factor K. This factor characterises simultaneously 

the influence of nominal stress and the crack size in the following way   

 aYK nomi   ;             (8.2) 

Y is a shape factor that includes the influence of the shape and position of the 

crack, its relative size with respect to cross section area in the investigated place, 

and also the character of the stress distribution (tension, bending, etc.) The 

dimension is Pa.m
1/2

 or MPa.m
1/2

. (Caution when using mm instead of m, as 1000 =  

31,6, so that the value is different !) The subscript i at the stress intensity factor (I, 

II or III) denotes the mode of crack opening (Fig. 8.3). Note that Eq. (8.2) is similar 

to Eq. (8.1) for the stress at unit distance in front of the crack, i.e. for r = 1. 

The crack grows quickly if the stress intensity factor attains the critical value, i.e.  

K    KC .              (8.3) 
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    Fig. 8.3. Principal modes of crack opening. 

  

 

The most important case is simple opening (mode I). The corresponding critical 

value is denoted KIC and called fracture toughness. It is measured on standard 

specimens. A suitable specimen with a crack, for which the relationship between 

load F, crack length a and the value of stress intensity factor, KI = f (F, a), is 

loaded by continuously growing force till the start of fast crack growth. The 

corresponding load and crack length are used for the determination of the value of 

KI, which represents the fracture toughness KIC. A possibility of fast fracture of 

another body can be assessed if the value of KI for this body with actual crack and 

load is compared with the value of fracture toughness KIC for the same material. 

This approach has overcome the necessity to know accurately the true magnitude 

of the highest stress at the crack root.  

Formulae or diagrams for the determination of stress intensity factor can be found 

in various handbooks [5, 6, 3], or they can be obtained by means of a suitable 

computer model. Figure 8.4 presents two examples, and one specimen for the 

determination of fracture toughness is shown in Fig. 8.5. 

A component with a crack fails if the stress intensity factor at certain place attains 

the critical value (and does not drop below KIC soon). It follows from Eqs. (8.2) 

and (8.3) that a component with a crack breaks if the nominal stress attains the 

critical value   

 

cr

C
cr

lY

K
  .             (8.4) 

Vice versa, critical crack length for certain nominal stress nom can be determined,  

 
2
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       aKI         for   2a  << h 

       )1,01( 2qqaKI    

        q = 2a/h      for q < 0,6 the error  

does not exceed 1%  

 

       aKI 12,1        for   a  << h 

       )85,5348,387,1841,099,1( 432 qqqqaKI   

          q = a/h        for q < 0,6 the error 

      does not exceed 0.5% 

 

   Fig. 8.4.  Stress intensity factor for plates with central and edge crack [3 - 6]. 

 

               Fig. 8.5.  Compact Tension (CT) specimen 

           for the determination of fracture toughness [3]. 

           )9,63810177,6555,1856,29( 432
2/1

qqqq
bh

Fa
K I    

           q = a / h 

 

and it can be checked (or ensured) that cracks larger than lcr cannot appear in the 

product. As the shape factor Y of longer cracks depends also on their size, it is 

sometimes necessary to find the critical length by iteration procedure. 

The other approach to the assessment of a body with a crack, as proposed by A. 

Griffith, is based on energy principles. The body with a crack contains accumulated 

energy of elastic stresses. If the crack grows, this energy is released. On the other 

hand, the crack growth consumes energy, especially for plastic deforming of the 

material in the region of high stresses in front of the crack. The situation is depicted 

in Fig. 8.6. The energy, consumed for the creation of new fracture surfaces is 

directly proportional to the crack length. The released energy is proportional to the 

square of this length; for simplicity we can imagine that the creation of a crack   
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       Fig. 8.6.  Plate with a crack – energy balance [1]. 

       U – energy of elastic stresses, released by the crack growth,  

       Ws – energy consumed by the crack growth, ac – critical length. 

releases the stresses and energy from the circular area of the same diameter as the 

crack. At the beginning more energy is consumed for crack growth than released, 

but from certain instant (corresponding to crack length ac), the energy released by this 

growth prevails, and the fracture process becomes unstable. The description of this 

process uses so-called strain energy release rate G, defined as the energy released 

by the increase of fracture surface by unit of area (J/m
2
), and specific fracture 

energy , which expresses how much energy is needed for the creation of fracture 

surface of unit area (J/m
2
). The condition of spontaneous fast crack growth is  

 G   ,     or       G  GC ,            (8.6) 

where GC means critical value of energy release rate. 

Both approaches are equivalent if fracture of brittle character is judged. For simple 

crack opening, for example,   

 GI  = KI
2
 / [E/(1  2

)]  .             (8.7)  

The formulae for other modes of crack opening are similar. Table 8.1 shows the 

values of fracture toughness and specific fracture energy for some materials.  

Remark. Other approaches are used for ductile materials [1]. 

If the possibility of failure should be judged, usually the stress intensity factor is 

used. However, it is useful to look always on the matter from the energy point of 

view. At impact, for example, certain amount of energy is delivered into the body. 

And the fracture can be expected only if this amount is higher than the value  × S,  
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Table 8.1. Fracture toughness KIC and specific fracture energy C  

of several materials [3, 4]. r.b. – reaction bonded, h.p. – hot pressed.   

Material   KIC (MPa m
1/2

)      C (J/m
2
) 

       .------------------------------------------------------------------------------------------------------. 

steel        30 – 140              4000 – 85000 

 grey cast iron       10 – 25    860 – 5400  

 ceramics r.b.       1.5 – 3,5        2 – 50 

 ceramics h.p.       2,5 – 5,0      12 – 80    

 glass-ceramics       1,8 – 4,5      30 – 210 

 glass        0,6 – 1,0        6 – 10 

 epoxy resins       0,5 – 2,0      50 – 200  
 

 being the specific fracture energy and S the area of the remaining part of the 

cross section. Similarly it is possible to predict the enlargement of the existing 

crack by impact, and the corresponding strength degradation.  

Fracture toughness of common technical materials is determined according to 

standards, which also prescribe dimensions of the specimens. Thickness is very 

important for metallic materials. This is related to the ductility of metals. High 

stresses cause plastic flow in the vicinity of crack tip. The boundary between the 

elastic and plastic region can be determined according the von Mises hypothesis of 

the density of strain energy responsible for shape change, or according to the 

Tresca´s hypothesis of maximum shear stress [1]. Both approaches give similar 

results. Figure 8.7 shows the shape of plastic zone in front of a crack in a plate. The 

plane stress state is on the side surfaces: the stress acts only in the plane of surface, 

without any force perpendicular to it. Inside the specimen, whose thickness cannot 

change, plane strain exists and also stress parallel to the crack front. We can see 

that the plasticised region on the sample sides is larger (thanks to more favourable 

conditions for plastic flow) than inside, at places more distant from the edges. The 

energy consumption at the edges will be higher. Therefore, in a thin specimen, 

whose prevailing part is in the state of plane stress, more energy is consumed than 

in a thick specimen, where plane strain prevails, with smaller size of plastic zone. 

A thin specimen starts breaking at higher stress than a thick one. The specimen for 

the measurement of fracture toughness should therefore have at least certain 

minimum thickness ensuring that plain strain will exist in the crack region, and 

giving the lower (i.e. conservative) value of fracture toughness. The corresponding     
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    Fig. 8.7.  Plastic zone in front of the crack tip. Plane stress is on side surfaces; 

    the smaller  zone in the interior corresponds to the plane strain [11]. 

thicknesses are given, for example, in the standards for metal constructions [7]. If a 

component with larger thickness were dimensioned using the (higher) value of 

fracture toughness obtained on thin specimens, such component could break 

unexpectedly earlier. The critical value of stress intensity factor for thin-walled 

components could be found by a suitable test, or from a finite element model based 

on elastic-plastic material model.        

Let us look at an interesting feature of stress distribution in front of the crack. The 

attention is usually oriented at the stress acting perpendicularly to the crack plane. 

This stress increases strongly with decreasing distance from the tip, and material 

flow in plastic manner if the stress attains (or exceeds) the yield strength (Fig. 8.2, 

8.7). This limits further increase of stresses, which should grow to infinity at the tip 

according to the elastic theory and Hooke´s law. (In reality, they would be limited 

by plastic flow or another process.) However, the distribution of elastic stresses in 

front of the crack is more complicated. In addition to the stress perpendicular to the 

crack plane, also tensile stress acts here in the direction of its propagation in a 

small region (Fig. 8.8). Cook and Gordon [8, 9] have shown that this stress can be 

used for the stopping of the principal crack, horizontal in the figure. The sufficient 

condition is lower strength of material in the direction of crack propagation. This 

Cook-Gordon mechanism is sometimes used for increasing the resistance against 

crack propagation in composite materials. A growing crack is deflected as soon as 

it arrives at the weak interface with another phase. In this way, a crack propagating 

in polymeric matrix perpendicularly to the fibres can turn and branch many times. 

Sometimes it can be observed also on a broken branch of a tree or a bush. The 

crack deflecting and branching increases significantly the consumption of energy 
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     a.     b. 

   Fig. 8.8.  Stress field in front of elliptic crack [8, 9]. a – stresses perpendicular 

   to the crack plane, b – stresses in the crack direction. In case b note the region  

   with relatively high tensile stress at small distance ahead of  the crack tip.  

during the fracture. Similarly, deflection at the interface can prevent the penetration 

of the crack from the coating into a massive body (see also Chapter 11). The price 

for this can be the gradual delamination of this protective layer and the 

deterioration of the surface exposed to the harmful environment. 

8.2  Growth of fatigue cracks         

Nucleation of fatigue cracks was described in the previous chapter. Now we shall 

look at their growth. The velocity of slow propagation of fatigue cracks under 

cyclical or periodical loading depends on the range of stress intensity factor 

  K = Kmax  Kmin ,            (8.8) 

where Kmax and Kmin are maximum and minimum value of K-factor in a loading 

cycle. Also the mean stress plays a role. The velocity as a function of K is 

depicted schematically in Fig. 8.9a. The crack starts growing if the range K 

exceeds certain threshold value Kth of the material (part I). Its velocity increases 

with increasing stress range, and finally it passes into the fast stage (region III). 

The region II is most important for the prediction of the time to failure of a 



Jaroslav Menčík:  Applied mechanics of materials 

 

89 

component with a crack. Here, the velocity of crack propagation is often 

approximated as     

 v  =  da/dN  = AKI
n
 ;             (8.9)    

da/dN is the increment of crack length per loading cycle, and A, n are constants for 

the material. (The power-law function (8.9) looks as a straight line in logarithmic 

coordinates.) With respect to the definition of stress intensity factor, it follows from 

Eq. (8.9) after rearrangement that the number of cycles N for increase of the crack 

from initial length ai to length a under loading by cyclical stress of range  is:   
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If the upper limit a equals the critical length acr (or lcr in Eq. 8.5) corresponding to 

the instant when the maximum value of stress intensity factor in a loading cycle 

attains the critical value KIC, the number of cycles to failure is obtained. 

The fact that fatigue crack does not grow if the range of stress intensity factor is 

smaller than the threshold value, has important practical consequence: the growth 

of an existing crack can be stopped by reducing load so that  K drops below Kth.  

 

 

  

 

 

 

 

 

       a.           b.   

     Fig. 8.9.  Velocity of growth of fatigue cracks as functions of stress intensity 

     factor: a – in ductile materials, b – in brittle materials (a schematic). 

Cracks in ceramic materials grow sometimes very slowly even under constant 

stress, due to the corrosion of the stressed material at the crack root by the action of 



Jaroslav Menčík:  Applied mechanics of materials 

 

90 

the environment (so-called stress corrosion cracking); one speaks of static fatigue. 

The crack velocity v = da/dt depends on the stress intensity factor. The course v(K) 

is depicted schematically in Fig. 8.9b. The crack starts growing if the stress 

intensity factor is higher than a threshold value Kscc. The growth becomes faster 

with increasing KI, and for KI  KIC it goes into a very fast stage.  

The part I (with the exception of vicinity to Kscc) is often approximated by a power-

law function 

 v  =  da/dt  = A´KI 
n´

 ;           (8.11)    

the constants A´ and n´ (different from A, n in Eq. 8.9) are obtained experimentally  

for the given material and environment. Similarly to the previous case, it is 

possible to determine the time for crack growth from the initial length ai to a: 
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and the time corresponding to attaining the critical crack length acr. 

8.3  Increasing the resistance to crack propagation  

General ways for increasing the material resistance to crack growth are shown in 

Fig. 8.10. An efficient way is increasing the energy consumption in the crack 

region. The absorbed energy is proportional to the product of specific fracture 

energy  (J/m
2
) and fracture area S, 

 W  =   S .            (8.13) 

The increase of energy absorption in brittle materials can be achieved (for 

example) be making longer the actual crack way (and fracture surface) by 

dispersing hard particles in the matrix of a composite material (Fig. 8.10a). The 

crack must circumvent them, which makes the way and area of fracture larger. In 

special kinds of ceramics the material in front of the crack gets multiply cracked 

(Fig. 8.10b). Numerous fracture surfaces arise here, which absorb energy. An 

interesting way is used in partially stabilised zirconia ceramics ZrO2. Very high 

stress in front of the crack induces phase transforms here. Monoclinic phase is 

created here, whose volume is larger than that of the original tetragonal phase. In 

this way regions with compressive stresses are continuously formed in front of the 

propagating crack, which hinder its growth (Fig. 8.10c). Long strong fibres in 
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fibrous composites  (Fig. 8.10d) increase the strength. On the other hand, short 

fibres used for strengthening are pulled out of the matrix during the fracture (Fig. 

8.10a). For this process, friction forces between the fibres and matrix must be 

overcome, and also the corresponding work must be expended.  

The main mechanism of energy consumption in ductile metallic materials is plastic 

deforming in the crack region. Tensile stress at a distance r in front of the crack in 

elastic material (Fig. 8.2) is given by Eq. (8.1). At the distance rpl this stress attains 

    

      

             Fig.  8.10.  Increasing of the resistance to crack propagation. 

 

the yield strength Y and the material flows plastically there. This distance can be 

assessed as that corresponding to the stress Y in (8.1). A rearrangement gives the 

radius of plastic zone   
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The plastic zone will be larger for lower yield strength of the material. If more 

energy should be absorbed in a fracture, lower yield strength would be better.  

The resistance against propagation of fatigue cracks in metallic materials can be 

increased also by creating compressive prestress in the surface layer by local 

plastic forming, for example by shot peening or rolling described in Chapter 4.8.  
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9.  Fracture analysis 

 

General knowledge on the state of stress and behaviour of cracks is very useful in 

the analysis of failures. This analysis has three sources: appearance of the damaged 

body, history of the failure, and the information on the loads, material properties 

and conditions of operation. Analysis of fractures is treated in more detail in [1], 

the analysis of failures in [2 – 6]. Here some notes will be given.      

Observation of the failed body can show the starting point of the fracture (Fig. 9.1, 

9.2), and to reveal its internal cause, for example a material defect. Fracture 

mechanics then helps in the determination of magnitude of stresses and forces 

acting in the critical point at the instant of failure. The appearance of the fracture 

surface and trajectory of the crack inform on the course of fracture process, 

characteristic fracture mode (e.g. brittle fracture, fatigue fracture) and on the kinds 

of acting stresses (e.g. shear stresses leading to torsional fracture, Fig. 9.2g). Some 

details are visible by the naked eye, while some other need an electron microscope. 

Always it is useful to create photographic documentation, or, at least, the detailed 

description of the damaged object 

On macroscale, the crack has a tendency to propagate perpendicularly to the highest 

tensile stress. The final failure of the individual grains in polycrystalline ductile 

materials occurs by shear. Therefore, the fracture surface on microscopic scale is  

 

 

          Fig. 9.1. Fatigue fracture of a shaft. The arrow shows the failure origin. 

          The fatigue crack propagated slowly from here (smooth lines) to the rough  

          part of the cross section, typical of the final fast period of fracture.   
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  g     

 

 

    Fig. 9.2. Examples of crack trajectories. a - f: cracks in glass panes (after [1]): 

     a - force acting perpendicularly to the pane, b - as a, but more intensive load,  

     c - explosion in the room, d - shot through, e - fracture caused by twisting, 

     f - thermal stress, g - fracture of a rod from brittle material by twisting. 

formed by a large amount of various oblique areas, corresponding to the directions 

of shear stresses in the individual grains. Certain role is also played by the different 

ability of the material to resist normal and shear stresses. Figure 9.3 shows a 

specimen of a relatively brittle Al alloy destroyed in tensile test. The fracture 

surface in one direction is perpendicular to the rod axis, i.e. perpendicular to the 

maximum normal stress, while in the other direction it is inclined by 45º, which 

corresponds to the direction of maximum shear stress.    

Another example of the effect of thermal stresses was shown in Fig. 8.1. The 

cracks in the pavement at the edges of a metal hatch arose due to restraining free 

asphalt dilatations during daily temperature changes.  
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Fig. 9.3. Specimen of an Al alloy after tensile test. Width 11 mm, thickness 3 mm. 

Fracture analysis starts with the observation of the general appearance of fractured 

body. The analysis is facilitated by the following rules: 

1) Usually only one fracture focus exists. The fracture of a body with crack-like 

defects goes out from the place where the stress intensity factor has first reached the 

critical value. The formula KI = Ya, together with the knowledge of the defect 

size, can be used for the determination of stress (and load) at the instant of fracture,  

 
aY

KIC  ,              (9.1) 

or for the determination of the size a of the critical flaw for the known stress 

magnitude : 

 
2











Y

K
a IC


 .              (9.2) 

This approach is used in search for critical defects in ceramic or metal materials [1] 

and elsewhere.  

2) The failure nearly always starts on the surface. An exception is a material defect 

inside the body, or crack nucleation below the surface under contact load. 

3) The crack has tendency to propagate perpendicularly to the maximum tensile 

stress. An exception is the initial short part of a fatigue crack in components in 

ductile materials under cyclical load, where the direction of propagation coincides 

with the direction of maximum shear stress. Later it turns to the direction 

perpendicular to the maximum tensile stress (Fig. 7.4).   
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4) Crack branching occurs in brittle materials, such as glass, if the stress intensity 

factor has attained certain critical value for branching [7]. Generally, a relation 

exists between the energy release rate and the area of the fracture surface. For 

example, tempered glass disintegrates into many small pieces during fracture (Fig. 

5.5), smaller for higher internal stress and thus also higher accumulated energy. 

High number of small pieces corresponds to the larger fracture surface, and, 

therefore, to higher total consumed energy. With fatigue cracks in metals, the 

transition to fast stage of fracture is accompanied by significant roughening of the 

fracture surface, which has larger surface area. 

An interesting case is a glass plate that was shot through (Fig. 9.2d). At the first 

contact of the bullet with the glass a small circular ring arises at the edge of contact 

area. As compressive force acts on the central part of the loaded area, and the 

region out of it resists to this force, shear stresses appear at the crack tip. Their 

effect is similar to the effect of tensile stress in the direction inclined by 45º (Fig. 

9.2d). The crack therefore starts growing in the directions perpendicular to this 

tensile stress, which everywhere contain 45º with the direction of the bullet 

movement. A conical crack thus arises here, diverging from the point of first 

contact (see also Fig. 6.9). Finally, a small piece of glass flies out together with the 

bullet.   

Figure 9.4 shows a cracked wall. The oblique direction of the crack indicates the 

presence of shear stresses. The most probable reason was insufficient bearing 

capacity of foundations below the left part of the wall.   

 

 

 

 

                      Fig. 9.4. Crack in the wall  

    of an old building 
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The analysis of a particular failure is based on its time course and the situation 

before it, and on the information about the history of operation and conditions of 

use. This part of analysis is based on the records from the operation (time course of 

temperatures, pressures, further loads acting on the object, information about the 

environment and personnel). Useful are the records of measuring devices and in 

logbooks, and the reports from inspections.   

Often analysis of the stresses acting in the component is done, and also analysis of 

mechanical properties, including mechanical tests of specimens taken out from the 

critical parts (tensile or fatigue tests, tests of notch or fracture toughness, etc.).   

Failure analysis can lead to the measures for avoiding similar failures in similar 

components. Well known are detailed analyses done after aircraft accidents, but 

also after every accident with fatal consequences. Some rules are summarised in 

[2]. Examples of many failures can be found in the literature, for example [3 – 6]. 

Very interesting are also the TV series „Seconds from disaster“ or „Air crash 

investigations“, available on YouTube. 
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10.  Mechanics of viscoelastic materials 

 

Deformations of many materials depend not only on the load magnitude, but also 

on its duration and time course. Examples are plastics and other polymeric 

materials, biological materials, but also metals and ceramics at high temperatures. 

We speak in these cases of viscoelastic materials. Their response to load can be 

represented by combination of basic elastic and viscous elements. The elastic 

elements characterise the instantaneous elastic response, the viscous elements 

characterise the time dependent components of deformation. As we shall see, 

viscoelastic models can also be used for the description of delayed elastic 

deforming, relaxation of forces and stresses, and of creep. So-called linear 

viscoelasticity pertains to the cases where the instantaneous effect is directly 

proportional to the stress. Hooke´s law is valid for elastic elements, and Newton´s 

law for viscous elements. The following text will show the most important material 

models; more can be found in literature [1 – 4].   

10.1  Ideally elastic material   

It is depicted by a spring (Fig. 10.1a). The deformations obey Hooke´s law, which 

has the following form for the strain  in the direction of normal stress  :   

 = /E ;       = E  .          (10.1a) 

E is the tensile modulus of elasticity. Similar relations hold for shear deformation: 

  = /G ;       = G  ;          (10.1b) 

G is the shear modulus of elasticity, which is related to the Young (tensile) 

modulus as G = E/[2(1 + )]. The constant  is the coefficient of lateral contraction 

(Poisson´s number). Its value can vary in the range 0 – 0,5. Usually it is between 

0,15 for brittle and 0,35 soft ductile metallic materials; for steel,  = 0,3. For 

incompressible materials,  = 0,5; the same value is used for liquids.   

These materials are called Hookean, and their response to load is instantaneous. 

Figure 10.1a shows the time course of deformation corresponding to the sudden 

(step) increase of stress to the value   at time 0, and step decrease to 0 at time  t1. 
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     a.         b. 

Fig. 10.1.  (a) Ideally elastic element, (b) Ideally viscous element. 

10.2  Ideally viscous material  

This material can be depicted schematically as a dashpot, where a fluid flows 

between the piston and cylinder (Fig. 10.1b). Newton´s law is valid: 

         =  /  ,    =   ,     or            =  / ,  =  ;    (10.2a,b) 

 is dynamic viscosity (dimension Pa.s),   is the shear strain rate, and  is the 

shear stress,  is dynamic viscosity in tension (Pa.s), and   = d/dt is the rate of 

relative elongation. These materials are called Newtonian. 

Remark. This chapter deals with viscoelastic behaviour of more or less solid objects. 

Therefore the term “tensile viscosity” will be used here. The dynamic viscosity in 

tension  and in shear  of an incompressible material are related as  = 3. Here, 

the symbol  will be used everywhere. 

Figure 10.1b also shows the time course of stress (sudden increase to in time t0, 

dwell at this value till the time t1, followed by sudden drop to zero) and the 

corresponding course of deformation of a viscous material. 

The following part of this chapter, devoted to the individual models, will show 

relationships between stresses, strains, and strain rates. Similar relationships exist 

between forces, total deformations, and their velocities; the differences exist only 

in the constants characterising the geometry of the body. For example, the total 

elongation of an elastic rod loaded by axial tensile force is  = [Fl/S]/E = l/E, and 

the relative elongation is  = /E.   

More complicated responses can be modelled by combination of several elements. 

The typical models were named after their authors. 
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10.3  Maxwell model  

It is a spring and a dashpot in series (Fig. 10.2). The same force acts in both 

elements, but their deformations are added together. The stresses and strains are: 

   = H = N  ,    = H + N  ;    (10.3a, b) 

subscript H means Hookean,  N means Newtonian.  The resultant strain in this 

case, however, cannot be calculated directly, as the stress in a viscous element is  

 

 

     Fig. 10.2.  Maxwell model. Creep under 

  constant load and after unloading. 

 

 

 

directly proportional not to the strain, but to the strain rate. The base for the 

solution is the expression for this strain, 

 








dt

d

Edt

d
NH

1
         (10.4) 

The response of Maxwell´s body for two important cases will be shown here. 

1)   Creep under   = 0 = const 

The basic case of creep under constant stress is shown in Fig. 10.2 at right. At time 

t = 0 a mass point is hanged on the Maxwell´s body. It acts on it by a force F and 

generates the stress 0 in it. The spring is elongated immediately to the length 

corresponding to the stress 0, and the piston in the cylinder starts moving. At time 

t the action of force is suddenly terminated. The time course of force, or stress, is 

depicted in the top of the figure, and the course of deforming is below. The 

increase of force or stress is immediate, and also its drop on unloading. The 

deformation following the instantaneous elastic elongation grows proportionally 

with time, faster for higher force. The maximum deformation remains without 

change after the load has passed. In this case, d/dt = 0, so that the strain is  
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This can be written also as 
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This increase of length with time can be written generally as: 

 (t) = 0 J(t) .            (10.7) 

J(t) is so-called creep function, expressing the time course of response to unit 

load; J(t) =  (t)/0. In this case, it is defined by the expression in square brackets in 

Eq. (9.6). Its usefulness will be obvious better at more complex models.  

2)   Relaxation of forces and stresses at  = 0 = const 

The situation is depicted in Fig. 10.3. At time t = 0 the free end of the spring is 

moved by 0 and fixed. At the first instant only the spring reacts, so that force F0 

and stress 0 appear. The dashpot has not reacted to the sudden increase of 

deformation, but the fluid in it started flowing due to the acting force, and the 

piston gradually starts moving. This gradually reduces the spring extension and 

also the force. As the total deformation remains constant, it holds d /dt = 0. The 

insertion into Eq. (10.4) gives the equation 

 0
11

 




dt

d

E
 ,           (10.8) 

which, after the separation of variables, can be rewritten to the form 
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Ed




  .           (10.9) 

Integration of this expression in the limits 0, t, and 0, (t) gives 
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Jaroslav Menčík:  Applied mechanics of materials 

 

102 

 

 

         Fig. 10.3.   Maxwell model, with the 

         time course of the relaxation of 

         forces and stresses under constant 

         (enforced) deformation. 

 

 

The operation inverse to taking logarithms gives 

 







 t
E


 exp0

 .         (10.11)  

Let us look at this expression in detail. The argument at exponential function must 

be nondimensional. And really, the dimension of the ratio E/ je Nm
–2

/Pas = 

Pa/Pas = 1/s, so that the product tE/ is nondimensional. The reciprocal 

expression /E has the dimension of time, and it is sometimes called relaxation   

time . Equation (10.11) can therefore be written also in the form 

  = 0 exp(–t/) = 0 E exp(–t/) .       (10.12)    

The forces and stresses in Maxwell body under enforced deformation thus relax 

according to exponential function (Fig. 10.3 at right down). The following table 

shows their relative diminishing with time. 

Table 10.1.  Stress relaxation in Maxwell element under constant deformation.  

       . t /  /0   1 –  /0     . 

 0 1  0 

1 0,3685  0,6315 

2 0,1353  0,8647 

3 0,0499  0,9501 

4 0,0183  0,9817 

5 0,0067  0,9933 

6 0,0025  0,9975 

After the time, corresponding to the relaxation time  (i.e. t = ), the force and 

stress drop to about 37% of its initial value, at time 2 they drop to less than 14%, 
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at time 4 they are lower than 2%, etc. For practical reasons, sometimes it is 

assumed that after time longer that 4 to 5 the viscoelastic effects have diminished. 

Relaxation time  can be measured easily, for example from the rate of force 

decrease. It is therefore useful for practical characterising of viscoelastic materials, 

especially with more complex models, where the terms like modulus of elasticity 

and viscosity loose any sense (as it will be demonstrated later).  

The stress decrease in time, equation (10.11), can be expressed generally as 

  (t) = 0Y(t) ,           (10.13) 

where Y(t) is the relaxation function, which expresses the time course of stress 

decrease corresponding to the unit strain; Y(t) =  (t)/0.  

10.4  Kelvin – Voigt model  

It consists of a spring and a dashpot connected in parallel (Fig. 9.4). The 

deformation of both elements is the same, and the forces are added. The strain and 

stress are:  

  =  H  = N ,    = H + N  ,         (10.14) 

Expressing the stress in the individual elements by means of Eqs. (10.1) and (10.2) 

gives the total stress 

 
dt

d
E


   .          (10.15) 

 

 

 

            Fig. 10.4.   Kelvin-Voigt model.  

       At right down the time course of 

       deformation under constant load 

       and after unloading are shown. 
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Now we shall look at the reaction of this body to the instantaneous load 0 at time  

t = 0, which then remains constant till the time t1. Division of Eq. (10.15) by 

dynamic viscosity  and rearrangement gives differential equation of the first order 

with constant coefficient and nonzero right side: 
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1
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
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E

dt

d
 .               (10.16) 

Its complete solution is obtained as the sum of the solution of homogeneous 

equation (with zero at the right side) and particular integral, 

  (t) = hom + part .           (10.17) 

The solution of homogeneous equation is hom = C exp (– t/), and the particular 

integral is part = 0 /E. The resultant solution has general form 

 
E

tCt 0)/(exp)(


   .         (10.18) 

The constant C is obtained from the initial condition. For  (t = 0) = 0, C = – 0/E, 

so that the final expression for the gradual growth of deformation (or strain) is   

   te
E

t  1
1

)( 0
 ,         (10.19) 

which can be written simply as 

  (t) = 0 J(t) ,           (10.20) 

where  

 te
E

tJ  1
1

)(           (10.21) 

is a creep function for Kelvin-Voigt body. The constant   (= /E) denotes now the  

retardation time.  

The situation is depicted in Fig. 10.4 at right. After the application of load the 

deformation starts growing and approaches gradually to the limit value elim = 0/E, 

as if here only the spring were present. The deformation at time t =  makes about 

63% of the maximum possible deformation (see Table 10.1; 0,6315 = 1 – 0,3685).   
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If the force ceases at time 1, the stretched spring starts shrinking, so that the 

deformation decreases (as depicted by a dashed curve in Fig. 10.4). With linear 

viscoelasticity, the principle of superposition may be used, so that the resultant 

deformation is obtained as the sum of the permanent increase of the initial 

deformation and the deforming by the force acting in the opposite direction from 

the time t1: 

   //)(
01

1
1

)( ttt
ee

E
tt 

  .        (10.22) 

10.5  Standard linear solid  

It is a spring in series with Kelvin-Voigt body (Fig. 10.5). The resultant 

deformation equals the sum of deformations of both bodies: 
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where 1 = 1/E1.  

 

                 Fig. 10.5.  Standard linear solid. 

 

 

At the instant of load application the deformation of elastic body of magnitude 0 = 

0/E0 appears immediately, and gradually grows with decreasing rate, as it 

corresponds to the viscous element. After long time, the deformation approaches to 

the final (limit) value ∞ = (1/E0 + 1/E1). The dashpot in this case is no more 

active, and the situation is the same as with two springs E0, E1 in series. 

The time course of deformation can be expressed as  (t) = 0 J(t), where the creep 

function J(t) corresponds to the expression in square brackets. The meaning of E as 

the modulus of elasticity has been lost here. 

If unloading occurs at time t
*
, the elastic deformation 0 = 0/E0 disappears 

immediately, and the displacement decreases slowly. The resultant deformation in 

times t  t
*
 could be obtained again using the superposition principle, similarly to 

Kelvin-Voigt body.  
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General standard linear solid  

This body is obtained by adding one or more Kelvin-Voigt bodies in series to a 

standard linear solid. Also the formula for total deformation under constant load is 

obtained by adding further expressions corresponding to these bodies: 
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The individual retardation times are j = j/Ej. We can see that the original meaning 

of the terms such as modulus of elasticity or viscosity is getting lost. Equation 

(9.24) can thus be rewritten generally as  
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where the constants Cj correspond to compliances, and J is the creep function. 

Equation (9.25) can be further simplified, if all constant terms are put together:   
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The expression in square brackets represents so-called Prony series, defined as   

 y =  a0 + a1 exp(–t/1) + a2 exp(–t/2) + a3 exp(–t/3) … .      (10.27) 

Remark. The commercial programs for the analysis of structures by the finite 

element method enable the work with Prony series.   

10.6  Burgers model 

This model arises by extending the standard linear solid by a viscous term, or by 

series connection of Maxwell and Kelvin-Voigt body (Fig. 10.6). The time course 

of deforming under constant load is obtained by extending Eq. (10.18) by the increase 

of deformation corresponding to the viscous term. After a rearrangement it gives  
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Similar time course of deforming is shown in Fig. 10.8. According to this model, 

the deformations could grow without limits. However, this is a hypothetic case. 
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                       Fig. 10.6.  Burgers model. 

 

The constants in viscoelastic models can be obtained from experimentally found 

time course of deforming, as it will be shown in the following example. 

Example. Load response of viscoelastic material 

Viscoelastic properties of polymethylmetacrylate (PMMA) were determined by 

instrumented indentation [5]. The indenter was loaded and the force held constant 

for long time. The time course of its penetration into the material was measured 

and then fitted by the regression function  

 y(t)  =  F K [A0 + cvt –  Bj exp(– t j)]  ,       (10.29) 

which represents a generalised standard linear solid connected in series with a 

viscous element and one element characterising irreversible plastic deformations, 

which could arise due to very high stresses under load (Fig. 10.7). F is the load, K 

is the constant characterising the indenter geometry, and  A0, cv, Bj a j are 

regression constants, found by the least squares method.  

  

 

 

 

 

     Fig. 10.7.  Viscoelastic-plastic model „spring + plastic element + dashpot + 2 

     Kelvin-Voigt bodies“. C0, C1, C2, cv – compliances, E0  and H0 – instantaneous  

     elastic modulus and hardness, Y – yield strength, 1, 2 – retardation times. 

Figure 10.8 shows two approximations, with three and six regression constants. For 

better check of the suitability of regression function, and for comparison of both 

approximations, also relative (standardised) residuals are plotted, defined as  

 j,rel = (yj,meas – yj, calc)/yj,calc  .         (10.30) 

 
C0, E0    Y, H0    cv       C1, 1        C2, 2  C2, 2 
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The subscripts meas and calc mean measured and calculated values. The advantage 

of relative residuals is their independence on the scale of y. The residuals can help 

in distinguishing various approximations, especially if the curves in the original 

coordinate system y(t) look very similarly (Fig. 10.8b). We can see that the 

approximation with six constants is significantly better. 

 

 

 

 

      

 

  Fig. 10.8.  Indenter penetration into PMMA under constant load [5]: measured values 

  (thick lines) and two approximations (thin lines).  a) model S+KV (3 constants), b) 

  model S+D+2KV (6 constants); S - spring, D – dashpot, KV - Kelvin-Voigt body. 

  Model S+D+2KV approximated the measured values very well, the differences were 

  visible only via the relative residua rel (zig-zag lines, right scale). h – depth, t – time.  

 

10.7  Determination of deformations under varying load   

Until now, we showed how deformations under constant load grow with time 

according to various models. However, the load often varies. Here, a procedure 

will be explained for the case with force increasing in general way (Fig. 10.9). 

The increase of force (or stress) can be interpreted as composed from a series of 

minute increments. Linearly viscoelastic material will be assumed, where the 

resultant effect of several loads equals the sum of the effects of individual loads.  

 

 

 

               Fig. 10.9. General course of load growth. 
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If the stress  increases at time u by d, its influence exists only since this instant. 

As this force d will act till the time t only during the time t – u, the increment of 

deformation d, caused by the load d (applied at time u), equals J(t – u)d, where 

J is the creep function for the considered material model. At time u + du a further 

increment d is added to the present load, etc. If the time course of load increase 

(t) is known (t), the increment d  can be expressed as 

 dt
dt

d
td


 )( ,   resp.  du

du

d
ud


 )(  .       (10.31) 

The total deformation is then obtained as a sum of infinitesimal increments during 

the time from 0 to t (so-called convolutory integral): 

  
t

du
du

d
utJt

0

)()(


  .         (10.32) 

10.8  Response of viscoelastic materials to alternating load 

An important case is harmonic load, defined as   

 (t) = A sin (t) ;          (10.33) 

A is the amplitude and  circular frequency of harmonic motion, related with the 

frequency f as  = 2f. The course is depicted in Fig. 10.10 by a solid line. If such 

force acts on a body of viscoelastic material, the deformation (after the transitional 

phenomena have faded away) will change also in harmonic way, with the same 

frequency, but delayed behind the force by  (see dashed curve in Fig. 10.10; the 

phase shift  is obvious at the time axis at left). This shift depends on the type of 

the body and the frequency. For example, for Maxwell body (Fig.10.5) it holds tg  

= 1/(), and for Kelvin-Voigt body (Fig. 10.9) the shift is tg  = , where  is 

retardation (or relaxation) time. 

 

 

 

Fig. 10.10. Forced vibration  

of a viscoelastic body. 
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The tensile stiffness of elastic materials is characterised by Young´s modulus, 

defined as the ratio of stress and strain, E =  /. In viscoelastic materials both 

quantities,  and , have harmonic course with certain amplitude, but they are 

shifted by angle  (Fig. 10.10). In this case, several moduli can be defined. 

Complex modulus of elasticity equals the ratio of the stress and strain amplitudes, 

 

a

aE



*  .           (10.34) 

This modulus has two components. Storage modulus,  





cos

)(
´ *

max

max EE   ,          (10.35) 

expresses such part of the complex modulus, which is in phase with the strain, and 

characterises the reversible part of deformation. Loss modulus, 

 



sin

)0(
´́ *

max

E
t

E 


 ,         (10.36) 

expresses the part shifted to strain by 90º. The relationship is shown in Fig. 10.11.  

 

 

        Fig. 10.11.  Moduli of viscoelastic material. 

 

 

Recording all pairs of stress and strain values in one cycle in the plane  –   gives 

an ellipse with the main axis inclined to the strain axis by angle   (Fig. 10.12). 

Area of this hysteresis loop in the coordinates force – displacement is proportional 

to the work dissipated during one loading cycle, and to the energy density in 

coordinates stress – strain. The density of energy accumulated during one quarter 

of the loading cycle is  

 2
0´21 EWs  ,           (10.37) 

and the density of energy dissipated in one quarter of the loading cycle is  

 2
0´́41 EWd   .          (10.38) 
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Fig. 10.12.   Hysteresis loop. 

 

 

 

The work dissipated in a loading cycle changes into heat. This must be considered 

in long-time loaded components, and its conduction away must be ensured, so that 

the increase of temperature will not change the properties nor it damages the 

component. 
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11.  Mechanics of components 

with treated surfaces 

11.1  Introduction 

A weak part of every component is the surface. It is exposed to the harmful action 

of the environment, usually highest stresses act here, and the most favourable 

conditions for nucleation and growth of cracks are also here. The external load is 

usually transmitted on the component by the surface. If it is concentrated, it can 

generate local plastic deformations in a ductile material, or a crack in a brittle 

material. Plane stress exists always on the unloaded surface, and this is favourable 

for plastic deforming. Also under cyclical loading of metal components extrusions 

and intrusions and nuclei of fatigue cracks arise usually on the surface (Fig. 7.9) 

rather than in the interior, where the crystalline grains of different orientation 

hamper mutually their slips. A fatigue crack in a notch arises on its surfce.           

The conditions for growth of cracks are also better on the surface. The situation in 

bodies with cracks was described in Chapter 7; therefore here only the principal 

terms will be reminded. Most important is the stress field in front of the crack, 

which can be characterised by the stress intensity factor 

 Ki = n Y a  ;            (11.1) 

n is the nominal stress here, a is the length or another characteristic dimension of 

the crack, and Y is the form factor that depends on the shape and size of the crack 

and the body, and on the stress distribution. The subscript i expresses the mode of 

crack opening. A crack grows quickly if the stress intensity factor exceeds the 

critical value KC. But the crack can grow slowly even under lower load, in fatigue 

processes, if the stress intensity factor has exceeded the threshold Kscc or Kth. The 

velocity of crack propagation also depends on the stress intensity factor. For 

common crack shapes, the stress intensity factor for a surface crack is about 60% 

higher than for the crack of the same length, but under surface [1, 2]. This also 

means that certain stress can cause growth of significantly smaller surface crack 

than of an internal one. 
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The other approach for the assessment of the behaviour of bodies with cracks is 

based on energy balance: the crack grows if more energy is released by this growth 

than consumed for the creation of new fracture surfaces. The characteristic quantity 

is the energy release rate G (J.m
– 2

) and specific fracture energy (J.m
– 2

), and the 

condition for crack growth is G  . Both approaches (with stress intensity factor 

or energy release rate) are equivalent.      

An efficient means for increasing the resistance to failure or fatigue are various 

kinds of surface treatment. In Chapter 4.8 strengthening of metal components by 

creation of compressive prestress in the surface layer by local plastic deforming 

was explained. Here, we shall look at the situation in bodies with solid coatings. 

Examples of coatings from material different than the substrate are enamels, thin 

layers created by electroplating, sputtering (PVD or CVD processes) or plasma 

spraying, or a thicker metallic layer connected with the metallic substrate by 

cladding, rolling or welding on. In all these cases a difference exists between the 

properties of the coating and the substrate, and relatively sharp intrface with 

sudden change of properties.     

At first, characteristic features will be shown of stress distribution in components 

with surface layer of another material (Fig. 11.1). Formulae will be given here for 

stresses caused by the temperature change, by tension or in contact. Only the 

principal features will be mentioned; for details, the reader is referred to [1, 2]. 

 

 

 Fig. 11.1. Bi-layer plate  geometry. 

 N – neutral axis. 

 

 

11.2  Stresses due to the difference of thermal expansions 

These stresses arise when the operation temperature of the component differs from 

the temperature for creation of the surface layer. Examples are enameled items. 

During cooling after firing the layer with higher coefficient of thermal expansion 

tries to shrink more, and the layer with lower expansion prevents it. This generates 

stresses. At sufficiently high temperatures these stresses relax, but from certain 
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temperature T0 they remain in the body permanently. At places distant from edges 

state of biaxial isotropic stresses exists, where x(z) = y(z), x(z) = y(z). If we 

denote the quantites corresponding to the surface layer by subscript 1, and substrate 

by subscript 2, then (provided that the properties are constant in the volume of the 

pertinent layer) we can write the following general expressions for the stresses: 

 1(z) = E1´{(y) + 1[T0 – T(z)]}   ,        (11.2a) 

    2(z) = E2´{(y) + 2[T0 – T(z)]}   ,        (11.2b) 

where  

 E1´ = E1 / (1 – 1) ,    E2´ = E2 / (1 – 2)        (11.3) 

are effective moduli of elasticity for biaxial stress state;   is Poisson´s number. 

Two cases can occur, depending on whether the plate can deflect due to internal 

stresses or not. 

Free deflection is not possible 

Strain and stress have the same value everywhere, and the stress in the coating is 
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h1, h2 is the thickness of the coating and substrate. The stress in the substrate 

follolws from the condition that the resultant force in the cross section equals zero: 

 

2

1
12
h

h
   .                   (11.5) 

The stress distribution is shown in Fig. 11.2a. 

      

      Fig. 11.2. Stresses in bilayer plate due  

       to the differences of temperature and 

      thermal expansions of the layers [1, 

      2].  a   plate without deflection,  

      b  plate with free deflection.   
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Equations (11.4) and (11.5) hold also for plates with surface layers on both sides. 

In such case, the sum of the thicknesses of both layers must be inserted. 

Free deflection is possible 

The internal stresses cause the deflection of the plate into a part of spherical 

surface.  This significally changes the distribution and magnitude of the individual 

stresses (Fig. 11.2b). These stresses vary linearly across the thickness, and their 

magnitudes at the surfaces of individual layers (points A, C on the plate surface 

and point B at the interface of both layers ) are   
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where ´= E1´/ E2´ and h´ = h1/h2 [1, 2]. The upper sign (–) in the numerator of 

(11.6a) corresponds to the surface A in Fig. 11.1, and lower sign (+) corresponds to 

the contact surface B. The upper sign (–) in the numerator of (11.6b) pertains to the 

contact surface B, and the lower sign (+) corresponds to the surface C. The 

influence of the layer thickness is negligible till the thickness ratio h1/h2 = 0,01; 

then it grows more significantly [1, 2]. The influence of free deflection will be 

shown on an example after [2]. 

Example 1.  Calculate stresses in a plate 100100 mm and thickness h2 = 4,0 mm, 

with a layer of thickness h1 = 1,0 mm. Material constants are: E1 = E2 = 75 GPa, 1 

= 2 = 0,25, 1 = 6×10
–6

 K
–1

, 2 = 8×10
–6

 K
–1

, T0 – T = 500 K. 

If the plate cannot deflect, the stress in the coating, given by Eq. (11.4) is 1 = –80 

MPa; in the plate 2 = 20 MPa. If the plate can deflect, the stress on the coating 

surface is 1A = –32 MPa, in the contact surface it is 1B = –51 MPa, 2B = 49 MPa, 

and on the surface of plate 2 it is 2C = –28 MPa. The differences are significant. 

The maximum free deflection in the centre of the plate is ymax = 0,24 mm, which is 

hardly observable by the naked eye. 

Remark. For negligible coating thickness (h1 << h2) Equation (11.4) changes to 

 1 = E´(1 – 2)(T0 – T) .        (11.4a) 
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The corresponding stress in the coating is 1max =  –100 MPa. The stress 2 in 

massive would approximately equal zero.  

The above theory is valid also if the internal stress was caused by another 

mechanism, for example by phase transform in the surface layer, accompanied by 

volume change. It is sufficient to replace the expression (1 – 2)(T0 – T) by the 

term (V/V)/3, where V/V is the relative volume change corresponding to the 

phase transformation.    

11.3  Stresses caused by membrane forces 

The principal features will be shown on a bilayer plate loaded by forces acting in 

the plate in direction x (Fig. 11.3). The stresses in the individual layers are 

determined from the force equilibrium and from the condition that both layers 

deform as a whole. Subscript 1 denotes the coating, subscript 2 denotes the 

substrate. The situation is simple if Poisson´s ratio (for transverse contraction) is 

the same for the coating and substrate, 1 = 2 = . No stress appears in the 

direction y, and those in direction x are 
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  ;  (11.7a, b) 

Fx´is the force per unit of plate width. If the Poisson´s numbers are different,  

        

 

 

        Fig. 11.3. Stress in a bilayer plate 

        caused by a membrane force [1, 2]. 

 

 

 

the situation is more complicated. Free transverse deformations of each layer were 

different. Since the resultant deformation must be the same, stress at direction y 

appears far from the edges. The stresses in a relatively thin coating in the direction 

of force (x) and in the unloaded direction (y) are approximately [1, 2]: 
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The stresses 2x, 2y in the substrate are obtained by interchanging the subscripts 1 

and 2 in Equations (11.8) and (11.9). 

The stresses 1x and 2x from the force Fx have always the same sign, and are in the 

same ratio as their moduli of elasticity E1 a E2. The stresses in transverse direction 

have the opposite signs and are in reciprocal ration than the thicknesses of the 

layers. The highest stress in the surface layer acts if this layer is much thinner than 

the substrate. 

Let us look now at the stresses in a rod with circular cross section, loaded by axial 

force. The situation is similar to the previous case. The axial force causes axial 

stress both in the rod and the coating, and also the reduction of their transverse 

dimensions. With different Poisson´s numbers circumferential stress appears in the 

coating and also the stress perpendicular to the interface. The corresponding stress 

appears in the rod, as well. We shall show here the formulae for the rod of diameter 

D = 2R, with a relatively thin coating. The rod has modulus of elasticity E2 and 

Poisson´s number 2; the corresponding constants of the coating are E1 and 1. 

The axial force F causes the axial stress in the rod (subscript 2) and coating 

(subscript 1):  
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In the coating circumferential stress will act  
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Remark. Expressing the axial stress in the rod by means of axial stress in the 

coating gives, after a rearrangment, Eq. (11.11) for hoop stress in the coating.  

Example 2. Compare circumferential stress 1 and the axial stress 1x in glass 

enamel on a steel rod loaded by axial force. Poisson´s numbers of glass and steel 

are 1 = 0,2 a 2 = 0,3.  
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For a relatively thin coating Eq. (11.9) gives  
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The minus sign is because the lateral deformation of steel is larger than that of 

glass. This means that loading of the rod by axial compressive force causes 

(unexpected) tensile stress in the coating, which can lead even to its fracture!        

10.4  Stresses in coatings on curved surfaces   

In coatings on curved surfaces of loaded components radial stress perpendicular to 

the interface with the substrate appears (Fig. 11.4). If the coating is thin, the radial 

stress between it and the substrate can be determined via the equation [1, 2] 
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 ;         (11.12)    

h is the coating thickness, ,  are membrane stresses in the coating in two 

mutually perpendicular directions (,  ), and R, R are the radii of curvature of 

the surface. The radius is positive if the coating is convex in the pertinent direction, 

and negative for concave shape. If compressive stress acts in the coating in the 

tangential direction, tensile radial stress appears at the interface, which will try to 

tear the coating away from the substrate.  Equation (11.12) also says that if radial 

stress appears between the coating and substrate (if, e.g., the substrate hampers the 

coating in free shrinking), membrane tangential stress appears in the coating. 

 

 

             Fig. 11.4.  Stress in a thin coating on 

 a curved surface. z – radial stress. 

 

   

 

The Laplace equation (11.12) assumes that the stresses are distributed uniformly in 

the coating; if they vary with depth, e.g. in nonuniform temperature distribution, 
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the mean values are used. Radial stresses will be higher in coatings thicker 

compared to the radius of curvature. These stresses act not only in the interface, but 

also in the coating and substrate, so that they can influence the propagation of 

cracks in the vicinity of the interface. 

11.5  Situation at the coating edge 

The stresses distribution at places, where the coating suddenly ends, is more 

complex. A simplified analysis will be shown for a flat bar loaded by tensile force. 

At the free end of the coating no stress acts and all load is carried by the substrate. 

At some distance from here the axial force is carried by both the substrate and 

coating. The load carried by the coating must be transmitted into it from the 

substrate by shear stresses. The following relationships hold between the shear 

stress   at the interface and the mean stress 1 in the coating and 2 in the substrate       

 d1(x)h1 = (x) dx ,  d2(x) h2 = – (x) dx  ;      (11.13) 

x is the distance from the free end of the coating; h1 or h2 is the thickness of the 

coating and substrate (Fig. 11.5 at the left). The stresses move the points of the 

mean plane of the coating and substrate of coordinate x by u1(x) and u2(x). The 

corresponding mean strains are 

 1(x) = du1/dx   ,    2(x) = du2/dx  .       (11.14)   

Under the assumption of equal Poisson´s numbers and validity of Hooke´s law the 

mean stresses will be    

 1(x) = E1 1(x) = E1 du1/dx,     2(x) =  E2 du2/dx.     (11.15) 

 

         Fig. 11.5. Stress distribution in the coating and interface [2]. 
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The shear stress at the interface will be assumed directly proportional to the mutual 

shift of both layers, 

  = k (u1 – u2) ;          (11.16)  

k is a constant characterising the shear stiffness of the joining. Expressing the stress 

in (11.13) by means of displacements (11.14) and (11.16) gives the system of two  

differential equations of second order. Its solution gives the stress in the coating: 

 1(x) = 1,∞ (1 – e
–x

) ,    (x) = 1,∞ h1  e
–x

) = 0 e
–x

,                 (11.17) 

where  
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1,∞  is the stress in the coating far from the edge, and 0 is the shear stress at the 

coating edge (x = 0). Equations (11.17) and (11.18) are also valid for stresses 

caused by the differences of thermal expansion.  

The stress distribution is shown in Fig. 11.5. The membrane stress in the coating 

increases continuously from zero at the free edge to the asymptotic value 1,∞, 

while the shear stress decreases from the value 0 to zero. These changes are faster 

for higher , i.e. for higher shear stiffness and lower tensile stiffness of both layers. 

If the coating is directly on the substrate, approximate expression may be used [2] 

  211 /(11 EEh  ,         (11.19) 

from which it follows that the influence of free edge for common material 

combinations is limited to three- five times the coating thickness. 

This solution corresponded to purely elastic deformations. If the substrate material 

is elastic-plastic with low yield strength and without strain hardening, the shear 

stress between it and the coating constant, equal the yield strength in shear. The 

situation is similar to pulling out a fibre from a matrix in a fibrous composite.   

More detailed solutions exist also; some of the can be found in [2], where further 

works are mentioned.   

11.6   Elastic-plastic deforming   

As soon as the stress in a body from ductile material attains the yield strength, 

plastic flow occurs here. If the load grows further, the stress distribution changes. 

The stress in the plasticised region is either constant or increases slowly. The total 
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deformations increase faster. After unloading, the components remain deformed 

and residual stresses act in them, which sum up with the stresses from new load.   

A first idea on the stresses in elastic plastic state can be obtained from the bilayer 

plate without possibility of free deflection. Each layer is from ideal elastic-plastic 

material without strain hardening and with the same yield strength in tension and 

compression (Fig. 11.6a). The tensile load in x direction will be considered.    

At the beginning, both layers deform elastically. The line OA in Fig. 11.6b is valid 

for the force F, and lines OA1 and OO2´ and Eqs. (10.7a,b) for the stresses 1, 2. 

Higher stress acts in the layer with higher modulus of elasticity. With increasing 

load the stresses in both layers grows until the stress in one layer attains the yield 

strength. It is not necessarily in the layer with lower yield strength, but, generally 

in the layer with lower strain Y at yield. Further we assume that plastic flow occurs 

earlier in the layer 1; other relationships would be obtained by intrerchanging the 

subscripts 1, 2.   The yield strength in layer 1 is attained at the strain  

   =  1Y  =  1Y / E ,          (11.20) 

with the corresponding force 
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If the load grows further, the stress in layer 1 remains constant (material without 

strain hardening is assumed), 1 = 1Y. The second layer is still deformed  

 
a.    b. 

Fig. 11.6.  Elastic-plastic deforming of a bilayer plate. a  stress 

strain diagrams for layers 1 and 2, b  total membrane force. 
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elastically, and the stresses in it are 2 = E2. The relationship F() is represented 

by segment AC in Fig. 10.6b. The deformation grows faster. The stress in layer 2 is  

 2 =  (F – 1Yh1) / h2 .              (11.22) 

The body is deformed in this way till the yield strength is reached in layer 2 (point  

C in Fig. 11.6b). The corresponding load is 

 F ´´ =  1Y h1  + 2Y h2  .         (11.23) 

From this instant, the deformations could grow without limits even under constant 

load (horizontal line in Fig. 11.6b). However, the material usually strain hardens.  

Let us look at unloading. If, during loading, F < F´ (that is the point A was not 

exceeded), both layers deformed only elastically, the body returns into the initial 

condition. If, however, plastic deforming in one or both layers, the plate remains 

somewhat longer and residual stresses will act in it. The situation is depicted in Fig. 

11.6. The broken line OAB holds for the force F, and lines OA1B1 and OA2B2 for 

stresses in layers 1 and 2. The unloading proceeds in elastic manner along the line 

BO´ parallel with the initial part of the diagram F(), or (). The point O´ 

corresponds to the situation when no load acts. The residual stresses can be 

determined as the difference of the actual elastic-plastic stresses under load and the 

stresses which would be caused by the same load, but if the body deformed only 

elastically (as if it had, for example, much higher yield strength).     

The residual stress in layer 1 thus will with respect to Eq. (11.21) be 
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As  > Y, it is obvious that the residual stress will have the opposite sign than 

under load. 

The residual stress in layer 2 could be determined in the same manner. However, it 

can be obtained more easily from the equation of force equilibrium, and it is 
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,1,2
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h
resres    .         (11.25) 

The sense of this stress is the same as under load. The residual stress in the 

investigated case is distributed uniformly in both layers, with higher magnitude in 



Jaroslav Menčík: Applied mechanics of materials 

 

123 

the thinner layer. If the plate can deflect due to the residual stresses, their 

magnitude and character will change similarly as it was described earlier. 

The permanent elongation of the plate after unloading from point B is depicted in 

Fig. 11.6b as O´. 

The residual stresses attain the maximum values if the previous load attained the 

limit vakue C in Fig. 11.6b. In such case 
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The response of the bilayer plate with residual stress under new load is obvious 

from Fig. 11.6b. The unloaded situation is marked by point O´. If the plate is 

loaded by tension, it deforms elastically along the line O´B. The total stress in layer 

1 is lower by 1, res, and higher by 2, res in layer 2 than in a plate without residual 

stress. After unloading the plate returns back to the point O´. This holds as long as 

the loading force does not exceed the value F(B). After its exceeding the extent of 

plastic deformations becomes larger, and also the residual stresses ofter unloading.   

If the plate is loaded by compression, stress in layer 1 attains the yield value at 

lower total load than in the plate without residual stress (point B´ in Fig. 11.6b). If 

plastic flow occured, the original residual stresses will be lower after unloading. 

The previous load with plastic flow thus has the resistance of the component to the 

load of the same sense, but decreased the resistance to the opposite load.  

Many components are loaded by alternating tension and compression. If the bilayer 

plate is without residual stress, and the load varies not more than from F(A) to 

F(A´), the deforming is elastic. If the plate was prestressed to the point B, it will 

deform elastically only if the load varies within the interval <F(B´); F(B)>. If the 

maximum or minimum force will be out of this interval, but the total range will be 

not larger than 2F(A), the one-way plastic deformation occurs, but after it the 

component will again deform elastically. (This is called shake-down.) If the force 

range will be larger than 2F(A), for example the maximum tensile force will be 

F(B), and maximum compressive force will be F(A´), the layer 1 will be deformed  

permanently in alternating way. The pertinent loading cycle is depicted by line 

BB´A´AB in Fig. 11.6b. The area below this curve is proportional to the work 

dissipated in one loading cycle by plastic deforming. After the fatigue resistance of 

the material has been exhausted by repeated deforming, a fatigue crack can appear  
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11.7  Fracture mechanics of interfaces 

The stress field in front of a crack in a bimaterial near the interface is more 

complex. The general expression for the stress ahead the crack tip (Fig. 11.7) is    

 i,j (r,)    n(L/r)
s
 fi,j() ;        (11.27) 

i,j (r,) denotes the stress component at distance r in front of the crack ( is the 

angle between the crack plane and the investigated point), n is the nominal stress 

in the crack region, L is the length or another characteristic dimension of the crack, 

s is a constant, and  fi,j is a function of angle . The exponent of stress singularity in 

homogeneous material s = 0,5, but s in bimaterials with different elastic properties 

and sudden change at the interface has different values. Nevertheless, reasonable 

conclusions can be made even if the different value of exponent s is neglected. 

 

 

 

      Fig. 11.7.  Stresses in front of the crack. 

 

 

For the description of elastic properties of isotropic material two constants are 

necessary: modulus of elasticity and Poisson´s number . Two materials thus need 

generally four constants. However, if both materials are strongly connected so that 

they form a bimaterial, only two constants are sufficient for the description of 

properties near the interface, so-called Dundurs´parameters  and : 
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where k = G2/G1 is the ratio of shear moduli of elasticity of both materials, and i = 

3 – 4i for plane strain, and (3 – i)/(1 + i) for plane stress; subscript 1 or 2 

pertains to the material 1 or 2. Parameter  characterises the difference between 

elastic moduli of both materials; parametr  reflects more the difference of 

Poisson´s numbers [2, 3].

The further parameter is the effective elastic modulus of the bimaterial, defined 

similarly as in the contact problem: 
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The following table presents Dundurs´ parameters for various materials. 

Table 11.1. Dundurs´ parameters and effective modulus of elasticity for some 

material combinations [2, 3]. 

.     Combination   Eef      . 

      steel – ZrO2  0,632 0,123 86,2 

      steel – Ni  0,004 0,013 233,2 

      steel – Ti  0,257 0,024 173,8 

      steel – glass  0,517 0,186 113,1 

      steel – epoxy 0,963 0,232 8,7 

      glass – epoxy 0,888 0,210 8,3 
 

Crack approaching to interface 

The situation for a crack in a coating, approaching to a surface in a body loaded by 

tension in the direction of the interface is shown in Fig. 11.8. The vicinity of 

another material of different stiffness influences the stress intensity factor. This 

factor increases if the srack approaches to the material of lower elastic modulus, 

and decreases if it approaches to a stiffer material. In the former case the crack tip 

easily arrives at the interface. In the latter case, the crack should stop before 

touching the interface. With respect to various inhomogenities and material defects 

the crack also here sometimes touches the interface. If the crack is not 

perpendicular to the interface, it will turn in the vicinity according to Figure 11.9. 

 

 

     Fig. 11.8.  Stress intensity factor for 

a crack in the coating, approaching 

to the interface with substrate [4]. 

1. combination Al-epoxy (EAl > Eepoxy), 

2. steel–Al (Esteel > EAl),  

3. Al – stell (EAl < Esteel). 
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A crack in the stiffer coating on more compliant substrate turns into the direction 

perpendicular to the interface (Fig. 11.9a). A crack in more compliant coating has 

the tendency to turn into the direction parallel with the interface (Fig. 11.9b). This 

influences its behaviour in the interface. 

 

 

Fig. 11.9. Oblique crack         

approaching the interface.  

a: E1 > E2 ,  b: E1 < E2 . 

 

 

Behaviour of a crack at the interface  

An important question for a crack, whose tip is at the interface of two materials, is 

whether it will stop here, or if it will continue into the substrate in its initial 

direction, or if it turns along the interface (Fig. 11.10). The solution of this problem 

was complicated by the fact that the stress singularity exponent at the crack tip 

changes at the contact of two layers with sudden change of properties. Fortunately, 

with some simplification it can be said that the crack will have a tendency to grow 

in the original direction or deflect according to whether the ratio of energy release 

rate for the growth in the initial direction and in the deflecting directoin will be 

higher or lower than the ratio of specific fracture energies in the corresponding 

directions. Simply said: the crack will propagate in the direction of higher surplus 

of the released energy above the consumed one.       

If the crack is perpendicular to the interface, and opened by tensile stress parallel to 

the interface, the condition of its deflection is formulated in the following way:    

 

22 


 ii

G

G  .           (11.30) 

If this condition is not fulfilled, the crack will not deflect, but penetrates into 

material 2. G expresses the energy release rate,  is the specific fracture energy, 

and subscript 1 or 2 says whether the crack will propagate along the interface or 

penetrate into material 2. If the elastic constants are the same for both materials, it 

comes to the crack deflection and separation of both layers for i/2 < 1/4, that is if 

the specific fracture energy of interface is lower than 25% of the specific fracture   
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Fig. 11.10. Ratio of the energy release rate of deflecting crack (Gi) and penetrating 

into the substrate (G2) for various values of Dundurs´ parameter   [2  4].  

energy of layer 2 (= substrate). It also means that if the specific fracture energy of 

the interface i is not smaller that 25% of the material 2, the crack cannot deflect.   

The solution for different elastic properties of materials 1 and 2 is more complex, 

as the character of stress field for the crack at the interface and in homogeneous 

material. He and Hutchinson have solved the problem [3]. Figure 11.10 shows the 

ratio Gi/G2 as a function of Dundurs´ parameter  for  = 0. The influence of  is 

relatively small. The figure gives a general idea on the behaviour of a crack 

touching the interface. If the ratio of specific fracture energies i/2 for a bimaterial 

with Dundurs´ parameter  lies above the curve Gi/G2, the crack can penetrate into 

the material 2. If it will lie below the curve, the crack will deflect. It is obvious that 

for i/2 < 1/4 the crack deflects for any materiual combination, and that the 

conditions for delamination are better in general, if the crack is in the more 

compliant material, i.e. for  E1< E2. 

The necessary condition for crack deflection is that the energy release rate Gi must 

be higher than the specific fracture energy i of the interface. Vice versa, the 

condition for the crack penetration into material 2 is G2 > 2. 

Crack in the interface; delamination   

At an interface crack (Fig. 11.11) usually normal and shear stress act 

simultaneously. Let us consider a case when compressive (normal) stress from the 
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manufacture acts in the undamaged coating in the direction parallel with the 

interface. If a part of the coating breakes away at some place, its edge will be free 

here, without stress (Fig. 11.11b). If tensile stress acted in the coating, it will be 

released even due to simple cracking of the coating. The relatively fast decrease of 

the force at the edge causes shear stresses in the interface. The stress state at the 

crack tip will thus be characterised by two components of stress intensity factor, KI 

and KII. The consequence of shear stresses is that a crack here would like to turn 

here into material 1 or 2, with respect to the orientation of these stresses. Whether 

it turns depends on the stress intensity for the pertinent directions, and also on the 

energy consumption needed for the crack propagation in the interface or material 2.    

 
    Fig. 11.11.  Crack in the interface between coating and substrate. 

If both materials have the same elastic constants, one can work with the modulus 

(amplitude) of stress intensity factor K and phase angle  

 22
III KKK   , )/(arctan III KK  .     (11.31) 

The crack behaviour can also be assessed via the energy release rate G, which is 

scalar. The specific fracture energy   is also scalar. The values of these quantities, 

however, depend on the phase angle . The crack will propagate in the direction 

with the highest surplus of the released energy G() compared to the consumed 

energy ().     

With different materials 1 and 2, the exponent s in Eq. (11.27) is a complex 

number. According to the solution based on linear fracture mechanics, the 

individual stress components (normal and shear) should oscillate in the vicinity of 

the crack tip, as if the resultant stress vector rotated by higher and higher velocity. 

Similarly also theoretical displacements oscillate. They should even interpenetrate 

near the tip, which is impossible. The pertinent region, however, is extremely 

small, comparable with the interatomic distances, where the theoretical models 

developed for the continuum loose their validity. In reality, always a very thin 
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transitional layer exists at the interface, where the properties change more or less 

continuously. Moreover, if the stress attains a certain critical value, irreversible 

deforming occurs here, and Hooke´s law looses its validity. For practical 

assessment of behaviour of cracks at the interface, general conclusions following 

from the linear fracture mechanics (including factors KI, KII) may be applied wth 

some caution. For more, see [2, 3].  

Crack propagation in the interface from the coating edge 

Here we shall look at the delamination starting at the long crack below the coating, 

in which tensile stress 0 acts (Fig. 11.12). The stress intensity factor for a surface 

crack of depth h is  

 KI = 1,12 0 (h) = 1,990 h ,       (11.32) 

with corresponding stress intensity factors in the interface [2, 3]: 

 KI,0 = KII,0 = 0,702 0 h         (11.33) 

The corresponding energy release rate is  

 G0´ = 0,99 h
E

2
0

21



 .        (11.34) 

If G0´ is higher than the specific fracture energy i of the interface for the phase 

angle  (= arctg (KII/KI) = 40, a crack able of growth arises in the interface. 

(Subscript 0 at K a G means that still the crack length is zero.) 

 

 

 

 

 

Fig. 11.12. Stress intensity factors 

for the propagation of a crack 

from the coating edge [10]. 
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The stress intensity factors for a delamination crack decrease with its increasing 

length (Fig. 11.13) and approach to the asymptotic value (for a very long crack): 

 KI,∞´ = 0,434 0 h  , KII,∞´ = 0,558 0 h ,       (11.35) 

The corresponding energy release rate is   
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If the specific fracture energy i of the interface is between 0´ and ∞´, the crack 

starts growing, but stops soon. However, if i < ∞, it can grow without limits, and 

significant spalling of the coating will occur. 

Propagation of delamination far from edges – a hot spot 

Let us look at the case if the coating does not hold firmly on the substrate. For 

simplicity we can assume that the unbonded region has the shape of a circle of 

diameter 2a. In the coating, often a biaxial compressive stress 0 acts. It can be a 

residual stress or stress caused by higher coating temperature when the component 

is heated. As long as this stress is low, the coating above the delamination is 

straight and nothing happens. As soon as 0 exceeds certain critical limit, a free 

part of the coating buckles (Fig. 11.13). Bending stresses appear in addition to the 

uniformly distributed stress, and high stress peak appears at the delamination edge. 

The critical stress for the coating buckling is [8, 9] 
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Under certain conditions, the delaminated area begins to grow. This causes the 

release of energy from the compressed coating, and this will cover its consumption  

  
      Fig. 11.13.  Delamination at places distant from edges.  

      a – geometry, b – situation after the coating has buckled. 
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for the creation of new fracture area. If this happens at the heated place, the heat 

transfer into the body is worser at the delamination, so that the coating tempeature 

and compressive stress in it increase. This promotes coating spalling and cracking.    

More about buckling of coatings above a delamination, and about fracture 

mechanics for these cases can be found, e.g., in [1, 2, 8, 9]. Here, only one formula 

will be given. During the growth of circular delamination the energy release rate 

grows with increasing radius a and approaches the asymptotic value: 

 G∞  =  (1 – ) h 0
2 
(1 – ) / E  .         (11.38) 

If this value is lower than the specific fracture energy of the interface, no 

delamination can propagate due to the stress 0, regardless its dimensions. If a 

coating is to be designed, the h, 0 and E values should always be so that i. > G∞. 

Growth of a crack in surface layer into width 

As soon as the surface crack in a coating has reached the interface with substrate, it 

can turn here along it (delamination), stop or penetrate into the substrate. If the 

substrate is tough, the crack tip stops here and becomes blunt (Fig. 11.14b). Further 

crack propagation occurs sideways (Fig. 11.14c). If tensile stress 0 in the coating 

is the crack driving force, the energy release rate for the crack growth to depth at 

reaching the substrate equals [3] 

 h
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The energy release rate for the growth of this crack sidewards is
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This is half of the value of energy release rate (10.39) for crack growth 

perpendicularly to the surface. This means that a crack, which has penetrated 

through the coating to the interface, but cannot penetrate into the substrate, will 

always propagate sidewards. Equation (11.40) also indicates that certain critical 

coating thickness exists for the cracks caused in the coating by local damage, from 

which they will spontaneously propagate sidewards. This thickness is smaller for 

higher stress acting in the coating and for its smaller specific fracture energy 1. 
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        Fig. 11.14. Propagation of surface crack in the coating on a tough 

        substrate. a  onset of growth, b  the crack has grown to the  

        substrate, c  crack propagates sidewards. After [2]. 

 

Sometimes a crack network is formed in a brittle coating on ductile substrate. This 

is because the individual cracks stop at the substrate, so that further cracks can be 

created under increasing load. The system of cracks corresponds to the character of 

acting stresses. Under biaxial isotropic state of stress, which arises, for example, at 

sudden change of temperature, the crack network is irregular and the cracks have 

various directions (Fig. 11.15a). Under uniaxial stress, e.g. in a body loaded by 

tension, a row of cracks perpendicular to the direction of maximal tensile stress is 

created (Fig. 11.15b). The density of cracks is related to the stress magnitude. As 

the forces are transmitted from the substrate to the coating by shear stresses, an 

important role is also played by the strength of adhesion of the coating on the 

substrate, and, sometimes, by the substrate yield strength, similarly to the transfer 

of forces between the fibre and matrix in composite materials, see Chapter 12.  

11.8  Determination of mechanical properties of coatings 

For coatings and various surface layers, the following properties are determined 

most often: modulus of elasticity, strength, hardness and wear resistance, internal 

stresses and fracture mechanics parameters, including adhesive strength. Here only 

several notes will be presented; more information can be found, for example, in [3].  

Young modulus  

Usually is determined from the deflection of a specimen or by indentation.  
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         Fig. 11.15.  Network of cracks in a coating due to:  

         a  thermal stress, b  uniaxial tension. 

 

Bending tests are often done with a coated specimen of rectangular cross section, 

whose one end is clamped and the other is loaded by transverse force, and the 

deflection of the loaded end here is measured. The specimen can also lie on two 

supports and loaded in its centre. If the coating is on both surfaces, the following 

formula can be used [2]:    
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Sb is bending stiffness of the coated specimen, b is its width, and h = 2h1 + h2 is the 

total thickness (h1 is the thickness of one coating, h2 is the substrate thickness), P is 

the load; l is the distance of the supports, w is the deflection in the center. (If the 

specimen is wide, the stiffness Sb must be multiplied by the term (1 – 2
). The 

solution for specimens with only one surface coated is more complicated, as the 

neutral axis is not in the half of the height.   

Young modulus of coatings is also determined by nanoindenters, which measure 

simultaneously the indenter load and displacement. In this case the indenter 

displacement is influenced by the stiffness of both the coating and substrate. The 

response is measured for various depths (or continuously), and the measured values 

are fitted by a suitable function. The true modulus of elasticity of the coating 

corresponds to zero depth of indenter penetration. For more, see [3, 7]. 

Hardness 

If hardness of a coating is measured by impressing an indenter into the specimen, 

the properties of the substrate must be considered. When evaluating the data, 
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various models are used, depending on whether hard coating is on a hard substrate, 

or hard coating on a ductile substrate, or compliant coating on a hard substrate. 

More can be found in [3] and the sources quoted there.   

Residual stresses 

Residual stresses in surface layers are determined by various methods [3]. 

Destructive methods gradually remove thin layers from the specimen by grinding 

off or by etching, and its deflection is measured. Semidestructive methods measure 

the length of cracks created by an indenter. Nondestructive methods working with 

X-Ray diffraction utilise the fact that mechanical stress changes the distances of 

atoms in the crystal latice. Also methods based on photoelasticimetry can be used.     

Fracture toughness 

The knowledge of fracture toughness or specific fracture energy of the coating and 

interface, as well as of the substrate is important. These quantites are determined 

on sandwich or bimaterial specimens loaded by bending (Fig. 11.16a, b), on DBCB 

specimens (double cantilever beam), or on a bilayer bend specimens UCSB 

(University of California Santa Barbara, Fig. 10.16c).  

 

 

 

  

 

     C   

      Fig. 11.16.   Specimens for determination of fracture mechanics parameters 

      of  coatings and interfaces.  a  sandwich, b  bimaterial, c  specimen UCSB. 

Adhesive strength of coatings is determined by various tests of adhesion. For more, 

see [2]. 
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12.  Mechanics of composite materials 

 

12.1   Introduction  

Composite materials consist of two or more components with different properties. 

The resultant property differs significantly from them, and is not their simple sum. 

Usually the resultant properties are significantly better. As examples, fiberglass 

laminates, fishing rods or parts of aircrafts stiffened by carbon fibers, concrete 

reinforced by steel bars or wires, and also common concrete, which is a composite 

with particles of sand and gravel in the cement or polymer matrix. In fact, also 

wood is a natural composite. More on composite materials in general can be found 

in [1 – 5].  

The basic type is composites with two components. One component is matrix, in 

which suitable particles or fibers are dispersed. The matrix material is, for 

example, a polymeric resin, but also metal, glass, ceramic material, gypsum or 

concrete. Particulate composites contain particles, where no dimension prevails. 

They are usually added to the composite for other reasons than increasing its 

strength, which sometimes even get worse. They are used for reduction of costs, for 

improvement of thermal or electric properties or wear resistence. They can also 

increase the stiffness.  

Fiber composites contain glass fibers, polymeric (e.g. kevlar), carbon or metal 

fibers, and sometimes natural fibers. The usual aim is improvement of mechanical 

properties, especially strength or stiffness, and the weight reduction. Sometimes we 

strive for higher toughness and non-catastrofic (i.e. slow) fracture, and ability to 

absorb energy. 

In this chapter we shall treat fiber composites. Their properties depend on the 

properties of matrix and fibers and their proportions, and also on their geometry, 

mutual arrangement, and the properties of their bonding. Here, the basic formulae 

will be given. More details can be found in literature, for example [6 – 11].      

Fiber composites can be with long or short fibers. Long fibers are such, whose 

length is many times larger than the diameter, and „do not end inside the 

component“. Their properties are anisotropic. The length of short fibers is only   

several times the diameter and is much smaller than the size of the component in 
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their direction. Short fibers are often oriented randomly in the body, and the 

resultant properties of the composite are rather isotropic.   

12.2  Composites with long fibers 

The basic mechanical properties, such as strength and stiffness, will be shown on 

an example of a composite with fibers parallel to the direction of acting load (Fig. 

12.1). Strong bonding of fibers with matrix is assumed. At lower loads both 

components deform elastically. The characterisation of the resultant response needs 

the knowledge of elastic moduli (Ef, Em) and relative fraction of each component 

(Vf, Vm). Subscripts f and m pertain to the fibers and matrix. The resultant property 

of the composite is denoted by subscript c. The volumen fractions Vf  and Vm are the 

same as the fractions of cross section areas Sf and Sm. It holds 

 Vf + Vm = 1  , Vm = 1 – Vf  .     (12.1a, b) 

 

 

 

Fig. 12.1. Composite with long parallel 

fibers. Longitudinal (podélný) and 

transverse (příčný) directions [6]. 

smyk = shear 

 

 

Longitudinal strength and stiffness of the composite 

If the force acts in the direction of fibers, its part Ff is transferred by the fibers and 

the part Fm by the matrix, and it holds 

 Ff = f  Sf = Ef Sf , Fm = m Sm = Em Sm  ;         (12.2) 

Ef  or Em denote the elastic (Young) modulus of the pertinent component, and   is 

the strain (relative elongation). The total force is 

 Fc = Ff + Fm .             (12.3) 

This can be written by means of stresses as 
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 Fc = cSc = f Sf + m Sm .          (12.4) 

Dividing this by the total area of the cross section and considering that Sf = Vf and 

Sm = Vm, gives the average stress in the composite: 

 c = f Vf + mVm .           (12.5) 

The strain of both, strongly bonded components, is the same,  

 c = f = m =  .            (12.6) 

The subscript is thus not necessary, and the stresses can be expressed as  

 f = Ef ,  m = Em ,           (12.7) 

 These stresses are in the same proportion as their moduli of elasticity, 

 f /m = Ef /Em ,     or  f /c = Ef /Ec ;        (12.8) 

The higher stress acts in the component with higher modulus. Division of Eq. 

(12.5) by the strain gives the elastic modulus of the composite:   

 Ec = Ef Vf + EmVm = Ef Vf  + Em(1 – Vf) .         (12.9) 

The properties of the composite are usually expressed as a function of the fiber 

proportion. This is shown in the right-side part of Equation (12.9). 

If the composite consists of more (n) components, the resultant stress and modulus 

of elasticity are  
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Two examples adapted from [6] will be given here for illustration. 

Example 1. Calculate the fraction of the load transferred by fibers in two 

composites with glass fibers in epoxy matrix. One composite contains 10% volume 

fraction of fibers, and the other 50%. Elastic modulus of the fibers is Ef = 72 GPa, 

the matrix modulus is Em = 3,6 GPa (i.e.  Ef/Em = 72/3,6 = 20).  

The ratio of the force transferred by the fibers to the total force in the composite is 
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With 10% of fibers, Vm/Vf = 0,9/0,1 = 9, so that Ff /Fc = 0,690 = 69%. With 50% of 

fibers, Vm/Vf = 1, and Ff /Fc = 0,95; fibers thus transfer 95% of all load.       

Example 2. How the forces will be changed for carbon fibers with Ef = 432 GPa? 

Ef/Em = 432/3,6 = 120, so that Ff/Fc for 10% of fibers is 0,930, i.e. 93%. For 50% 

of fibers, Ff/Fc = 0,992 = 99%.  

We can see that fibers with high modulus of elasticity transfer substantional part of 

the load, even if their proportion is relatively low.  

Now we shall show how the longitudinal strength of a composite varies with 

increasing proportion of fibers.  

a) Fibers and matrix have the same strength and strain at failure, f,u  = m,u. (“u” 

means ultimate.) For simplicity, no dispersion of properties is assumed.  

The composite fractures at critical stress: 

 c,u = f,u Vf + m,u Vu = f,u Vf + m,u (1 – Vf) .      (12.12) 

b) Fibers have higher strength, but the matrix is more ductile and fails at higher 

strain. An example is a composite with carbon fibers in polymeric matrix. As long 

as the fibers do not break, the mean stress in the composite is  

 c = f Vf + m (1 – Vf) .          (12.13) 

The fibers break at strain f,u. If the strain of the composite attains this value, the 

fibers break. (Again no dispersion of proparties is assumed.) Then the load can be 

transferred only by the matrix, which fails at the stress m,u. As “holes” after the 

fractured fibers remained in the matrix, the load carrying cross section is smaller 

than the total cross section, so that the ultimate strength of the composite is lower:   

 c,u  = m,u (1 – Vf) .          (12.14) 

The load carrying capacity thus decreases with the increasing proportion of fibers! 

Fortunately, this relation holds only for very low fractions of fibers; for Vf higher 

than several percent the resultant strength is higher (Fig. 12.2). The volume 

fraction of fibers, corresponding to the minimum strength, is 
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m(f,cr) is the stress in the matrix, corresponding to the critical deformation of 

fibers. For epoxy resin stiffened by carbon fibers (m,u = 0,07 GPa, f,u = 3.2 GPa, 

Em = 3,1 GPa, f,u = 0,014), the critical stress m(f,cr) = 0,0434 GPa. Insertion of 

these values into Eq. (12.15) gives Vf,min = 0,0088  0,9%. This means that more 

than 1% of fibers will have strengthening effect. The situation is depicted in Fig. 

12.2. However, the resultant strength with Vf,min  is lower than the strength of the 

matrix alone (without fibers)! If the addition of fibers should increase the 

composite strength, the resultant strength must be higher than m,u, and the fiber 

proportion must be higher than the critical value (Vkrit in Fig. 12.2). 
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     Fig. 12.2. Strength of fiber composites 

     as a function of fiber fraction Vf [6]. 

 

 

 

 

Transverse stiffness and strength of the composite 

In the above model, the fibers were arranged parallel in the matrix. The deformation 

of all components was the same, and the forces were summed up. If the load acts 

perpendicularly to the fibers (Fig. 12.1), which is a series arrangement, with the 

same force acting in each component, and the deformations are summed (and also 

the compliances). The approximate value of elastic modulus is obtained as  
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subscript T means transverse direction. With more components, 
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1  .        (12.18) 

The reality is more complex, as the formula corresponds to the case of series 

arrangement of flat rectangular layers, while the fibers have circular cross section 

and are not arranged regularly. Certain role can be played by different values of 

Poisson´s numbers of the individual components; here their equality was assumed 

for simplicity, f = m. 

Figure 12.3 shows the ratio of the longitudinal (L) and transverse (T) modulus of 

elasticity of the composite and the matrix as a function of the volume proportion of 

fibers Vf. The figure corresponds to the case Ef/Em = 10 [6].  

A composite loaded perpendicularly to the fibers fails if the stress exceeds the 

transverse strength of any component (f,u,T ; m,u,T ). The transverse strength is 

 c,u,T  =  min(f,u,T ; m,u,T )  .        (12.19) 

Long ordered fibers are suitable everywhere the directions of stresses in the 

component are known and do not vary, or change only slowly, so that their laying 

during creation of the composite body is simple.  If these directions are not known, 

or vary quickly from a place to place, isotropic properties are better, and thus the 

composites with short fibres (see later). A layer with parallel fibers is orthotropic. 

Anisotropy can be eliminated by suitable arrangement of several orthotropic layers.  

 

 

 

Fig. 12.3. Ratio of elastic modulus of the 

composite (Ec) and matrix (Em) in the 

longitudinal (EL) and transverse (ET) 

direction. Vf - fibers volume fraction [6].  
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If the direction of forces and stresses acting in the composite body, it is possible to 

optimise the orientation of fibers, and create a more weight-efficient structure. As 

an example, a laminated cylindrical pressure vessel will be analysed here [7, 8]. 

Example 3.  

Determine the optimum directions for fibers in a cylindrical pressure vessel made 

by filament winding.  

Solution. If the pressure p acts in the vessel, it causes circumferential stress t and 

axial stress a in the wall: 

 ,
2

,
h

R
p

h

R
p at               (12.20) 

R is the radius of the vessel and h is the wall thhickness. Circumferential stress is 

thus twice higher than the axial stress. If the vessel would be made of isotropic 

material, it must be dimensioned with respect to the maximum, i.e. circumferential 

stress. However, if it is made by filament winding, it can be lighter thanks to 

suitable orientation of fibers. The situation is shown in Fig. 12.4. The fibers are 

inclined to the axis by angle . In the direction the force nFf acts in the fibers, 

where Ff is the force in one fiber and n is the number of fibers in the investigated 

(triangular) part of the shell [7, 8].  

 

  Fig. 12.4.  Cylindrical pressure vessel made from fiber composite by filament 

winding. t, a – circumferential and axial stress,  – optimum angle of fibers. 

 

In the circumferential direction (vertical direction at right side of Fig. 11.4) the 

following component of this force acts, which is in equilibrium with the 

circumferential force caused by the internal pressure:   
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 h
h

Rp
Fn f  1sin  .         (12.21) 

The force component in axial direction (horizontal direction in Fig. 12.4) is in 

equilibrium with the resultant of axial stress, 

 htg
h

Rp
Fn f  

2
cos  .          (12.22) 

The expression 1h at right part of Eq. (12.21) is the area of that part of the wall, 

which corresponds to the horizontal cathetus of the triangle (Fig. 12.4), in which 

circumferential stress acts. Similarly tg  h in (12.22) represents the area 

corresponding to the vertical cathetus, where axial stress acts.  

Division of Equation (12.21) by Eq. (12.22) and a rearrangement gives 

 tg
2   =  2,  odkud vyplývá    = 54,7 .        (12.23) 

This is the basic angle of the slope of fibers in a wound pressure vessel, which 

ensures that the strength in circumferential direction is twice as high as in the axial 

direction. If more layers will be used, the fibers in the next layer will have the 

opposite slope (  = – 54,7), etc. 

12.3  Composites with short fibers 

If the directions of stresses in the component vary relatively quickly (or if they are 

different in various loading cases, or are unknown), short fiber composites are 

better. In such case, with random orientation of fibers, the resultant properties are 

isotropic. With some technologies, such as injection, the fibers arrange themselves 

during the flow through the mould, and this can be advantageous with respect to 

the stresses in the finished component.  A part of the component with ordered 

fibers is shown in Fig. 12.5. While in composites with long fibers these fibers are 

along the whole body, and the force Ff acts in them everywhere, in composites with 

short fibers places exist, where the force in the fiber direction is transferred only by 

the matrix. Therefore the question of force transfer from the matrix into the fibers 

or vice versa is very important. The situation for one fiber is depicted in Fig. 12.6. 

Shear stress  acts between the fiber and matrix. If the load is low, the 

deformations are elastic, Hooke´s law holds, and the shear stress along the interface 

is distributed nonuniformly, with the highest value at the ends of fibers [6 – 9]. 

This character of stress distribution lasts till the instant when the maximum value  
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                 Fig. 12.5.  Composite with short 

        ordered fibers (a schematic). 

        L – longitudinal direction,   

               T – transversal direction. 

 

 

of stress attains either the adhesive strength or the yield strength of the matrix from 

elastic-plastic material, depending on which value is lower. According to the 

simplified model we shall assume that the shear stress during movement of the 

fiber in the matrix is constant, equal adhesive strength a. The equation of 

equilibrium of forces acting on the segment of the fiber of infinitesimal length dx is   

 (r2
)f + (2r dx)a = (r2

)(f + df) ,        (12.24) 

from where it follows             

 
rdx

d
af  2

  .          (12.25) 

Integration of this expression from the fiber end (x = 0), where stress f,0 is 

transferred to its face, to the place  x, where the stress f (x) acts, gives 

 f (x) = f,0 + 2a (x/r) .          (12.26) 

We see that the stress in the fiber grows linearly with the distance from the face. 

The force transferred by the face is small compared to the force transferred by the 

long cylindrical surface, and is usually neglected. 

 
 

                           Fig. 12.6. Forces acting on  

          the fiber in the matrix  

  

In the case shown in Fig. 12.6 the matrix tries to extend the fiber, and the forces 

transmitted to it from the left and from the right, have the opposite sign in each 

half. The stress in the fiber increases from each end, and is highest in the centre. If 

stress c is acting in the composite, the stress in the fiber can have the maximum 

value at least equal to that in a composite with long fibers, that is  
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f,max = c (Ef/Ec) ;          (12.27) 

see Eq. (12.8). This stress is attained at so-called load transfer length  

 

c

f

a

c

a

f
t

E

Edd
l









22

max,
 ,        (12.28) 

where d (= 2r) is the fiber diameter. If the fiber is longer than lt, the stress in it does 

not increase (Fig. 12.7), and remains equal to the value (12.27). 

 

 

 

 

 

 Fig. 12.7. Transfer of force between fiber and matrix under constant shear stress 

at the interface. df – fiber diameter, f – stress in the fiber, lk – critical length [6]. 
 

The fiber length near the ends, where the stress is lower, is ineffective length. The 

load transfer is more efficient if this length is short.  

Let us look at the case when one end of the fiber is in the matrix and the other 

protrudes out. If relatively short part is in the matrix, the fiber can be pulled out as 

soon as the adhesive strength a was overcome. If the length of the fiber in the 

matrix is very long, the fiber can be broken. The critical length lcr is such, for 

which the same probability exists that the fiber will be broken or pulled out of the 

matrix. The equilibrium of the shear force d lka at the interface and the tensile 

force in the fiber on attaining its strength, Sff,U,  gives to the critical length, 
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Remark. One reason for the use of short fibers is the effort to increase the 

consumption of energy during fracture by pulling the fibers out of the matrix, when 

the work is done by the friction forces between the fiber and matrix. 
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12.4  Dispersion of fiber properties 

In the previons considerations it was assumed that all fibers in the composite have 

the same strength f,U. In reality the strengths of individual fibers vary in a wide 

range. The distribution of these strengths can be described reasonably well by 

Weibull distribution function (Fig. 12.8) 
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Here, a is the scale parameter, b is the shape parameter, and c is the threshold 

value, which is the lowest value that could appear. As strength cannot be negative, 

it is sometimes assumed c = 0, which simplifies the distribution. (The 

determination of parameters of Weibull distribution is described, e.g., in [13].) 

The fibers in a composite are surrounded by the matrix, and – if some fiber breaks, 

the load can be transferred from the region of its end into the matrix, and behind 

the damaged place back into another fiber. This means that even a broken fiber can 

transfer the full load  with the exception of its ends, where the stress increases 

from 0 to the maximum value f,max. Therefore, the fibers in a composite carry 

more and are utilised better than a bundle of free individual fibers. More to these 

issues can be found in [6, 9].    

   

   Fig. 12.8. Probability distributions of random quantity  x  

       (e.g. strength): a) normal, b) Weibull. 
 

Consequences of dispersion of strength properties 

It is suitable to bring here several comments to the dispersion of strength of not 

only the fibers, but of any material. Every design engineer should be aware of two 

things. Quantities like strength, yield stress and fatigue strength vary. Material data 
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sheets usually give the range and minimum value of the pertinent quantity. 

However, it is principially impossible to determine accurately the minimum 

strength of a certain material. We can determine the strength of a particular 

specimen by breaking it. Unfortunately, we cannot use it, as it was broken. 

Therefore, usually several specimens are tested, and the measured values are 

statistically processed. As the minimum, such value is given, for which 5% 

probability exists of occurence of a weaker piece. The uncertainty in dimensioning 

is mitigated by means of allowable stress, which is obtained by dividing the 

strength or yield stress by a (chosen) factor of safety. This is the higher the lower is 

the knowledge about material, component, load and conditions of operation. 

The second consequence of the dispersion of strength properties is the influence of 

the loaded area on strength. Failure always starts at the weakest point (broken 

crystalline grain, inclusion…). And, the larger the loaded area, the higher 

probability of occurence of a larger defect. In many cases, the following 

relationship exists between the strength and volume of the body:   

 P = C V 
m

  .          (12.31) 

where C and m sre constants. If the strength can be described by Weibull 

distribution (12.30), the constant m is related to the shape parameter b as m = 1/b. 

More about these questions can be found, for example, in [14], where also other 

works are quoted.       

12.5  Failure of composites 

Fiber composites with ordered fibers can fail in various ways. If tensile load acts in 

the direction of fibers, the crack will propagate through the matrix perpendicularly 

to this direction (Fig. 12.9). Short fibers, whose length is shorter than lcr, will be 

gradually pulled out of the matrix. Long fibers will break.  

 

 

   Fig. 12.9.  Characteristic failure modes of 

   a fibrous composite: breaking of fibers and 

   pulling out of the matrix, and matrix fracture.  
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A role is played not only by the strength and ductility of fibers, but also by the 

properties of the matrix, whether it is brittle or ductile, and by the properties of 

fibers. The behaviour is influenced also by the adhesion between the fibers and 

matrix, and the ratio of elastic moduli of both components and the ratio of thermal 

expansions. In the simplest case the fibers break gradually if the crack arrives at 

them or if it goes behind the fiber. Sometimes the crack at the interface with a fiber 

has tendency to turn aside or around the fiber. It is especially if the fiber has higher 

modulus than the matrix and the interface strength is low 

Gradual breaking of fibers is visible in load-displacement diagram of tensile test of 

a composite (Fig. 12.10). A brittle matrix can sometimes break into more parts. 

 

              a.        b. 

           Fig. 12.10. Tensile test of a composite (a schematic):  

               a) with one fiber in the matrix, b) with many fibers. 

Failure is influenced by the differences of thermal expansions and by residual 

stresses arising due to temperature changes in the preparation. If the fibers have 

higher thermal expansion than the matrix, they contract more during cooling after 

the resin curing. Radial tensile stress acts between the fiber and matrix, so that the 

fibers can tear away from the matrix. On the other hand, if they have lower thermal 

expansion then the matrix, they are compressed during cooling, and tensile stress 

appears around them in the matrix, which can lead to its cracking.    

Failure can occur also under compression. If this load acts perpendicularly to the 

fibers, the matrix can fail due to shear stresses (Fig. 12.11). The fracture surface is 

inclined, because the maximum shear stress contains angle 45 with the direction 

of compressive stress.  If the compressive load acts in the direction of fibers, these 

can microbuckle. In this process the neighbouring fibers can be “in phase” or in 

“antiphase”. A long thin compressed component can buckle as a whole.  
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More about failure of composite materials can be found, e.g., in [6, 9]. 

      

         Fig. 12.11.  Loading of a composite perpendicularly  

       to the fibers (failure of matrix due to shear stresses). 

12.6  Elastic response of orthotropic materials under multiaxial stresses 

Elastic deformations of isotropic bodies with stresses acting in planes x, y are 

described by Hooke´s law 

 x = E 
–1 

(x – y),  y = E 
–1 

(y – x),  z = –E 
–1 

(y + x) ;     (12.31) 

 is strain and   is stress (in the individual directions. In z direction, perpendicular 

to the plane x, y, no stress acts; the layer thickness, however, will be changed due 

to stresses x a y.) Elastic constants are three: modulus of elasticity in tension E, 

shear modulus G, and the coefficient of lateral contraction  (Poisson´s number). 

These constants are mutually related as 

E  = 2(1 + ) G ,          (12.32) 

so that the knowledge of any two constants is sufficient for the stress analysis.  

More complex calculations with multiaxial stress are done better with matrix 

notation. Hooke´s law (12.31) in this case has the following form: 
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   is the strain matrix (vector),  S  is square matrix of compliances, and    is the 

stress matrix. 

Long-fiber composites are orthotropic, and five constants are needed for the 

description of their elastic response: modulus of elasticity E1 in the fiber direction 

and E2 in the direction perpendicular to the fibers, shear modulus of elasticity G12, 
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and two Poisson´s numbers, 12 a 21. The first, 12, is the principal Poisson´s 

number, which expresses the ratio of relative shortening in direction 2 caused by 

relative elongation in direction 1. On the contrary, 21 gives the relative shortening 

in direction 1 caused by relative elongation in direction 2.  

The relation between strain and stress for this composite is [7, 8] 
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As the direction 2, perpendicular to the fibers, has usually much lower stiffness 

than direction 1, it is obvious that certain strain in direction 1 causes much larger 

strain in direction 2, than the same strain in direction 2 would cause in direction 1. 

Usually therefore 12 > 21. In Equation (12.34) only four of the constants are 

independent (E1, E2, G12, 12 a 21), and the compliance matrix is symmetrical and 

it holds 21/E2 = 12/E1. 

The individual elements in the compliance matrix characterise the relationships 

between stresses and strains in the individual directions. The zeros in Eq. (12.34) 

correspond to the case without any relations among normal and shear components. 

This is if the coordinate axes coincide with the principal directions of the material, 

which are here the direction of fibers and the perpendicular one. If they are 

oriented in other directions (Fig. 12.12), the compliace matrix is changed. If, for 

example, the tensile load contains some angle with the fibers, shear stresses appear 

also between the fibers, because the fibers would like to orientate themselves into 

the load direction. A bonding thus arises between the normal stress and shear strain 

– something which does not exist in isotropic materials.         

The relationships for transformation of elastic constants into other directions can be 

found, for example, in [6].         

12.7  Multilayer composites, laminates 

The formulae for the calculation of stiffness and strength of a composite with 

aligned fibers, given earlier, were valid for one layer, called lamina (Fig. 12.12). 

Suitable properties ar often obtained by combining several layers, which are then 

denoted as laminate. Simple creation of multilayer composites is facilitated by the 

use of prepregs. A prepreg is a single layer, where uniaxially oriented fibers lay in 
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a matrix of partially polymerised resin. Several suitably oriented prepregs are then 

laid one on the other and pressed down at high temperature, so that final 

polymerisation occurs.  

  

             Fig. 12.12.   Orthotropic lamina. 

             Principal axes are inclined by angle   

             to the coordinate system x – y 

 

 

Various orientations of the laminae exist. The simplest arrangement with mutually 

perpendicular fibers is denoted [0/90]. Lower degree of anisotropy is achieved if 

the fibers are laid in angles 45, for example [0/45/90/-45/0]; the numbers denote 

the orientation of the layers (Fig. 12.13). Also the angle 60 is used and other. 

     

      Fig. 12.13.  Multiulayer laminate – layer arrangement  [0/45/90/-45/0]. 

A weak point of laminates are their edges, where high stress concentration arises at 

sudden change of properties at the transition from one layer to another. This 

sometimes leads to delamination, which is failure of layer bonding. Weak also are 

the places of joining of various components. Any sudden change of the cross 

section means higher stress. Better joints are those with smooth transition of shape 

(Fig. 12.14), and also with increased compliance, for example by using a resin with 

lower modulus of elasticity. For more, see for example [11]. 

    
          Fig. 12.14. Reduction of stress concentration by suitable shape design.    
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13. Mechanics of elastomers and very 

compliant bodies 

 

This chapter will show some features typical for deforming of elastomeric 

materials, such as rubber and some polymers. Also deforming of textile materials 

and membranes will be mentioned briefly. All these cases are typical of large 

deformations and strains, nonlinear relationships between stress and strain, and 

often also the time dependence of response.  

13.1  Elastomeric (hyperelastic) materials   

Elastomeric, or hyperelastic materials have the following properties: low tensile 

modulus of elasticity (E = 1 – 10 MPa) and nonlinear  stress – strain diagram (Fig. 

13.1), high coefficient of lateral contraction (  > 0,49), large strain at fracture 

(sometimes up to several hundred percent), ability to absorb (temporarily) high 

amount of energy, viscoelastic behaviour (delayed elastic deforming, stress 

relaxation, energy dissipation at cyclical loading) and fatigue under static and 

dynamic loading. 

The ability of large deformations of elastomeric materials is explained by their 

microstructure. It is three-dimensional network of very long meandering molecular 

chains, which resemble a tangle of spaghetti and are interconnected at many places 

by transverse bonds (Fig. 13.2). The bonds in the chains are relatively strong, but 

the transverse bonds are weak (like with spaghetti). The load thus causes 

straightening of the chains and their sliding rather than their stretching.  

 

 

Fig. 13.1.  Nonlinear diagram of rubber 

„Force F – Stretch ratio “ [1]. 
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      Fig. 13.2.   Typical appearance of polymeric chains [1]. 

Characterisation of large strains and stresses  

Large strains arise at deforming rubber and other compliant materials. In such 

cases the conventional strain, defined as  = l / l0, is not sufficiently realistic. 

More suitable is the so-called stretch ratio (or, shortly, stretch):     

 = l/l0 =  (1 + l/l0) = 1 +  .          (13.1) 

Remark. The stretch ratio is related to the true strain as 

  = ln (l/l0)  .            (13.2) 

Here we shall use the stretch  [1, 2]. It can be defined in three mutually 

perpendicular directions. The values in a particular case depend on the orientation 

of the coordinate system. The principal stretches 1, 2, 3, correspond to the 

three principal directions. Also certain functions of stretch ratios exist, which do 

not depend on the orientation of coordinate system. These so-called stretch 

invariants are: 

 I1 = 1
2
 + 2

2
 + 3

2
  ,          (13.3a) 

 I2 = 1
22

2
 + 2

23
2
 + 3

21
2
  ,         (13.3b) 

 I3 =1
22

2 3
2
 .           (13.3c) 

For incompressible material, I3 = 1. 

Since large relative elongation is related with large relative contraction, it is better 

to use true stress, defined as    

 true  = F / Strue ,            (13.4)  
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instead of conventional stress  = F /S0, usual in the mechanics of solids. Similarly 

it is reasonable to replace the conventional stress-strain diagram  –  by the 

diagram true – , or F –  (Fig. 13.1). 

One more quantity is also suitable for characterising the stress state. It is strain 

energy density ; the pertinent formulae will be shown further. Among other 

properties it holds that stress can be obtained by differentiating the energy density 

with respect to strain.   

13.2  Models for response of elastomeric materials   

Hooke´s law (and sometimes certain viscoelastic model) is sufficient for small 

strains. Other functions have been proposed for the load response of elastomeric 

(hyperelastic) materials at larger strains. They are usually based on the strain 

energy density defined by means of stretch invariants. Two simplest models will be 

shown here [1, 2]: 

Neo-Hookean model: 

  = C10 (I1 – 3)  ,           (13.5) 

where C10 is a constant. This model agrees well with experimental data for stretch 

up to 40% in uniaxial tension, and to 90% under simple shear. 

Mooney-Rivlin model: 

 = C10(I1– 3) + C01(I2 – 3) .          (13.6) 

This model agrees well with tensile tests up to stretch 100%. However, it is not 

very suitable for the description of compression or stiffening under high stretches.   

In addition to the above models also other exist (Ogden, Yeoh and other), which 

are described in [1, 2]. Some models were implemented into FEM programs. 

The constants in the models are obtained by testing special specimens loaded by 

uniaxial tension, biaxial tension and shear (Fig.13.3). 

Rubber and other elastomers are nearly incompressible. In analytical solution, 

perfect incompressibility is sometimes assumed, with the Poisson´s ratio  = 0,5. If 

numerical solution is used, for example with the finite element method, a perfect  
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    Fig. 13.3.  Diagrams of tensile tests for the determination  

    of Mooney – Rivlin constants of vulcanised rubber [1, 7].   

 

incompressibility would cause numerical instability, and a little lower value of  is 

used instead, for example  = 0,49.    

One theory of elastomer deforming is based on the entropy as a measure for 

arrangement and probability of attaining certain state. A straight polymeric chain is 

very improbable, while various unarranged states are much more probable. If one 

end of an imaginary segment of an elastomer is fixed, and the probability of the 

occurrence of its other end at certain distance from it is expressed, for example, by 

means of three-dimensional Gauss distribution, and if the increment of the internal 

energy in the second thermodynamic law is expressed, then a series of 

transformations [1, 2] gives the following formula for the strain energy density in 

an ideal elastomer, corresponding to stretch ratios x, y, z:  

   =   T S  =  ½ NkT (x
2
 + y

2
 + z

2
   3)  ;        (13.7)  

T is the absolute temperature, N is the number of chain segments per unit volume, 

k is the Boltzmann´s constant (k = 1,38×10 
23

 J/K), and S is the entropy change 

of one segment. The form of equation (13.7) is identical with Eq.  (13.5) for the 

strain energy density of  Neo-Hookean model. 
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13.3  Textile fibers and structures 

The behaviour of fibers, threads and ropes and the structures made of them is 

influenced by their stiffness in tension and bending. In textile materials, certain role 

is also played by mutual arrangement and interlocking of threads, their mutual 

friction, and density per area unit of the textile material.     

The mechanical properties of fibers and textile products are determined by tensile 

tests. Figure 13.4 shows a test diagram of yarn; Fig. 13.4b shows a diagram of a 

knitted fabric, in both cases in coordinates force  elongation. The diagrams can be 

approximated by suitable functions and rheological models, whose parameters 

characterise elastic and viscoelastic properties. Various viscoelastic models were 

described in Chapter 10. 

 

 

 

 

 

 

        a.     b. 

             Fig. 13.4. Test diagrams: a – tensile test of yarn,  

            b – „load - unload“ cycle of a knitted fabric [3].  

Hooke´s law and moduli of elasticity for tension and shear are usually determined 

for onedimensional fabric. Bending properties are expressed by means of bending 

stiffness EJ, where E is the Young modulus of elasticity (N/m
2
) and J is the 

quadratic moment of the cross section in bending (m
4
). The dimension of bending 

stiffness is Nm
2
. If it is determined from the deflection of a textile specimen by its 

own weight, the deflections are large. Similar situation exists in the use of textile 

materials. Instead of simple differential equation w´´ = M/EJ, suitable for small 

deflections of beams from relatively stiff materials, its original form must be used 

for large deflections [4]: 

 

  EJ

xM

w

w )(

)(1
232




  .           (13.8)  
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For fibers and threads tensile strength P is measured. In fibers that are significantly 

bent, additional stress from bending acts, which causes breakage at lower load. 

Therefore also the strength of the loop, Ps, is measured so that a loop is created on 

one fiber, another fiber is pulled through it, and both fibers are broken using a 

dynamometer. Similarly, the knot strength Pu is measured. Both procedures are 

standardised. Besides them, also the relative loop strength Pr,s and relative knot 

strength Pr,u are measured, in both cases in percent:   

   100;100 ,, 
P

P
P

P

P
P

u
ur

r
sr

 .         (13.9) 

If the response of a fabric for technical application should be modelled, it is useful 

to replace it by a continuous thin body with the same mechanical properties. Figure 

13.5 shows a part of a regular thread net. It is possible to create equations of 

equilibrium of forces in the knots, and, with the use of the force-deformation 

diagram, to find the deformations and stiffness of this configuration. Another 

approach is based on the deformation properties of a small specimen of the 

investigated fabric. If an equivalent homogeneous body should be modelled, it is 

necessary to account for the anisotropy. For further study it is possible to 

recommend the textbook [3] that also contains the transformation equations and the 

necessary tensor calculus and list of references. 

 

 

      Fig. 13.5. Model of a knitted  

       fabric [3]. 

 

13.4  Membrane structures 

A membrane is such thin-walled body of curved surface, whose dimensions in two 

directions are much larger than its thickness, and which is able to transfer only the 

forces acting in the directions tangential to the surface. A membrane has negligible 

bending stiffness, so that it is unable to transfer bending moments. An example is 

an inflated hall or a balloon. 
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Remark. Membrane stress is distributed uniformly across the wall thickness, so that 

it fully utilises the material ability to transfer forces. In this way it is possible to cut 

down the material consumption, so that various containers or tanks (from metals, 

for example) have such shape that membrane stresses will prevail in them [4 – 6]. 

If the structure also has nonnegligible bending stiffness, so that besides membrane 

stresses also bending stresses act in the wall, bending theory of shells must be used 

in the analysis; see  [4 – 6]. 

A membrane structure is often loaded by pressure of liquid or gaseous medium. 

This pressure p causes forces in the membrane in two mutually perpendicular 

directions, which are tangent to the investigated surface at the pertinent point. If the 

equation of equilibrium of forces acting on an infinitesimal element of the 

membrane is written for the direction perpendicular to the tangent plane  (Fig. 

13.6), so-called Laplace equation of membrane can be obtained[5, 6]: 

 









R

N

R

N
p

11   .          (13.10)  

N1 or N1 is the force in the direction  or  per unit of width of the membrane 

(dimension N/m) and R and R are radii of curvature of the membrane in the 

pertinent directions. ,  are two (any) mutually perpendicular directions. The radii 

R, R can vary depending on the orientation of these cuts. Two principal 

directions exist, for which these radii are extreme (one is minimum, the other 

maximum); they are then denoted R, R. Division of the forces N1, N1 by the 

membrane thickness gives the normal membrane stresses.  

 

 

          Fig. 13.6. A membrane -  

       geometry and stresses. 
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Remark. Laplace equation (13.10) holds also for liquids. In this case the forces N1, 

N1 must be replaced by surface stress , with the same value in all tangential 

directions. This equation is decisive, for example, for the shape of water drops, or 

even for small glass beads rounded at high temperatures in an oven. 
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14.  Optimisation of shape and dimensions 

of components and constructions  

 

Components and constructions must be safe and reliable. Their manufacture or 

building should also be economical. In this chapter several approaches and rules 

will be shown for improvement thanks to shape optimisation.   

 

14.1  Components and structures of constant stress  

In the classic approach to dimensioning the stress in the most stressed section is 

calculated and compared with the allowable value. The stresses in other places are 

usually lower, and the ability of material to transfer forces and stresses is not fully 

utilised there and the design is less economical. In constant stress constructions 

one strives that the stress everywhere equals the allowable value. This approach 

will be illustrated here on several problems. For easier understanding, simple 

shapes will be considered, whose solution leads to simple analytical expressions. 

Dimensioning and optimisation of cross section along a beam 

Figure 14.1 shows a beam with one end fixed and the other loaded by a transverse 

force F. The geometry and distribution of bending moment along the length are 

shown. The maximum moment acts at the fixed end. If the cross section is 

constant, it must be so large that the stress here does not exceed the allowable value 

 max = F l / W    dov ;            (14.1) 

W is the section modulus in bending. The maximum stress at distance x is   

 max(x) = M(x) / W = F x / W.           (14.2) 

With the exception of the place of fixing the stresses are lower everywhere. Such 

design is less economical. Maximal utilisation of the material is achieved in the 

components of constant stress. Their cross section is not constant, but varies 

along the length so that the stress everywhere equals the allowable stress. The 

section modulus is determined according to the general formula 

 W(x)  M(x) /dov .            (14.3) 

The symbol „higher or equal“ is used because due to various constraints it can be 
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       Fig. 14.1. Constant stress beam (dashed lines). 

       Geometry and distribution of bending moment 

       and transverse force.  

 

 

 

 

impossible to use everywhere the accurate value of the section modulus as obtained 

by the calculation. For example, bending moment acting in a beam loaded at the 

end by force F is 

 M(x) = F x  ,              (14.4)  

The section modulus of a constant stress beam should therefore vary as: 

 W(x)  F x /dov ,            (14.5) 

The dimensions of cross section can vary in various ways, depending on its shape. 

If the beam has rectangular cross section b × h, where b is the width and h is the 

height in the direction of loading, the section modulus is W = bh
2
/6.  

The simplest case is with constant thickness and variable width. With constant 

width and prescribed thickness h the necessary width would be 

 
20

6

h

lP
b

dov
 .                   (14.6) 

The width b(x), optimised for constant bending stress, is in the ideal case  

 
2

6
)(
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dov


.            (14.7) 

The width thus increases with the distance from the loaded end linearly; from 

above it looks as a triangle (dashed oblique lines in figure 14.1). We can see that 
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the same service as by the beam of constant cross section can be given by the beam 

of constant stresses at half of its weight!   

The situation is, however, more complicated. In addition to the bending stresses 

also shear stresses act in the beam loaded by transverse force, and these stresses 

have the same value along the whole length, also near the point of the load 

application, where the bending moment is very low. The cross section here had to 

be dimensioned also with respect to the shear stresses. A more appropriate criterion 

would be constant equivalent stress, considering simultaneous action of normal and 

shear stresses. One should also consider that bending stress is maximal on the 

surface, while the maximum shear stress acts on the neutral axis (Fig. 14.2). 

Moreover, stiffness of the tapered beam is lower than with the beam of constant 

width b, so that the deformations would be larger. Sometimes, the decisive 

criterion for dimensioning is the allowable maximum deformation rather than 

maximum stress. Also the actual situation at the place of force application had to 

be solved in detail. The actual optimum shape will therefore be more complex.  

  

   Fig. 14.2.  Distribution of bending () 

   and shear ()  stress. 

 

Instead of width, the height could be variable. Similar optimisation could be done 

for a shaft supported by two bearings (Fig. 14.3), bogie of an opened freight wagon 

or the shape of main beams of a bridge. The formulae for continuous optimisation 

along the component can be more complex, but the way of derivation is the same. 

With respect to the necessity of fulfilling several demands simultaneously (and not 

only from the strength point of view) continuous optimisation is often not possible, 

similarly to the shaft shown in Fig. 14.3. Sometimes components with standardised 

(graded) dimensions are used, as it is cheaper. Generally, however, the section 

modulus at any place must fulfil Equation (14.3).  

 

 

               Fig. 14.3.  A massive shaft. 
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Remark. A danger is hidden in constructions of constant stress. In a common 

construction only several places exist, where the stress (and thus the danger of 

failure initiation) is the highest. The stress in a component of constant stress has the 

same value everywhere, so that the failure could start anywhere. The check for 

fatigue cracks must therefore be done in detail over the whole surface. 

Dimensioning and optimisation of size and shape of cross section of a beam  

Until now, we talked about the optimisation of the beam cross section „along the 

length“. Also the shape of the cross section can be optimised. The bending stress is 

distributed across the height so that the highest values are at places most distant 

from the neutral axis; on this axis it equals zero (Fig. 14.2). Therefore effort exists 

that only little amount of material is used at the neutral axis, because here it nearly 

does not contribute to the transfer of bending moment, and, on the contrary, most 

material should be at larger distances from the neutral axis. Examples are hollow 

profiles or I-profiles (Fig. 14.4). However, limitations exist. If, for example, the 

dimensions of simple solid rectangular cross section should be optimised so that its 

section modulus is largest at the lowest weight (or area), the solution would be the 

cross section with the largest height possible and thickness approaching to zero. 

However, such beam would lose its stability and collapse at the lowest load. 

Therefore, beams for carrying transverse loads (in the web direction) have usually 

profile I, where the transverse stiffness of both flanges prevents easy buckling. 

Similarly the tubes for carrying transverse load cannot have very thin wall, despite 

the theoretical advantage of the largest diameter together with the thinnest wall. 

Here again the danger would exist of loss of stability by local buckling.        

 

 

                    Fig. 14.4. Weight efficient profiles. 

 

 

The load carrying capacity of a component can be ncreased by adding stiffening 

ribs. Caution is necessary also here. Addition of material at an unsuitable place and 

in unsuitable amount can – on the contrary – increase the stress and reduce the 

safety. This can be illustrated on an example of a beam with rectangular cross 
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section, which is stiffened by a rib according to Fig. 14.5. The moment of inertia 

and section modulus in bending around the horizontal axis are [1]: 
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For a beam without a rib, h1 = h and Wo = bh
2
/6. The ratio of section moduli in 

bending of a beam with a rib and without it is depicted for various ratios of rib 

height and thickness in Fig. 14.5 at right. We can see that the resultant section 

modulus for small rib thicknesses and heights can be even smaller than for the 

unstiffened beam. Despite of addition of material, the section modulus became 

smaller! On the other hand, the bending stiffness, characterised by the moment of 

inertia, is increased by any rib.     

 

 

 

 

 

 

 

   Fig. 14.5.   Influence of the rib geometry on the stiffening [1]. 

Optimisation of cross section of a rotating part   

Another case showing the possibility of analytical finding the cross section of a 

component with constant stress is a thin rotating disc (Fig. 14.6). In this disc, 

circumferential stress (t) and radial stress (r) act. If the disc has constant 

thickness, the stresses are as follows [1, 2]: 
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Fig. 14.6.  Rotating disc. r – radial 

stress,  t  – circumferential  stress,  

ro, to – stresses at the axis 

 

 

where  is the density and  Poisson´s number of the disc material,  = 2f is the 

angular velocity, f = n/60 is the frequency and n is the number of revolutions per 

minute, R is the outer radius of the disc, and r is the radius of the investigated 

point. The distribution of stresses is depicted in Fig. 14.6. The highest values are at 

the disc axis, where   
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Both stresses decrease with increasing radius; radial stress to zero if the outer 

circumference is not loaded.  

Remark. Note that the stresses in a thin disc do not depend on its thickness! No 

stress acts in axial direction, because the surfaces are free and nothing obstructs to 

the thickness changes. In a long rotating cylinder (for example a turbine with an 

array of blades) axial stress appears also, because radial and circumferential 

stresses vary with r, but the changes of length in axial direction, caused by 

transversal contraction, must be the same everywhere.   

It is obvious from Figure 14.6 that the stresses at all places of a thin disk – with the 

exception of the axis – are lower. The load carrying capacity of the material is thus 

not fully utilised. The material will be used better if the disc thickness will decrease 

with increasing radius so that the equivalent stress everywhere will equal the 

allowable stress allow. The problem „rotating disc of constant stresses“ is solved in 

basic textbooks of the mechanics of materials [1, 2], so that here only the resultant 

formula for the varying thickness will be given:  
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The distribution of thickness, shown in Fig. 14.7, resembles normal (Gauss´) 

distribution of probability. t0 is the maximum disc thickness at the axis, which must  

        

       Fig. 14.7. Disc of constant stresses: one-stage turbine disc with blades [2]. 

be determined from the thickness at the transition to the ring with the blades. For 

this place, of  radius rkB, the centrifugal force F, caused by one blade of the known 

mass and  position rtB of its centre of gravity, is known, as well as the blade 

spacing LB. The necessary thickness can be obtained from the condition that the 

maximum equivalent stress according to the Tresca´s hypothesis must not exceed 

the yield strength Y. As the axial stress in a thin disc equals zero, the equivalent 

stress has the same value as the radial or circumferential stress, given by 

expressions (14.12). The use of condition all ≤ Tresca, or all = Y/s gives the disc 

thickness at the transition into the ring:    
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The thicknesses at other places are derived from it.  

Remark. This problem was shown here in order to show the possibility of 

analytical solution. Today, similar components are solved by the finite element 

method, which respects better the disc connection with the shaft and the attachment 

of blades.   

14.2  Optimisation of large structures 

In design of large structures, for example in civil engineering, the knowledge of 

general distribution of internal forces is very important. Figure 14.8 shows a long  

bridge on several supports. It shows the distribution of transverse forces and 

bending moments caused by the continuously distributed load. We can see that the 
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bending moment is zero at small distance from every support. If the structure will 

be created by joining of several parts, it is suitable to put the joints just into the 

points with zero bending moment, because only transverse forces will be 

transferred here, but no bending moments. Similar approach is used for horizontal 

beams in steel frames of skyscrapers or in supporting the wide overhanging roofs 

above railway platforms, and elsewhere. 

          
    Fig. 14.8. A long bridge as a beam on many supports, and the distribution of 

   bending moment. This moment equals zero at small distances from every support. 

 

Remark. In design of large structures and buildings, all loads that could appear 

must be considered. The accurate methods of stress analysis would be of little use, 

if some loads would be forgotten. Omission of some loading states could be fatal. 

For example, at the beginning of twentieth century in Canada a bridge across the 

Saint Laurence River in Québec collapsed during the assembly, as the designer has 

not realised that the forces in the unfinished bridge act in a different way than 

under traffic load. During the erection, some truss girders were loaded by 

compression instead of tension, and collapsed by buckling [21]. The collapse killed 

75 people! More similar examples could be found.  
 

14.3  Optimisation for complicated shapes and loads 

If a complicated shape should be optimised, more sophisticated methods are used. 

The weakest places of any component are the regions with stress concentration, 

such as sudden change of shape or cross section, around a hole, or at notches. It 

holds generally that the stress increase at a notch is higher for deeper notches (or 

for larger change of the thickness or shaft diameter) and for smaller radius of 

curvature of the notch root or the transition (Fig. 6.3). In design we should strive 

for the smooth flow of forces in the component. Sometimes additional notches for 
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stress relieving are made at the principal notch (Fig. 14.9). Even the shape of the 

pertinent notch is important, and a small shape change can mean a big 

improvement. In design of notches with the aim of the lowest stress concentration 

one can learn from Nature. Only those living organisms can survive as a kind if 

they have sufficient strength for resisting the loads appearing most often, and – at 

minimum possible weight. As an example, branching of trees can be mentioned.   

 

 

      Fig. 14.9. Examples of stress relieving notches 

  (force lines are indicated) [2]. 

 
 

If the stress concentration at the point of branch joining would be too high, all 

branches would break even under low forces, and the tree would die. This does not 

happen in the reality, and it has been found that the shape of the joints is such that 

nearly no concentration of stresses appears there. The tree itself promotes the 

growth of wood at the critical places.   

Similar shape of transitions can be found at thorns of various bush, or even at deer 

antlers. In 1937 R. Baud has published a work based on his experiments with 

celluloid, where he showed that even a small change of shape can bring a 

substantial improvement [3]. The optimal shape without stress concentration is 

sometimes called Baud curve (Fig. 14.10). Figure 14.11 shows comparison of the 

situation at common branching and after optimisation by the finite element method. 

 

 

 

Fig.14.10. Baud curves for  

tension and bending. After [3]. 
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    Fig. 14.11. Shape optimisation of branching by gradual adding of material.  

Down left: unoptimised and optimised; down right: comparison of stresses [8, 9]. 

 

During long evolution, Nature has developed mechanisms for shape optimisation 

of various natural species that must resist to various kinds of load. This was studied 

by Professor Mattheck from Karlsruhe, who has developed two optimisation 

procedures based on those used by Nature [4 – 7]. The method of adaptive growth 

gradually adds material at places of higher stress, similarly to trees. First, the stress 

is determined (by FEM) in the component that should be optimised. At places of 

higher stress the thicknesses of elements in the surface layer are increased, 

similarly to the growth of the soft cambium layer beneath the bark of a tree. This 

finite element calculation is repeated. After several steps, the stress distribution is 

achieved with significantly lower stress concentrations. For more, see [4 – 8]. The 

other method uses gradual material removing from the unloaded places („dying 

away“). Similar arrangement can be seen in spongiosis in a femur (Fig. 14.12), 

whose structure is such as to maximally use the material according the rule of 

constant stress. (Let us remind the loss of calcium in the bones during long stay of 

astronauts in weightless environment. Here the Nature removes in its own way the 

material that is not loaded.) In the stepwise optimisation via the finite element 

analysis, the modulus of elasticity of the elements with the lowest stress is reduced  
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              Fig. 14.12. Section of the  

                     femur with spongiosis.  
 

 

 

 

 

 

for the next series of FEM computations. This procedure is repeated several times, 

and then the elements are removed at places where the stress has substantially 

dropped. This optimisation algorithm was denoted as Soft Kill Option (SKO) in 

[9]. Figure 14.13 shows a beam on two supports, loaded in the centre by a point 

force, which was optimised by this method [8, 9]. In this case, the process started 

with a solid semi-product of rectangular shape, and the material was gradually 

removed from the places that were loaded only little. The danger of buckling of 

compressed parts was also considered. The optimisation in Nature looks similarly.      

 

       

     Fig. 14.13.  The initial and final shape of a component loaded by transverse 

    force. Optimisation by the SKO  method for obtaining minimum weight [8, 9]. 

 

Further optimisation methods 

There are many optimisation methods based on mathematics. The basic idea is to 

find an extreme of an objective function (stress magnitude in a component, weight, 

costs…), which depends on several variables and limitations. Simpler practical 

methods are described in Chapters 11  14 of the book [11] and in Chapter 19 in 

[16]. Both books are available without any limitations on the web; it is sufficient to 
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write the pertinent title into Google. Optimisation is treated in detail in books [12  

15]; the last named is also accessible via web. Tools in Matlab (Optimization 

Toolbox) or Mathcad are also very suitable, with explanatory notes. Some 

optimisation problems can be solved by Excel. This universal tool contains (in the 

menu Data) so-called Solver, which has its own optimisation procedure and 

enables also the use of various constraints of the individual variables. 
   

14.4  Setting the necessary tolerances 

In design of a component, machine, structure or appliance, one must account for 

various uncertainties that can appear in the design, manufacture or erection, and 

during operation. A good structural design should always consist of three stages:  

1. concept proposal,  

2. determination of parameters,  

3. determination of tolerances. 

After the general concept of the object or a component (e.g. combustion engine 

with three cylinders and four valves in a cylinder, helical spring, etc.) has been laid 

down, all necessary dimensions must be determined (cylinder bore and stroke, 

diameters of the spring and the wire, number of turns…). However, the input 

quantities often vary, or can have values differing from those assumed in design. A 

good design must ensure that the output values will always be within the allowable 

limits. This can be achieved by suitable choice of nominal values of the input 

quantities and by prescribing their tolerances.    

The nominal values of input quantities form together the design point. Its position 

should ensure low sensitivity of the output parameters to the deviations of input 

quantities from their nominal values [16]. This is called robust design. Figure 

14.14 illustrates this principle on an example with one input quantity x. Operating 

point 1 is with high sensitivity, point 2 with low sensitivity. 

One can see that the change of output quantity around the point 2 corresponding to 

certain change of x is much smaller than around point 1 – in both cases for the 

same change of x. This means that acceptable variation of the output can 

sometimes be achieved with lower demands on the accuracy of input variables! 

Reliability thus depends not only on the variance of input quantities, but also on the 

position of work point. Various methods exist for its finding; se e.g. 17 – 19]. 
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Fig. 14.14.   Robust design. The figure shows the influence of the  

position of design point (1, 2) on the sensitivity of the output quantity.  
 

As soon as the design point (i.e. the principal dimensions and parameters) was 

found, it is necessary to determine the sensitivity of the output on their variations. 

The results are then used for finding the tolerances. See, for example [16]. 

Importance of the determination of the possible deviations and the corresponding 

tolerances will be illustrated on two examples.    

Example 1. A steel wheel should be joined strongly with a steel shaft so that it can 

transmit a torque. The joining will be achieved by shrink-fitting; the shaft of a 

somewhat larger diameter will be pushed into the smaller hole in the wheel (Fig. 

14.15). Determine the necessary overlap, i.e. how much the shaft diameter should 

be larger than that of the hole! Determine also the maximum equivalent stress in 

the surface layer of the hole, and compare it with the yield strength! Determine the 

force needed for pressing the shaft into the wheel. Determine also the reduction of 

the pressure at the interface if the actual diameter of the hole were smaller by 0,01 

mm than the demanded value, and how all stresses would increase if the wheel 

diameter is smaller by 0,01 mm.     

 

 

 

     Fig. 14.15.   Shrink-fitted joint. 
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The parameters of the joint are: Outer diameter of the wheel D = 2b = 200 mm, 

nominal diameter of the shaft, the same as that of the hole in the wheel, is d = 2a = 

30 mm. Wheel thickness h = 20 mm. Transmitted torque M = 200 Nm. Coefficient 

of friction between the wheel and shaft f = 0,1. E1 = E2 = 210000 MPa, 1 = 2 = 

0,3. Yield strength Y = 400 MPa.   

Solution. The hole in the wheel becomes larger during the assembly, and the shaft 

diameter becomes smaller. Pressure acts between them, and thanks to friction the 

twisting moment M can be transferred. The necessary pressure p is [1]  
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The corresponding shrinkage (the difference of the hole and shaft diameters) is  
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The demanded shrinkage is of the order 10
– 2

 mm, i.e. negligible compared to the 

nominal diameter. Nominal value of d can therefore be used in Eq. (14.16).  

Inserting the input values into both equations gives the necessary pressure p = 

70,74 MPa, and the corresponding overlap d = 0,02068 mm. 

The equivalent Tresca´s stress in the thin layer in the surface of the wheel opening is  

 eq (a) = t(a) – r(a) = 2 (A – r) ,       (14.17) 

where r = – p, and  
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Inserting p = 70,74 MPa, a = 15 mm and b = 100 mm gives A = 1,6283 MPa and 

eq = 144,74 MPa. Safety to attaining the yield strength is  

 kY = Y / eq = 400 / 144,74 = 2,76.  

The force needed for the pressing the shaft into the wheel is 

 F =  d h f p =  30200,170,74 =  13334 N . 

The press should have a sufficient force reserve to this value (see later). 
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Joining can also be achieved without a press, if the wheel is heated so that its 

diameter becomes sufficiently larger, and the shaft is inserted into the hole. The 

joining becomes strong during cooling. The expression for the enlargement of the 

opening diameter, d = dT, gives the necessary temperature increase:  

 T = d / (d) = 0,02068/(301210
– 6

) = 57,44 K.   

Heating more than the calculated T would be used, because between the heating 

and joining of both parts some time would elapse, and the wheel becomes cooler. 

If the actual diameter of the hole were larger (due to manufacture inaccuracy) by 

0,01 mm, the overlap would by smaller, equal d´ = 0,01068 mm. This is 51,6  

52% from the demanded overlap value 0,02068 mm. The pressure at the interface 

thus drops to 52 % (that is by 48%), and similarly also the torque that could be 

transferred by the joint. The corresponding tolerances of the shaft and hole 

diameter must be determined with respect to the minimum transferred moment 

demanded. They will be in m. Vice versa, if the overlap were by 0,01 mm larger, 

the joint can transmit by 48% higher moment, but the stress in the shaft will be 

nearer to the yield strength. The equivalent stress will be 214,7 MPa, and the safety 

to the yield strength will be kY = 1.86.  

Further example from [20] shows that it is important to consider all possible 

deviations from the ideal shape and nominal dimensions. 

Example 2. It is necessary to check the stresses in glass tubes of a heat exchanger 

according to Fig. 14.16. The tubes from Simax


 glass have the inner diameter d = 

14 mm, wall thickness h = 1 mm and length l = 2 m. Their ends are in tube plates 

allowing axial dilatations, and the centre passes through the perforated partition. 

Water of temperature Tm,1 = 95 ºC and pressure 0,1 MPa flows through the tubes,  

   

          Fig. 14.16.  Glass heat-exchanger [20]. 
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and the temperature of the water outside is Tm,2 = 15 ºC. The heat transfer 

coefficient for the inner surface of the tube is 1 = 2000 Wm
2

K
1

, and for the outer 

is 2 = 600 Wm
2

K
1

. The work regime is stationary, with constant temperatures. 

Solution. The stresses in the tubes are caused by 1) internal overpressure, and 2) 

difference of temperatures of the inner and outer surface. Besides them, stresses 

can arise due to inaccuracies in shape and dimensions of the tubes. Especially 

tensile stresses are dangerous for glass. Here, we shall look at their components.  
 

1. Stresses due to overpressure 

The internal overpressure p causes hoop stress in the tube 
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which is distributed uniformly across the wall thickness. With the used 

arrangement of the exchanger the pressure will cause no axial stresses. Inserting p 

= 0,1 MPa, d = 14 mm, and h = 1 mm into (14.19) gives p, t = 0,70 MPa. 

2. Thermal stresses 

As the tubes have thin walls, the situation will be similar to heat transfer across the 

planar wall, with approximately linear distribution of temperatures and stresses. 

The thermal stresses will act in circumferential and axial direction, with the same 

magnitude in both directions. The maximum tensile stresses will act on the outer 

surface, and its magnitude will be [20] 
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With the constants for Simax glass (E = 63 000 MPa,  = 0,18,  = 1,16 Wm
1

K
1

, 

 = 3,2×10
6

 K
1

), wall thickness h = 1,0 mm and heat transfer coefficients 1 = 

2000 Wm
2

K
1

 and 2 = 600 Wm
2

K
1

, one obtains T,a = T,t = 2,80 MPa. 

The resultant maximum tensile stress will act (in this ideal case) on the external 

surface in the circumferential direction, and will have the magnitude 

 max = p,t + T,t = 2,80 + 0,70 = 3,50 MPa. 

In a real exchanger always additional stresses appear: 

3. Stresses caused by the inaccuracy of shape and dimensions of the tubes 
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In the analysed case the following deviations of shape and dimensions appear:  

a) variations of the tube diameter ( 0,5 mm), 

b) variations of the wall thickness ( 0,2 mm), 

c) ovality of the cross section ( 0,5 mm), 

d) longitudinal deflection of the tube (2 mm per 1 meter of length). 

The influence of the individual deviations will be shown further. 

a) Variations of the tube diameter 

Thermal stresses do not depend on the tube diameter, but the stresses caused by the 

pressure difference depend. If the internal diameter d increases from 14,0 to 14,5 

mm, the circumferential stress (14.19) increases to p,t = 0,725 MPa. 

b) Influence of the variations of the wall thickness 

The wall thickness influences both kinds of stress. The stresses due to internal 

overpressure decrease with increasing wall thickness, while the thermal stresses 

increase, as the thermal resistance of the wall and the difference of surface 

temperatures grow. The increase of the wall thickness by 0,2 mm to 1,2 mm 

changes the individual stresses according to Eqs. (14.19) and (14.20) as follows: 

 T,a = T,t (h = 1,2 mm) = 3,18 MPa, 

 p,t (h = 1,2 mm) = 0,58 MPa . 

With the wall thickness drop to 0,8 mm they will be 

 T,a = T,t (h = 0,8 mm) = 2,37 MPa, 

 p,t (h = 0,8 mm) = 0,88 MPa. 

In this case the increase of thickness is more dangerous; the situation under other 

thermal and pressure conditions can be different.    

c) Influence of the ovality of cross section 

The deviation of the cross section from perfectly circular shape will have no 

influence on thermal stresses, but it can significantly influence the stresses caused 

by the internal pressure. In oval cross section (Fig. 14.17) also bending stresses 

appear, because the cross section of the tube tries to attain circular shape. The 

maximum tensile stress caused by this bending will act in circumferential direction 

on the outer surface at the shorter semiaxis and also on the inner surface of the 

larger axis. According to [20] this stress is approximately equal  
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where e is the maximum deviation of the actual shape from the circular one (that is, 

the largest inner dimension is d + e, and the smallest is d – e). Also bending 

stresses arise in axial direction: 

 e,a =  e,t  .           (14.22) 

Inserting the values d = 14 mm, h = 1 mm, e = 0,5 mm and  = 0,18 gives 

 e,t = 1,305 MPa,   e,a = 0,19 MPa . 

This stress will act in addition to the membrane stress according to Eq. (14.19). 

The maximal stress in a tube of oval cross section can thus be several times higher 

than in ideally circular shape. 

        
   Fig. 14.17.  Stress distribution in a tube with cross section: a – circular, b – oval. 

Due to varying wall thickness, the bending stresses can vary in the range: 

 e,t (h = 1,2 mm) = 0,73 MPa,  e,a (h = 1,2 mm) = 0,13 MPa , 

 e,t (h = 0,8 mm) = 1,64 MPa,  e,a (h = 0,8 mm) = 0,30 MPa . 

d) Influence of the initial deflection of the tube 

The presence of the diaphragm in the centre of the exchanger means straightening 

of the tubes if they have some initial deflection from manufacture (Fig. 14.18). 

This causes further bending stress, this time in axial direction. These stresses can 

be determined like in a beam on two supports and loaded by a point transverse 

force. According to [1], the deflection in the centre is y = Fl
3
/(48EJ), and maximal 

tensile stress on the surface here is  = M/W = FlD/(8J); F is the transverse force, l 



Jaroslav Menčík:  Applied mechanics of materials 

 

179 

is the distance of supports, J and W are the moment of inertia and section modulus 

in bending, and D is the beam thickness in the direction of deflection. Combination  

       

     Fig. 14.18.  Glass tube for the exchanger – initial deflection from manufacture. 

of both expressions gives the following formula for the maximum tensile (bending) 

stress, caused by the elimination of the initial deflection y:   
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The values from our example (l = 2000 mm, y = 2×2 = 4 mm, D = d + 2h = 16 mm) 

give y,a = 6,14 MPa . 

This stress, from seemingly innocent deflection, is by far the highest of all acting 

stresses. (Note that it does not depend on the wall thickness, but only on the 

diameter of the tube.) 

Now the total stress must be determined. We shall assume that the maximum 

deflection can appear simultaneously with the maximum deviation of the wall 

thickness and maximum ovality. (The influence of diameter change will not be 

considered, because the maximal possible deviation of the diameter in our case was 

understood as the sum of the diameter change and the ovality.) The resultant 

stresses in axial and circumferential direction in this case are    

 a = T,a + e,a + y,a          (14.24) 

 t = T,t + p,t + e,t .           (14.25) 

After insertion of the values corresponding to all investigated cases one obtains that 

the maximum tensile stress will act on the outer surface in axial direction, and its 

maximum value, attained at the wall thickness 1,2 mm, will be: 

 a (h = 1,2 mm) = 3,18 + 0,13 + 6,14 = 9,45 MPa. 

The circumferential stress will be 
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 t (h = 1,2 mm) = 3,18 + 0,58 + 0,73 = 4,49 MPa. 

(With the wall thickness h = 1,0 mm it will be a = 9,13 MPa, t  = 4,55 MPa, and 

for h = 0,8 mm it will be a = 8,81 MPa, t  = 4,89 MPa.) We see that the actual 

maximum stress can be several times higher than in the ideal case.  

In the next step, determination of tolerances could follow in order to reduce the 

parasitic stresses from manufacture. 
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15.  Dimensional analysis  

 and theory of similarity  

Design of various components, machines and structures can be improved if 

dimensional analysis and similarity theory are used, as they can simplify 

experiments (including computer modelling), reduce their extent, make the results 

more general, and also take over the results obtained with other objects. This 

chapter, based on works [1  5], shows various kinds of similarity and examples of 

dimensionless quantities, and gives advice for their creation.     

15. 1   Dimensional analysis  

Every physical quantity is described by a numerical value accompanied by a unit. 

The numerical value says how many times the considered quantity is larger than its 

unit. An example of length is 5.3 m, of force is 25 N, of time is 15.6 ms. In 

addition to the fundamental units (meter, kilogram, second…), defined in the 

Système International (SI), also various derived units are used, as well as prefixes 

(, m, k, M…) denoting the order. 

Every equation, describing a physical phenomenon, must be dimensionally 

homogeneous: its left side must have the same dimension as the right side. The 

check of this homogeneity should always be done before the first use of a newly 

derived formula. Such check also helps in formulating a correct relationship among 

the variables. Consider, for example, a formula for the deflection y of an elastic 

beam loaded by a force F. It is known from mechanics of materials that y will be 

directly proportional to F and indirectly proportional to the bending stiffness of the 

beam, defined as E×J, where E is the Young modulus of the material and J is the 

moment of inertia of the cross section. The deflection will also be proportional to 

some power S of the beam length L. Now, imagine that we do not know the 

exponent S. In such case we could write the basic form of the formula: 

 y = C×F×L
S
/(E×J) ;                            (15.1) 

C is a dimensionless constant. Replacement of the individual quantities in Eq. 

(15.1) by their units gives  

m = 1 × N × m
S
/(N/m

2
 × m

4
) .  
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The dimension of the right side must be the same as that of the left side, i.e. meter. 

The product of all terms containing m is m
S
×m

2
×m

4
 = m

S+24 
= m

S2
. Comparison 

of the exponents on the left and right side of the equation gives 1 = S  2. From this 

it follows S = 3, so that y = C×F×L
3
/(EJ), a formula well known from mechanics. 

The homogeneity condition thus helped in finding the correct formula.  

If one side of an equation is a sum of several terms, they all must have the same 

dimension. For example, vertical path y of a body falling in gravitational field is  

y = y0 + v0t + ½ gt
2
 .                (15.2)  

t is time, y0 and v0 are the position and velocity of the body at t = 0, and g is the 

acceleration of gravity. The dimensional homogeneity demands that the individual 

quantities cannot exist in the physical equation independently, but only in groups 

of the same dimension. If Equation (15.2) is divided by one of the terms, for 

example y0, it changes to non-dimensional form 

 y/y0 = 1 + v0t/y0 + ½ gt
2
/y0                           (15.3)    

with normalised quantities y/y0, v0t/y0 and gt
2
/y0. 

Nearly every physical equation can be transformed to non-dimensional form. The 

use of normalised quantities has many advantages. Physical equations, expressed 

by means of non-dimensional variables, are more general. The relative 

displacement or path, y/y0, does not depend simply on v0, t and y0, but only on their 

certain combinations, such as those in Eq. (15.3). Dimensionless quantities thus 

enable one to combine the results of experiments made with specimens of various 

initial velocity and position, the only condition being their proper combination. 

Therefore, more data and a wider range of parameters can be used for the 

formulation of a certain law. The results expressed in non-dimensional form are 

also more universal, valid for the whole class of similar objects, with similar 

geometry or physical properties. Moreover – and this is very important – the use of 

non-dimensional quantities can spare experimental work, because 

the relationship among N quantities, whose dimensions can be expressed by 

means of D basic dimensions, may usually be replaced by a relationship of only  

P  = N – D                              (15.4) 

nondimensional parameters   

According to this Buckingham theorem [1 – 4], the determination of less regression 
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constants needs less experiments. The reduction of experimental work is significant 

especially if the investigated relationship contains many quantities and if the 

number of variables, N, is closer to the number of basic dimensions, D. This can be 

illustrated on the previous example of a falling body. Equation (15.2) represents 

relationship of 5 quantities: y, y0, v0, g and t; that is N = 5. These quantities can be 

expressed by means of two basic dimensions: meter and second; thus D = 2. 

According to Eq. (15.4), the number of non-dimensional parameters should be P = 

N  D = 5 – 2 = 3. And really, Equation (15.3) is the relationship of 3 

dimensionless parameters: y/y0, v0t/y0 and gt
2
/y0. The determination of the 

necessary number of experiments will be discussed later in this book. Nevertheless, 

an idea can be obtained from a simple example. If the influence of six factors 

should be investigated, with each on two levels (low and high), the number of 

necessary experiments would be 2
6
 = 64. If the number of dimensionless factors 

would be only 4, the number of necessary experiments drops to 2
4
 = 16, i.e. to 

25%! 

All this holds also for computer modelling! Its extent can often be reduced if a 

general analysis is done first and principal relationships revealed.   

Similarity  

The use of non-dimensional quantities is also of prime importance in the study of 

real objects by means of models. Building of a large structure is accompanied with 

many uncertainties, and the potential losses due to wrong design would be very 

high. Therefore, usually a smaller model is built first and tested. However, if the 

model should adequately reflect the behaviour of the actual structure, similarity 

between them must exist. There are various kinds of similarity, for example: 

Geometric similarity, which means identity of shape, equality of corresponding 

angles, and proportionality between the corresponding dimensions (so-called scale 

factor). The following relation holds: 

Model dimension = Scale factor × Dimension of the real object 

Static similarity means that the relative deformations of a model under constant 

stress are in the same proportion as the corresponding deformations of the object. 

Kinematic similarity is based on the ratio of the time proportionality between 

corresponding events in the model and the object. 
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Dynamic similarity exists if the forces acting at corresponding times and locations 

in the model and object are in a fixed ratio. 

The theory of similarity works with so-called similarity numbers. Those, who 

have attended a college course of physics, know, e.g., the Reynolds number (Re), 

which helps in assessing whether flow of a liquid is laminar or turbulent. The 

similarity numbers are dimensionless; in fact, every non-dimensional quantity can 

serve as a similarity number. 

Dimensionless variables can be created in various ways. The simplest case is the 

ratio of some quantity to its characteristic value, for example x/x0 or x/x0 for 

distance or displacement. Well known in mechanics are: strain, defined as relative 

elongation ( = L/L), Poisson number  (the ratio of relative shortening in 

transverse direction to the relative elongation in the direction of stress action), or 

coefficient of friction f, defined as the ratio of the force, needed to slide a body 

along another body, and the normal force pressing both bodies together. Another 

example is relative position of a point in a body, for example 

  = (x – xmin)/(xmax – xmin)  ;                              (15.5) 

x, xmax and xmin represent the coordinates. Similarly it is possible to express time. 

Non-dimensional temperature,  = (T – T∞)/(T0 – T∞), is used for the description of 

processes of heat transfer (T0 is the initial temperature and T∞ the final).  The 

instructions for creation of dimensionless parameters can be found in [1 – 5].  

Non-dimensional must also be the arguments in mathematical functions sin, cos, 

log or exp. Otherwise any change of units, e.g. meter instead of mm) would change 

the numerical value of the result. Dimensionless are also the arguments in 

probability distributions. Normal distribution uses the argument {½[(x – )/]
2
}, 

where  and  are the mean value and standard deviation. The expression in the 

composed brackets is nothing else than standardised non-dimensional variable, 

which expresses the distance of x from  as a multiple of standard variable .    

15. 3  Further recommendations 

1) Sometimes the form of the non-dimensional parameters does not correspond to 

our intentions or experimental possibilities. Generally, it is possible to create new 

parameters (or similarity numbers) by making a product or ratio of the original 

ones, or to change them by making their reciprocal or some power. As they are 
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dimensionless, the new parameters obtained by such transformations will again be 

dimensionless. It is possible to create several dimensionless parameters and select 

from them the most suitable, which have certain physical sense. 

2) If several quantities of the same dimension appear in one problem, it is also 

possible to create non-dimensional parameters directly as their ratios. This can 

reduce the number of arguments, which must be determined by solution of the 

system of equations such as those given under point 4 above. This will be 

illustrated on the example of the deflection y of a beam with rectangular cross 

section (w×h) and length L loaded by a point force P. The modulus of elasticity is 

E. The variables and their dimensions are: y(m), w(m), h(m), L(m), P(N), E(Nm
–2

); 

that is 6 variables with 2 dimensions. The number of non-dimensional parameters 

needed for the description of the problem is P = N – D = 6 – 2 = 4. We can 

immediately create three parameters 1 = y/h, 2 = b/h and 3 = L/h. Two 

quantities remain (P and E), which must be contained in the fourth parameter. With 

respect to their dimensions and the condition of non-dimensionality also one 

geometric quantity must be included in 4, for example h or its power. We obtain 

this parameter as 4 = P/(Eh
2
). The studied relationship can thus be written in the 

following non-dimensional form: 

y/h = f [P/(Eh
2
), L/h, b/h] .                               (15.6) 

One should remember that for the study of relative deflection y/h are important not 

the individual quantities L or P, etc., but their ratios. 

3) In some problems always dimensionless quantities appear. Examples are 

coefficient of friction, Poisson´s number  or angle  (rad). These quantities 

automatically become arguments in the non-dimensional relationships. 

4) The creation of dimensionless parameters can be facilitated by using the existing 

knowledge on the investigated or similar problems. For example, we know that 

elastic deflection of a beam is directly proportional to the load and indirectly to the 

modulus of elasticity. Sometimes, analytical solution is known for very small or 

very large values of certain variable. This can help in searching for proper form of 

the arguments. Sometimes it is known that some quantities must appear in certain 

combination. This combination can be considered as a new variable, which can 

enable reduction of the total number of variables. Consider, for example, force 
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acting in the contact area of two bodies. If friction should be investigated, the force 

F (N) and contact area A (m
2
) can be replaced by contact pressure p = F/A (N/m

2
). 

5) When an experiment is prepared, all quantities must be included, which may 

play a role. Otherwise wrong and misleading results can be obtained. It is less 

dangerous to include a quantity, whose importance is uncertain (and, perhaps, later 

it may be omitted), than to omit a quantity, which would appear later as important. 

The use of dimensional analysis sometimes reveals shortcomings. For example, if 

some dimension appears only at one quantity, this quantity falls out and will not be 

included in any non-dimensional parameter. However, if this quantity is obviously 

necessary for the description of the investigated phenomenon, it is necessary to add 

another quantity having the same dimension. This can be illustrated on a study of 

wear rate of a cutting tool. The quantities playing a role are: wear rate w (m/s), 

velocity of mutual sliding v (m/s) and the pressure in the contact area p (N/m
2
). The 

non-dimensional parameter could be searched in the form 

 = w
x1

 x
x2

 p
x3

 .                   (15.7) 

This expression can be written by means of the dimensions of the individual 

quantities, m, s, N: 

 [m]
0
 [s]

0
 [N]

0
 = [m×s

–1
]

x1 
× [m×s

–1
]

x2 
× [N×m

–2
]

x3 
           (15.8) 

However, from the condition of equality of exponents at the same base, N
0
 = N

x3
 it 

will follow that x3 = 0. But it is well known from experiments that the wear rate 

does depend on the contact pressure, so that x3 cannot equal 0. It is thus necessary 

to include some further quantity, which would also have the dimension Nm
– 2

. This 

could be, for example, hardness H (Nm
– 2

), which characterises the resistance of the 

material. Now, the general form of the non-dimensional parameter is 

 = w
x1

 v
x2

 p
x3 

H
 x4

                      (15.9) 

From this expression, we can easily formulate the appropriate relationship of 

dimensionless parameters as w/v = f(p/H), and perform a series of experiments in 

order to find the appropriate form of the function f.  

15. 4  Limitations of similarity principle 

Dimensioning of a component is based on the material properties determined on 

standardised or specially prepared specimens. Generally, the tested specimen must 
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be representative. This means that its properties must be the same as those of the 

component that should be created. This is related to the dimensions. The specimen 

can be homogeneous or nonhomogeneous, with respect to its dimensions. for 

example, concrete contains cement, sand, gravel ad pores. The sand grains have 

various sizes, and even larger differences exist with gravel. If the concrete quality 

of an existing structure should be determined, usually a specimen is taken off by 

cutting or using a trepanation drill. The tested specimen must be sufficiently large, 

so that all parts of the material are represented. Its diameter or thickness must be 

significantly larger than the largest expected pieces of gravel, for example. 

Otherwise we do not obtain the modulus of elasticity of the concrete, but a value 

near to the modulus of gravel. Similar situation is in metallic materials with 

polycrystalline structure. The individual grains are anisotropic, so that a sufficient 

number of crystals must be in the cross section in order to obtain the average 

property, not influenced by the grain orientation. Another example: it is well 

known that the strength of glass fibers is much higher than the strength of massive 

glass, partly because the small diameter of the fiber limits the maximum size of 

flaws responsible for the low strength.    

If a component with a crack can break, an important characteristic of its resistance 

to crack grow is fracture toughness of the material KIC. This is such value of the 

stress intensity factor KI, at which the crack propagation becomes fast and unstable. 

High stresses in front of the crack in metallic materials cause plastic flow in a small 

region around the crack tip. And here, a role can be played by the difference 

between the plane stress state on the side surfaces of the specimen and the plane 

strain state in the region remote from surfaces. The radius of the region with plastic 

flow under plane stress is much larger than at places under plane strain (Fig. 7.7). If 

the standard value KIC of fracture toughness should be obtained, the test specimen 

must have certain minimum thickness, which is prescribed by the pertinent 

standard. Thinner specimens would yield higher values, and their use for the 

components with larger thickness of the wall could be dangerous, as the crack 

would start growing earlier than we expected. If the values from material data 

sheets are used, the user should know the conditions of their usability. 

The principle of similarity, enabling the transfer of measured values on the 

designed object, holds only under some conditions, and outside them it loses its 

validity [10]. An example is the transition from elastic to elastic-plastic 

deformations in components from ductile materials. If the stresses are lower than 



Jaroslav Menčík:   Applied mechanics of materials 

 

189 

the yield strength, the deformations are elastic, linear relationship exists between 

stresses and strains, and the superposition principle may be used, which allows 

obtaining the resultant deformations and stresses of several loads as the sum of the 

values calculated for the individual loads. However, the relationships in the elastic-

plastic region are nonlinear and the situation must be solved for various loads 

individually.  

Another case is the strength dependence of brittle bodies on the size of loaded area 

or volume. Brittle fracture usually starts in the weakest point, with some defect. 

Smaller size of a loaded area means lower probability of occurrence of a larger 

defect. Very small objects are therefore stronger. Similarly, also the fatigue limit of 

metal components depends on the component size. A coefficient accounting for the 

size is therefore used in the fatigue calculations. 

Sometimes simultaneously quantities appear that depend on different powers of 

another quantity. For example, the energy consumed in fracture, is proportional to 

the area of fracture (m
2
), while strain energy accumulated in the body is 

proportional to its volume (m
3
). Sometimes it is necessary to check whether both 

components are similarly important, and, if possible, to neglect one of them.   

The processes in fast plastic deforming depend sometimes on the strain-rate. If the 

effects of impact load should be studied on a model, whose dimensions (Lm) are 

smaller than of the actual object (Lp), one should not forget that different velocity 

of impact, v0, must be used in order to obtain the same strain rate of forming,  

v0m/v0p = Lm/Lp  ;               (15.10)    

the subscripts m and p denote model and prototype.  

Generally, one must have in mind that sometimes the investigated quantity changes 

with the changes of a certain parameter relatively slowly, but at its certain level it 

can change very quickly. The relationship, describing some behaviour or process, 

is often valid only within certain range of parameters. If the pertinent process is 

described by means of non-dimensional quantities, the conditions for a transition 

from one mode to another are characterised by a critical value of some of these 

quantities. A well-known example is the change from laminar to turbulent flow at 

the critical value of Reynolds number. One must therefore always consider all 

possible influences, and reduce their number only after a thorough analysis. 
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Example. 

Expression of the pertinent formulae in non-dimensional form facilitates one to 

understand the basic relationships and trends, and can contribute to the more 

economical design. This can be illustrated on example of a column from reinforced 

concrete loaded by tensile force (Fig. 15.1). This force is transferred by the 

reinforcement (component a) and concrete (component b), so that it holds  

 F = Fa + Fb          (15.11) 

Both components will be deformed as a whole, so that the change of the initial 

length l is la = lb. Expressing these elongations by means of Hooke´s law gives   
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b
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a

SE
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  .         (15.12) 

With respect to Eq. (14.11), some rearrangements give the following formulae for 

relative forces in the components a and b: 
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The equation at right was obtained by interchanging the subscripts. Equations 

(14.11) – (14.13) are valid for any two-component part, including fiber composites. 

We see that the relative magnitudes of forces in the individual components do not 

depend on the particular values of moduli of elasticity or area of the cross section, 

but only on the ratios of elastic moduli and the cross sections. This is advantageous 

in design when the final dimensions are not known yet and when the material can 

be selected from several candidates. The task can be optimised. For example, the 

unit (kg) prices of the individual materials are known, and such configuration of 

the object is sought, which will guarantee the lowest price. The actual size of the 

cross section will then be determined with respect to the actual load F.     

   

  

 

 

           Fig. 15.1.  Reinforced concrete –  

           components and forces 
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15. 5  Examples of non-dimensional quantities 

Material properties 

E1/E2, H1/H2  ratio of elastic moduli or hardnesses; subscripts denote the 

   components,  

E(x)/E0, H(x)/H0  ratios as above, subscript 0 denotes the characteristic value,  

H/Y, E/Y, E/H  ratio of hardness and yield strength or elastic modulus, 

/Y, /u,  ratio of stress to yield strength Y or ultimate strength (u),  

Geometry 

x/d  x – distance, d – characteristic dimension (contact radius, 

specimen length, width, height or diameter, coating 

thickness, size of plastic zone…), 

l/L relative displacement or elongation, L – basic length, 

h/R, h/tc ratio of indenter penetration h to the tip radius R or coating 

thickness tc,  

Forces and stresses 

F/F0 ratio of load F and characteristic force, 

m    ratio of the stress   to the nominal or mean stress m.  

Time 

t/t0    t0 – characteristic time (of load increase, relaxation time).   
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design point     172, 173  (14) 

dimensional analysis    182   (15) 

disc of constant stresses    167   (14) 

dispersion of properties    146  (12) 

distribution of random quantity, Weibull  146   (12) 

Dundurs´parameters    124, 125   (11) 

elastomers     153   (13) 

energy release rate    85   (8) 

failure, hypotheses     31  (3) 

fatigue crack, nucleation, velocity  76  (7) 

fatigue curve  (low cycle, high cycle)  74, 77  (7) 
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fatigue fracture     93  (9) 

fiber length, critical      145   (12) 

fiber properties, variance   146   (12) 

fibers, long, short    137, 143  (12) 

fictitious cut, method    9   (1) 

filament winding    142  (12) 

finite element method (FEM), software  23, 26   (2) 

fraction of fibres in a composite   137   (12) 

fracture analysis    93   (9) 

fracture mechanics    81  (8), 124 (11) 

fracture toughness    83  (8), 134  (11) 

fracture, brittle     31   (3) 

glass strengthening (tempering)   58   (5) 

homogeneity of dimensions   182   (15) 

Hooke´s law     18  (1), 149, 150  (12) 

hypotheses of failure and plastic deforming 31, 32, 33   (3) 

hysteresis     111   (10) 

Kelvin-Voigt model    103   (10) 

knitted material (fabric)    158   (13) 

Lagrange principle    23   (2) 

lamina, laminate    150, 151   (11) 

Laplace equation (for membrane)  118, 119  (11) 

limit load     41   (4) 

limit state     50   (4) 

load transfer length    145   (12) 

material elastic (Hookean)   98   (10) 

material elastic-plastic    37   (4) 

material hyperelastic    147   (12) 

material model, Burgers    106   (10) 

material model: Mooney-Rivlin   155   (13) 

material model: neo-hookean   155, 156  (13) 

material viscous (Newtonian)   99   (10) 

materials orthotropic    149, 150   (12) 

materials viscoelastic, response   101, 103   (9) 

Maxwell model     100   (10) 

mechanics of materials    7 
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membrane, Laplace equation   118, 119  (11), 159 (13) 

method of adaptive growth   170   (14) 

method Soft Kill Option    171   (14) 

methods analytical and numerical  26   (2) 

modulus of elasticity (in tension, shear)  18   (1) 

modulus: complex, instantaneous, loss  110   (10) 

Mohr´s circle     10, 12, 14, 19   (1) 

moment, limit value    45   (4) 

non-dimensional quantity   183   (15) 

notch toughness, Charpy hammer  66   (6) 

notch      65  (6), 169  (14) 

optimisation of a continuous beam  167, 168   (14) 

optimisation of cross section   164, 165   (14) 

optimisation     161   (14) 

parameter dimensionless (non-dimensional) 183   (15) 

parameter dimensionless, non-dimensional  183   (15) 

plane stress     10   (1) 

plastic hinge     46   (4) 

plastic zone in front of the crack   82, 87   (8) 

plasticity     35   (4) 

Poisson´s number    18   (1) 

prepreg      150  (12) 

principal stresses, directions   12, 16  (1)  

relaxation (retardation) time   102, 104   (10) 

relaxation of stresses, forces   101   (10) 

residual forces, stresses, deformations  43   (4) 

resistance to crack propagation   90   (8) 

Ritz method     24   (2) 

robust design     172   (14) 

safety factor     34   (3) 

section modulus     45   (4) 

section modulus, plastic    46   (4) 

shear strain      17   (1) 

shear stresses, complementary   11   (1) 

shrink-fitted joint    173   (14) 

similarity     182, 184   (15) 
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specimens: sandwich, UCSB   134   (11) 

Standard Linear Solid  (SLS)   105   (10) 

stiffness, stiffness matrix   24, 25   (2) 

strain energy density    21   (1), 156  (13) 

strain energy     20   (1) 

strain      17, 19   (1) 

strengthening, strain hardening   58, 61, 62  (5) 

stress (normal, shear)    9   (1)    

stress equivalent    31, 32, 33   (2) 

stress intensity factor    82, 84   (8) 

stress intensity factor, interface crack   125, 126, 127  (11) 

stress intensity     51   (4) 

stress, concentration     64, 65   (6) 

stress, contact     70   (6) 

stress, in coating    116, 118, 119  (11) 

stress, in front of a crack   82  (8), 124  (11) 

stress, membrane    116   (11) 

stress, principal     12, 16   (1) 

stress, residual     47   (4) 

stress, thermal     54   (5) 

stretch ratio     153   (13) 

stretch, invariant    154   (13) 

textile fibers     157   (13) 

theory of similarity    185   (15) 

thermal expansion    55  (5), 113  (11) 

thick wall vessel, cylindrical   48, 50   (4) 

tolerance     172   (14) 

triaxial stress     16   (1) 

variable non-dimensional   183   (15) 

viscoelasticity     98   (10) 

work diagram of a body    41   (4) 

work diagram of material   35, 36  (4) 

yield strength, ultimate strength   19   (1) 
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